Вконтакте Facebook Twitter Лента RSS

Рациональные и иррациональные числа. Иррациональные числа: что это такое и для чего они используются

Что такое иррациональные числа? Почему они так называются? Где они используются и что собой представляют? Немногие могут без раздумий ответить на эти вопросы. Но на самом деле ответы на них довольно просты, хоть нужны не всем и в очень редких ситуациях

Сущность и обозначение

Иррациональные числа представляют собой бесконечные непериодические Необходимость введения этой концепции обусловлена тем, что для решения новых возникающих задач уже было недостаточно ранее имеющихся понятий действительных или вещественных, целых, натуральных и рациональных чисел. Например, для того, чтобы вычислить, квадратом какой величины является 2, необходимо использовать непериодические бесконечные десятичные дроби. Кроме того, многие простейшие уравнения также не имеют решения без введения концепции иррационального числа.

Это множество обозначается как I. И, как уже ясно, эти значения не могут быть представлены в виде простой дроби, в числителе которой будет целое, а в знаменателе -

Впервые так или иначе с этим явлением столкнулись индийские математики в VII веке когда было обнаружено, что квадратные корни из некоторых величин не могут быть обозначены явно. А первое доказательство существования подобных чисел приписывают пифагорейцу Гиппасу, который сделал это в процессе изучения равнобедренного прямоугольного треугольника. Серьезный вклад в изучение этого множества привнесли еще некоторые ученые, жившие до нашей эры. Введение концепции иррациональных чисел повлекло за собой пересмотр существовавшей математической системы, вот почему они так важны.

Происхождение названия

Если ratio в переводе с латыни - это "дробь", "отношение", то приставка "ир"
придает этому слову противоположное значение. Таким образом, название множества этих чисел говорит о том, что они не могут быть соотнесены с целым или дробным, имеют отдельное место. Это и вытекает из их сущности.

Место в общей классификации

Иррациональные числа наряду с рациональными относится к группе вещественных или действительных, которые в свою очередь относятся к комплексным. Подмножеств нет, однако различают алгебраическую и трансцендентную разновидность, о которых речь пойдет ниже.

Свойства

Поскольку иррациональные числа - это часть множества действительных, то к ним применимы все их свойства, которые изучаются в арифметике (их также называют основными алгебраическими законами).

a + b = b + a (коммутативность);

(a + b) + c = a + (b + c) (ассоциативность);

a + (-a) = 0 (существование противоположного числа);

ab = ba (переместительный закон);

(ab)c = a(bc) (дистрибутивность);

a(b+c) = ab + ac (распределительный закон);

a x 1/a = 1 (существование обратного числа);

Сравнение также проводится в соответствии с общими закономерностями и принципами:

Если a > b и b > c, то a > c (транзитивность соотношения) и. т. д.

Разумеется, все иррациональные числа могут быть преобразованы с помощью основных арифметических действий. Никаких особых правил при этом нет.

Кроме того, на иррациональные числа распространяется действие аксиомы Архимеда. Она гласит, что для любых двух величин a и b справедливо утверждение, что, взяв a в качестве слагаемого достаточное количество раз, можно превзойти b.

Использование

Несмотря на то что в обычной жизни не так уж часто приходится сталкиваться с ними, иррациональные числа не поддаются счету. Их огромное множество, но они практически незаметны. Нас повсюду окружают иррациональные числа. Примеры, знакомые всем, - это число пи, равное 3,1415926..., или e, по сути являющееся основанием натурального логарифма, 2,718281828... В алгебре, тригонометрии и геометрии использовать их приходится постоянно. Кстати, знаменитое значение "золотого сечения", то есть отношение как большей части к меньшей, так и наоборот, также

относится к этому множеству. Менее известное "серебряное" - тоже.

На числовой прямой они расположены очень плотно, так что между любыми двумя величинами, отнесенными к множеству рациональных, обязательно встречается иррациональная.

До сих пор существует масса нерешенных проблем, связанных с этим множеством. Существуют такие критерии, как мера иррациональности и нормальность числа. Математики продолжают исследовать наиболее значительные примеры на предмет принадлежности их к той или иной группе. Например, считается, что е - нормальное число, т. е. вероятность появления в его записи разных цифр одинакова. Что же касается пи, то относительно его пока ведутся исследования. Мерой иррациональности же называют величину, показывающую, насколько хорошо то или иное число может быть приближено рациональными числами.

Алгебраические и трансцендентные

Как уже было упомянуто, иррациональные числа условно разделяются на алгебраические и трансцендентные. Условно, поскольку, строго говоря, эта классификация используется для деления множества C.

Под этим обозначением скрываются комплексные числа, которые включают в себя действительные или вещественные.

Итак, алгебраическим называют такое значение, которое является корнем многочлена, не равного тождественно нулю. Например, квадратный корень из 2 будет относиться к этой категории, поскольку он является решением уравнения x 2 - 2 = 0.

Все же остальные вещественные числа, не удовлетворяющие этому условию, называются трансцендентными. К этой разновидности относятся и наиболее известные и уже упомянутые примеры - число пи и основание натурального логарифма e.

Что интересно, ни одно, ни второе не были изначально выведены математиками в этом качестве, их иррациональность и трансцендентность были доказаны через много лет после их открытия. Для пи доказательство было приведено в 1882 году и упрощено в 1894, что положило конец спорам о проблеме квадратуры круга, которые длились на протяжении 2,5 тысяч лет. Оно до сих пор до конца не изучено, так что современным математикам есть над чем работать. Кстати, первое достаточно точное вычисление этого значения провел Архимед. До него все расчеты были слишком приблизительными.

Для е (числа Эйлера или Непера), доказательство его трансцендентности было найдено в 1873 году. Оно используется в решении логарифмических уравнений.

Среди других примеров - значения синуса, косинуса и тангенса для любых алгебраических ненулевых значений.

С отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где и - целые числа . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

См. также

Примечания

Множество всех натуральных чисел обозначают буквой N. Натуральные числа, это числа которые мы используем для счета предметов: 1,2,3,4, … В некоторых источниках, к натуральным числам относят также число 0.

Множество всех целых чисел обозначается буквой Z. Целые числа это все натуральные числа, нуль и отрицательные числа:

1,-2,-3, -4, …

Теперь присоединим к множеству всех целых чисел множество всех обыкновенных дробей: 2/3, 18/17, -4/5 и та далее. Тогда мы получим множество всех рациональных чисел.

Множество рациональных чисел

Множество всех рациональных чисел обозначается буквой Q. Множество всех рациональных чисел (Q) - это множество, состоящее из чисел вида m/n, -m/n и числа 0. В качестве n,m может выступать любое натуральное число. Следует отметить, что все рациональные числа, можно представить в виде конечной или бесконечной ПЕРЕОДИЧЕСКОЙ десятичной дроби. Верно и обратное, что любую конечную или бесконечную периодическую десятичную дробь можно записать в виде рационального числа.

А как же быть например с числом 2.0100100010… ? Оно является бесконечно НЕПЕРЕОДИЧСЕКОЙ десятичной дробью. И оно не относится к рациональным числам.

В школьном курсе алгебры изучаются только вещественные (или действительные) числа. Множество всех действительных чисел обозначается буквой R. Множество R состоит из всех рациональных и всех иррациональных чисел.

Понятие иррациональных чисел

Иррациональные числа - это все бесконечные десятичные непериодические дроби. Иррациональные числа не имеют специального обозначения.

Например, все числа полученные извлечением квадратного корня из натуральных чисел, не являющихся квадратами натуральных чисел - будут иррациональными. (√2, √3, √5, √6, и т.д.).

Но не стоит думать, что иррациональные числа получаются только извлечением квадратных корней. Например, число «пи» тоже является иррациональным, а оно получено делением. И как вы не старайтесь, вы не сможете получить его, извлекая квадратный корень из любого натурального числа.

Рациональным называется число, которое можно представить в виде дроби , где . Q– множество всех рациональных чисел.

Рациональные числа подразделяются на: положительные, отрицательные и нуль.

Каждому рациональному числу можно поставить в соответствие единственную точку координатной прямой. Отношению «левее» для точек соответствует отношение «меньше» для координат этих точек. Можно заметить, что всяко отрицательное число меньше нуля и всякого положительного числа; из двух отрицательных чисел меньше то, модуль которого больше. Так, -5.3<-4.1, т.к. |5.3|>|4.1|.

Всякое рационально число можно представить десятичной периодической дробью. Например, .

Алгоритмы действий над рациональными числами вытекают из правил знаков соответствующих действий над нулем и положительными дробями. В Qвыполняется деление, кроме деления на нуль.

Любое линейное уравнение, т.е. уравнение вида ax+b=0, где , разрешимо на множестве Q, но не любое квадратное уравнение вида , разрешимо в рациональных числах. Не каждая точка координатной прямой имеет рациональную точку. Еще в конце VIв до. н. э в школе Пифагора было доказано, что диагональ квадрата не соизмерима с его высотой, что равносильно утверждению: «Уравнение не имеет рациональных корней». Всё перечисленное привело к необходимости расширения множества Q, было введено понятие иррационального числа. Обозначим множество иррациональных чисел буквой J .

На координатной прямой иррациональные координаты имею все точки, которые не имеют рациональных координат. , где r– множеств действительных чисел. Универсальным способом задания действительных чисел являются десятичные дроби. Периодические десятичные дроби задают рациональные числа, а непериодические – иррациональные числа. Так, 2,03(52) – рациональное число, 2,03003000300003… (период каждой следующие цифрой «3» записывается на один нуль больше) – иррациональное число.

Множества Qи Rобладают свойствами положительности: между любыми двумя рациональными числами существует рациональное число, например, есои a

Для всякого иррационального числа α можно указать рациональное приближение как с недостатком так и с избытком с любой точностью: a< α

Операция извлечения корня из некоторых рациональных чисел приводит к иррациональным числам. Извлечение корня натуральной степени – алгебраическая операция, т.е. ее введение связано с решение алгебраического уравнения вида . Если nнечетное, т.е. n=2k+1, где , то уравнение имеет единственный корень. Если nчетное, n=2k, где , то при a=0 уравнение имеет единственный корень х=0, при a<0 корней нет, при a>0 имеет два корня, которые противоположны друг другу. Извлечение корня – операция обратная операции возведение в натуральную степень.

Арифметическим корнем (для краткости корнем) n-й степени из неотрицательного числа а называется неотрицательное число bкоторое является корнем уравнения . Корень n-ой степени из числа а обозначается символом . При n=2 степень корня 2 не указывается: .

Например, , т.к. 2 2 =4 и 2>0; , т.к. 3 3 =27 и 3>0; не существует т.к. -4<0.

При n=2kи a>0 корни уравнении (1) записываются так и . Например, корни уравнения х 2 =4 равны 2 и -2.

При nнечетном уравнение (1) имеет единственный корень для любого . Если a≥0, то - корень этого уравнения. Если a<0, то –а>0 и - корень уравнения. Так, уравнение х 3 =27 имеет корень .

Натуральные числа

Натуральные числа определение - это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

Это натуральный ряд чисел.
Ноль натуральное число? Нет, ноль не является натуральным числом.
Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
Каково наименьшее натуральное число? Единица - это наименьшее натуральное число.
Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

с - это всегда натуральное число.

Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе - нет.

Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

где с - натуральное число, то это значит, что a делится на b нацело. В этом примере a - делимое, b - делитель, c - частное.

Делитель натурального числа - это натуральное число, на которое первое число делится нацело.

Каждое натуральное число делится на единицу и на себя.

Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

Единицу не считают простым числом.

Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

Единицу не считают составным числом.

Множество натуральных чисел составляют единица, простые числа и составные числа.

Множество натуральных чисел обозначается латинской буквой N.

Свойства сложения и умножения натуральных чисел:

переместительное свойство сложения

сочетательное свойство сложения

(a + b) + c = a + (b + c);

переместительное свойство умножения

сочетательное свойство умножения

(ab) c = a (bc);

распределительное свойство умножения

A (b + c) = ab + ac;

Целые числа

Целые числа - это натуральные числа, ноль и числа, противоположные натуральным.

Числа, противоположные натуральным - это целые отрицательные числа, например:

1; -2; -3; -4;...

Множество целых чисел обозначается латинской буквой Z.

Рациональные числа

Рациональные числа - это целые числа и дроби.

Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

1,(0); 3,(6); 0,(0);...

Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера.

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода