Вконтакте Facebook Twitter Лента RSS

Что такое рациональные и иррациональные числа. Что значит иррациональное число

Рациональное число – число, представляемое обыкновенной дробью m/n, где числитель m – целое число, а знаменатель n – натуральное число. Любое рациональное число представимо в виде периодической бесконечной десятичной дроби. Множество рациональных чисел обозначается Q.

Если действительное число не является рациональным, то оно иррациональное число . Десятичные дроби, выражающие иррациональные числа бесконечны и не периодичны. Множество иррациональных чисел обычно обозначается заглавной латинской буквой I.

Действительное число называется алгебраическим , если оно является корнем некоторого многочлена (ненулевой степени) с рациональными коэффициентами. Любое неалгебраическое число называется трансцендентным .

Некоторые свойства:

    Множество рациональных чисел располагается на числовой оси всюду плотно: между любыми двумя различными рациональными числами расположено хотя бы одно рациональное число (а значит, и бесконечное множество рациональных чисел). Тем не менее, оказывается, что множество рациональных чисел Q и множество натуральных чисел N эквивалентны, то есть между ними можно установить взаимно однозначное соответствие (все элементы множества рациональных чисел можно перенумеровать).

    Множество Q рациональных чисел является замкнутым относительно сложения, вычитания, умножения и деления, то есть сумма, разность, произведение и частное двух рациональных чисел также являются рациональными числами.

    Все рациональные числа являются алгебраическими (обратное утверждение – неверное).

    Каждое вещественное трансцендентное число является иррациональным.

    Каждое иррациональное число является либо алгебраическим, либо трансцендентным.

    Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число (а значит, и бесконечное множество иррациональных чисел).

    Множество иррациональных чисел несчётно.

При решении задач бывает удобно вместе с иррациональным числом a + b√ c (где a, b – рациональные числа, с – целое, не являющееся квадратом натурального числа) рассмотреть «сопряжённое» с ним число a – b√ c : его сумма и произведение с исходным – рациональные числа. Так что a + b√ c и a – b√ c являются корнями квадратного уравнения с целыми коэффициентами.

Задачи с решениями

1. Докажите, что

а) число √ 7 ;

б) число lg 80;

в) число √ 2 + 3 √ 3 ;

является иррациональным.

а) Допустим, что число √ 7 рациональное. Тогда, существуют такие взаимно простые p и q, что √ 7 = p/q, откуда получаем p 2 = 7q 2 . Так как p и q взаимно простые, то p 2 , а значит и p делится на 7. Тогда р = 7k, где k – некоторое натуральное число. Отсюда q 2 = 7k 2 = pk, что противоречит тому, что p и q взаимно просты.

Итак, предположение ложно, значит, число √ 7 иррациональное.

б) Допустим, что число lg 80 рациональное. Тогда существуют такие натуральные p и q, что lg 80 = p/q, или 10 p = 80 q , откуда получаем 2 p–4q = 5 q–p . Учитывая, что числа 2 и 5 взаимно простые, получаем, что последнее равенство возможно только при p–4q = 0 и q–p = 0. Откуда p = q = 0, что невозможно, так как p и q выбраны натуральными.

Итак, предположение ложно, значит, число lg 80 иррациональное.

в) Обозначим данное число через х.

Тогда (х – √ 2 ) 3 = 3, или х 3 + 6х – 3 = √ 2· (3х 2 + 2). После возведения этого уравнения в квадрат получаем, что х должен удовлетворять уравнению

х 6 – 6х 4 – 6х 3 + 12х 2 – 36х + 1 = 0.

Его рациональными корнями могут быть только числа 1 и –1. Проверка же показывает, что 1 и –1 не являются корнями.

Итак, данное число √ 2 + 3 √ 3 является иррациональным.

2. Известно, что числа a, b, √ a –√ b , – рациональные. Докажите, что √ a и √ b – тоже рациональные числа.

Рассмотрим произведение

(√ a – √ b )·(√ a + √ b ) = a – b.

Число √ a +√ b , которое равно отношению чисел a – b и √ a –√ b , является рациональным, так как частное от деления двух рациональных чисел – число рациональное. Сумма двух рациональных чисел

½ (√ a + √ b ) + ½ (√ a – √ b ) = √ a

– число рациональное, их разность,

½ (√ a + √ b ) – ½ (√ a – √ b ) = √ b ,

тоже рациональное число, что и требовалось доказать.

3. Докажите, что существуют положительные иррациональные числа a и b, для которых число a b является натуральным.

4. Существуют ли рациональные числа a, b, c, d, удовлетворяющие равенству

(a + b√ 2 ) 2n + (c + d√ 2 ) 2n = 5 + 4√ 2 ,

где n – натуральное число?

Если выполнено равенство, данное в условии, а числа a, b, c, d – рациональные, то выполнено и равенство:

(a – b√ 2 ) 2n + (c – d√ 2 ) 2n = 5 – 4√ 2 .

Но 5 – 4√ 2 (a – b√ 2 ) 2n + (c – d√ 2 ) 2n > 0. Полученное противоречие доказывает то, что исходное равенство невозможно.

Ответ: не существуют.

5. Если отрезки с длинами a, b, c образуют треугольник, то для всех n = 2, 3, 4, . . . отрезки с длинами n √ a , n √ b , n √ c так же образуют треугольник. Докажите это.

Если отрезки с длинами a, b, c образуют треугольник, то неравенство треугольника даёт

Поэтому мы имеем

( n √ a + n √ b ) n > a + b > c = ( n √ c ) n ,

N √ a + n √ b > n √ c .

Остальные случаи проверки неравенства треугольника рассматриваются аналогично, откуда и следует заключение.

6. Докажите, что бесконечная десятичная дробь 0,1234567891011121314... (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число.

Как известно, рациональные числа выражаются десятичными дробями, которые имеют период начиная с некоторого знака. Поэтому достаточно доказать, что данная дробь не является периодической ни с какого знака. Предположим, что это не так, и некоторая последовательность T, состоящая из n цифр, является периодом дроби, начиная с m-го знака после запятой. Ясно, что среди цифр после m-го знака встречаются ненулевые, поэтому в последовательности цифр T есть ненулевая цифра. Это означает, что начиная с m-ой цифры после запятой, среди любых n цифр подряд есть ненулевая цифра. Однако в десятичной записи данной дроби должна присутствовать десятичная запись числа 100...0 = 10 k , где k > m и k > n. Понятно, что эта запись встретится правее m-ой цифры и содержит более n нулей подряд. Тем самым, получаем противоречие, завершающее доказательство.

7. Дана бесконечная десятичная дробь 0,a 1 a 2 ... . Докажите, что цифры в ее десятичной записи можно переставить так, чтобы полученная дробь выражала рациональное число.

Напомним, что дробь выражает рациональное число в том и только том случае, когда она периодическая, начиная с некоторого знака. Цифры от 0 до 9 разделим на два класса: в первый класс включим те цифры, которые встречаются в исходной дроби конечное число раз, во второй класс – те, которые встречаются в исходной дроби бесконечное число раз. Начнем выписывать периодическую дробь, которая может быть получена из исходной перестановкой цифр. Вначале после нуля и запятой напишем в произвольном порядке все цифры из первого класса - каждую столько раз, сколько она встречается в записи исходной дроби. Записанные цифры первого класса будут предшествовать периоду в дробной части десятичной дроби. Далее, запишем в некотором порядке по одному разу цифры из второго класса. Эту комбинацию объявим периодом и будем повторять ее бесконечное число раз. Таким образом, мы выписали искомую периодическую дробь, выражающую некоторое рациональное число.

8. Доказать, что в каждой бесконечной десятичной дроби существует последовательность десятичных знаков произвольной длины, которая в разложении дроби встречается бесконечно много раз.

Пусть m – произвольно заданное натуральное число. Разобьем данную бесконечную десятичную дробь на отрезки, по m цифр в каждом. Таких отрезков будет бесконечно много. С другой стороны, различных систем, состоящих из m цифр, существует только 10 m , т. е. конечное число. Следовательно, хотя бы одна из этих систем должна повторяться здесь бесконечно много раз.

Замечание. Для иррациональных чисел √ 2 , π или е мы даже не знаем, какая цифра повторяется бесконечно много раз в представляющих их бесконечных десятичных дробях, хотя каждое из этих чисел, как легко можно доказать, содержит по крайней мере две различные такие цифры.

9. Докажите элементарным путём, что положительный корень уравнения

является иррациональным.

Для х > 0 левая часть уравнения возрастает с возрастанием х, и легко заметить, что при х = 1,5 она меньше 10, а при х = 1,6 – больше 10. Поэтому единственный положительный корень уравнения лежит внутри интервала (1,5; 1,6).

Запишем корень как несократимую дробь p/q, где p и q – некоторые взаимно простые натуральные числа. Тогда при х = p/q уравнение примет следующий вид:

p 5 + pq 4 = 10q 5 ,

откуда следует, что р – делитель 10, следовательно, р равно одному из чисел 1, 2, 5, 10. Однако выписывая дроби с числителями 1, 2, 5, 10, сразу же замечаем, что ни одна из них не попадает внутрь интервала (1,5; 1,6).

Итак, положительный корень исходного уравнения не может быть представлен в виде обыкновенной дроби, а значит является иррациональным числом.

10. а) Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?

б) Координаты вершин треугольника рациональны. Докажите, что координаты центра его описанной окружности также рациональны.

в) Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты - рациональные числа.)

а) Да, существуют. Пусть C – середина отрезка AB. Тогда XC 2 = (2XA 2 + 2XB 2 – AB 2)/2. Если число AB 2 иррационально, то числа XA, XB и XC не могут одновременно быть рациональными.

б) Пусть (a 1 ; b 1), (a 2 ; b 2) и (a 3 ; b 3) – координаты вершин треугольника. Координаты центра его описанной окружности задаются системой уравнений:

(x – a 1) 2 + (y – b 1) 2 = (x – a 2) 2 + (y – b 2) 2 ,

(x – a 1) 2 + (y – b 1) 2 = (x – a 3) 2 + (y – b 3) 2 .

Легко проверить, что эти уравнения линейные, а значит, решение рассматриваемой системы уравнений рационально.

в) Такая сфера существует. Например, сфера с уравнением

(x – √ 2 ) 2 + y 2 + z 2 = 2.

Точка O с координатами (0; 0; 0) – рациональная точка, лежащая на этой сфере. Остальные точки сферы иррациональные. Докажем это.

Допустим противное: пусть (x; y; z) – рациональная точка сферы, отличная от точки O. Понятно, что х отличен от 0, так как при x = 0 имеется единственное решение (0; 0; 0), которое нас сейчас не интересует. Раскроем скобки и выразим √ 2 :

x 2 – 2√ 2 x + 2 + y 2 + z 2 = 2

√ 2 = (x 2 + y 2 + z 2)/(2x),

чего не может быть при рациональных x, y, z и иррациональном √ 2 . Итак, О(0; 0; 0) – единственная рациональная точка на рассматриваемой сфере.

Задачи без решений

1. Докажите, что число

\[ \sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}} \]

является иррациональным.

2. При каких целых m и n выполняется равенство (5 + 3√ 2 ) m = (3 + 5√ 2 ) n ?

3. Существует ли такое число а, чтобы числа а – √ 3 и 1/а + √ 3 были целыми?

4. Могут ли числа 1, √ 2 , 4 быть членами (не обязательно соседними) арифметической прогрессии?

5. Докажите, что при любом натуральном n уравнение (х + у√ 3 ) 2n = 1 + √ 3 не имеет решений в рациональных числах (х; у).

Натуральные числа

Натуральные числа определение - это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

Это натуральный ряд чисел.
Ноль натуральное число? Нет, ноль не является натуральным числом.
Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
Каково наименьшее натуральное число? Единица - это наименьшее натуральное число.
Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

с - это всегда натуральное число.

Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе - нет.

Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

где с - натуральное число, то это значит, что a делится на b нацело. В этом примере a - делимое, b - делитель, c - частное.

Делитель натурального числа - это натуральное число, на которое первое число делится нацело.

Каждое натуральное число делится на единицу и на себя.

Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

Единицу не считают простым числом.

Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

Единицу не считают составным числом.

Множество натуральных чисел составляют единица, простые числа и составные числа.

Множество натуральных чисел обозначается латинской буквой N.

Свойства сложения и умножения натуральных чисел:

переместительное свойство сложения

сочетательное свойство сложения

(a + b) + c = a + (b + c);

переместительное свойство умножения

сочетательное свойство умножения

(ab) c = a (bc);

распределительное свойство умножения

A (b + c) = ab + ac;

Целые числа

Целые числа - это натуральные числа, ноль и числа, противоположные натуральным.

Числа, противоположные натуральным - это целые отрицательные числа, например:

1; -2; -3; -4;...

Множество целых чисел обозначается латинской буквой Z.

Рациональные числа

Рациональные числа - это целые числа и дроби.

Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

1,(0); 3,(6); 0,(0);...

Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера.

От абстрактности математических понятий порой настолько веет и отстраненностью, что невольно возникает мысль: «Зачем это всё?». Но, несмотря на первое впечатление, все теоремы, арифметические операции, функции и т.п. – не более, чем желание удовлетворить насущные потребности. Особенно чётко это можно заметить на примере появления различных множеств.

Всё началось с появления натуральных чисел. И, хотя, вряд ли сейчас кто-то сможет ответить, как точно это было, но скорее всего, ноги у царицы наук растут откуда-то из пещеры. Здесь, анализируя количество шкур, камней и соплеменников, человек множество «чисел для счёта». И этого ему было достаточно. До какого-то момента, конечно же.

Дальше потребовалось шкуры и камни делить и отнимать. Так возникла потребность в арифметических операциях, а вместе с ними и рациональных , которые можно определить как дробь типа m/n, где, например, m - количество шкур, n – количество соплеменников.

Казалось бы, уже открытого математического аппарата вполне достаточно, чтобы радоваться жизнью. Но вскоре оказалось, что случаи, когда результат не то, что не целое число, но даже не дробь! И, действительно, квадратный корень из двух никак иначе не выразить с помощью числителя и знаменателя. Или, например, всем известное число Пи, открытое древнегреческим учёным Архимедом, так же не является рациональным. И таких открытий со временем стало настолько много, что все неподдающиеся «рационализации» числа объединили и назвали иррациональными.

Свойства

Рассмотренные ранее множества принадлежат набору фундаментальных понятий математики. Это означает, что их не получится определить через более простые математические объекты. Но это можно сделать с помощью категорий (с греч. «высказывания») или постулатов. В данном случае лучше всего было обозначить свойства данных множеств.

o Иррациональные числа определяют Дедекиндовы сечения в множестве рациональных чисел, у которых в нижнем нет наибольшего, а в верхнем нет наименьшего числа.

o Каждое трансцендентное число является иррациональным.

o Каждое иррациональное число является либо алгебраическим, либо трансцендентным.

o Множество чисел всюду плотно на числовой прямой: между любыми имеется иррациональное число.

o Множество несчётно, является множеством второй категории Бэра.

o Это множество упорядоченное, т. е. для каждых двух различных рациональных чисел a иb можно указать, какое из них меньше другого.
o Между каждыми двумя различными рациональными числами существует еще по крайней мере одно , а следовательно, и бесконечное множество рациональных чисел.

o Арифметические действия (сложение, умножение и деление) над любыми двумя рациональными числами всегда возможны и дают в результате определенное рациональное же число. Исключением является деление на нуль, которое невозможно.

o Каждое рациональное число может быть представлено в виде десятичной дроби (конечной или бесконечной периодической).

С отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где и - целые числа . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

См. также

Примечания

Множество всех натуральных чисел обозначают буквой N. Натуральные числа, это числа которые мы используем для счета предметов: 1,2,3,4, … В некоторых источниках, к натуральным числам относят также число 0.

Множество всех целых чисел обозначается буквой Z. Целые числа это все натуральные числа, нуль и отрицательные числа:

1,-2,-3, -4, …

Теперь присоединим к множеству всех целых чисел множество всех обыкновенных дробей: 2/3, 18/17, -4/5 и та далее. Тогда мы получим множество всех рациональных чисел.

Множество рациональных чисел

Множество всех рациональных чисел обозначается буквой Q. Множество всех рациональных чисел (Q) - это множество, состоящее из чисел вида m/n, -m/n и числа 0. В качестве n,m может выступать любое натуральное число. Следует отметить, что все рациональные числа, можно представить в виде конечной или бесконечной ПЕРЕОДИЧЕСКОЙ десятичной дроби. Верно и обратное, что любую конечную или бесконечную периодическую десятичную дробь можно записать в виде рационального числа.

А как же быть например с числом 2.0100100010… ? Оно является бесконечно НЕПЕРЕОДИЧСЕКОЙ десятичной дробью. И оно не относится к рациональным числам.

В школьном курсе алгебры изучаются только вещественные (или действительные) числа. Множество всех действительных чисел обозначается буквой R. Множество R состоит из всех рациональных и всех иррациональных чисел.

Понятие иррациональных чисел

Иррациональные числа - это все бесконечные десятичные непериодические дроби. Иррациональные числа не имеют специального обозначения.

Например, все числа полученные извлечением квадратного корня из натуральных чисел, не являющихся квадратами натуральных чисел - будут иррациональными. (√2, √3, √5, √6, и т.д.).

Но не стоит думать, что иррациональные числа получаются только извлечением квадратных корней. Например, число «пи» тоже является иррациональным, а оно получено делением. И как вы не старайтесь, вы не сможете получить его, извлекая квадратный корень из любого натурального числа.

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода