Вконтакте Facebook Twitter Лента RSS

Великие физики и их открытия. Самые значимые открытия в истории медицины

Открытия не рождаются внезапно. Каждой разработке, до того, как о ней узнали СМИ, предшествует долгая и кропотливая работа. И прежде чем тесты и таблетки появятся в аптеке, а в лабораториях - новые методы диагностики, должно пройти время. За последние 30 лет число медицинских исследований увеличилось почти в 4 раза, и они входят в медицинскую практику.

Биохимический анализ крови у вас дома
Скоро биохимический анализ крови, как и тест на беременность, будет занимать пару минут. Нанобиотехнологи МФТИ уместили высокоточный анализ крови в обычную тест-полоску.

Биосенсорная система, основанная на использовании магнитных наночастиц, позволяет точно измерить концентрацию белковых молекул (маркеров, указывающих на развитие различных заболеваний) и максимально упростить процедуру биохимического анализа.

"Традиционно тесты, которые можно проводить не только в лаборатории, но и в полевых условиях, основаны на применении флуоресцентных или окрашенных меток, а результаты определяются "на глаз", либо с помощью видеокамеры. Мы же используем магнитные частицы, у которых есть преимущество: с их помощью можно проводить анализ, даже окунув тест-полоску в полностью непрозрачную жидкость, скажем, определять вещества прямо в цельной крови", - поясняет, Алексей Орлов, научный сотрудник ИОФ РАН и ведущий автор исследования.

Если привычный тест на беременность сообщает либо "да", либо "нет", то эта разработка позволяет точно определить концентрацию белка (то есть на какой стадии развития она находится).

"Численное измерение выполняют только электронным способом с помощью портативного прибора. Ситуации "то ли да, то ли нет" исключены", - утверждает Алексей Орлов. Согласно исследованию, опубликованному в журнале Biosensors and Bioelectronics, система успешно зарекомендовала себя в диагностике рака предстательной железы, а по некоторым показателям даже превзошла "золотой стандарт" для определения ПСА - иммуноферментный анализ.

Когда тест появится в аптеках, разработчики пока умалчивают. Планируется, что биосенсор кроме прочего сможет проводить экологический мониторинг, анализ продуктов и лекарств, и все это - прямо на месте, без лишних приборов и затрат.

Обучаемые бионические конечности
Сегодняшние бионические руки по функционалу мало чем отличаются от настоящих - они могут шевелить пальцами и брать предметы, но все равно до "оригинала" еще далеко. Чтобы "синхронизировать" человека с машиной, ученые вживляют электроды в мозг, снимают электрические сигналы с мышц и нервов, но процесс трудоемкий и занимает несколько месяцев.

Команда GalvaniBionix, состоящая из студентов и аспирантов МФТИ, нашла способ облегчить обучение и сделать так, чтобы не человек подстраивался под робота, а конечность адаптировалась под человека. Написанная учеными программа с помощью специальных алгоритмов распознает "мышечные команды" каждого пациента.

"Большинство моих однокурсников, обладающих очень крутыми знаниями, уходят в решение финансовых проблем - идут работать в корпорации, создают мобильные приложения. Это не плохо и не хорошо, это просто по-другому. Мне лично хотелось сделать что-то глобальное, в конце концов, чтобы детям было, о чем рассказать. И на Физтехе я нашел единомышленников: все они из различных областей - физиологи, математики, программисты, инженеры - и мы нашли для себя такую задачу", - поделился личным мотивом Алексей Цыганов, член команды GalvaniBionix.

Диагностика рака по ДНК
В Новосибирске разработали сверхточную тест-систему для ранней диагностики рака. По словам научного сотрудника центра вирусологии и биотехнологии "Вектор" Виталия Кузнецова, его команде удалось создать некий онкомаркер - фермент, который по выделенной из слюны (крови или мочи) ДНК способен обнаружить рак на начальной стадии.

Сейчас аналогичный тест проводят путем анализа специфических белков, которые образует опухоль. Новосибирский подход предлагает смотреть модифицированные ДНК раковой клетки, которые появляются задолго до белков. Соответственно, диагностика позволяет обнаружить болезнь в начальной стадии.

Похожая система уже применяется за рубежом, однако в России она не сертифицирована. Ученым удалось "удешевить" имеющуюся технологию (1,5 рублей против 150 евро - 12 млн рублей). Сотрудники "Вектора" рассчитывают, что скоро их анализ войдет в обязательный список при диспансеризации.

Электронный нос
В Сибирском физико-техническом институте создали "электронный нос". Газоанализатор оценивает качество пищевой, косметической и медицинской продукции, а также способен диагностировать ряд заболеваний по выдыхаемому воздуху.

"Мы исследовали яблоки: контрольную часть положили в холодильник, а остальные оставили в помещении при комнатной температуре", - рассказывает создатель прибора Тимур Муксунов, инженер-исследователь лаборатории "Методы, системы и технологии безопасности" Сибирского физико-технического института.

"Через 12 часов при помощи установки удалось выявить, что вторая часть выделяет газы интенсивнее, чем контрольная. Сейчас на овощных базах прием продукции совершается по органолептическим показателям, а при помощи создаваемого устройства можно будет точнее определять срок годности продукции, что скажется на ее качестве", - сказал он. Муксунов возлагает надежды на программу поддержки стартапов - "нос" полностью готов к серийному производству и ждет финансирования.

Таблетка от депрессии
Ученые из совместно с коллегами из им. Н.Н. Ворожцова разработали новый препарат для лечения депрессии. Таблетка повышает концентрацию серотонина в крови, тем самым помогая справиться с хандрой.

Сейчас антидепрессант под рабочим названием ТС-2153 проходит доклинические испытания. Исследователи надеются, что "он успешно пройдет все остальные и поможет достичь прогресса в лечении целого ряда серьезных психопатологий", пишет"Интерфакс".

  • Инновации рождаются в научных лабораториях

    На протяжении ряда лет сотрудники лаборатории эпигенетики развития ФИЦ "Института цитологии и генетики СО РАН" ведут работы по созданию Биобанка клеточных моделей заболеваний человека, который затем будет использоваться при создании препаратов для лечения наследственных нейродегенеративных и сердечнососудистых заболеваний.

  • Наночастицы: невидимые и влиятельные

    Прибор, сконструированный в Институте химической кинетики и горения им. В.В. Воеводского СО РАН, помогает обнаружить наночастицы за несколько минут.- Есть работы российских, украинских, английских и американских исследователей, которые показывают, что в городах с высоким содержанием наночастиц отмечается повышенный уровень заболеваемости сердечными, онкологическими и легочными заболеваниями, - подчеркивает старший научный сотрудник ИХКГ СО РАН кандидат химических наук Сергей Николаевич Дубцов.

  • Новосибирские ученые разработали соединение, которое поможет в борьбе с опухолями

    ​Исследователи Института химической биологии и фундаментальной медицины СО РАН создают соединения-конструкторы на основе белка альбумина, способные эффективно достигать опухолей раковых больных - в будущем эти вещества могут стать основой для лекарств.

  • Сибирские ученые разработали протез клапана для детских сердец

    ​Сотрудники Национального медицинского исследовательского центра имени академика Е. Н. Мешалкина создали новый тип биопротеза клапана для детской кардиохирургии. Он менее других подвержен кальцификации, что позволит сократить количество повторных оперативных вмешательств.

  • Сибирские ингибиторы препаратов против рака проходят доклинические испытания

    ​Ученые Института химической биологии и фундаментальной медицины СО РАН, Новосибирского института органической химии им. Н. Н. Ворожцова СО РАН и ФИЦ «Институт цитологии и генетики СО РАН» нашли эффективные белковые мишени для разработки препаратов против рака прямой кишки, легких и кишечника.

  • Институты СО РАН помогут ООО «СИБУР» разрабатывать биоразлагаемые пластики

    ​На VI Международном форуме технологического развития и выставке "Технопром-2018" состоялось подписание соглашений о сотрудничестве между нефтехимической компанией ООО "СИБУР" и двумя новосибирскими научно-исследовательскими организациями: Новосибирским институтом органической химии им.

  • ИСТОРИЯ МЕДИЦИНЫ:
    ОСНОВНЫЕ ВЕХИ И ВЕЛИКИЕ ОТКРЫТИЯ

    По материалам телеканала Дискавери
    («Discovery Channel»)

    Открытия в медицине преобразили мир. Они изменили ход истории, сохранив несчётное количество жизней, раздвинув границы наших познаний до рубежей, на которых мы стоим сегодня, готовые к новым великим открытиям.

    Анатомия человека

    В Древней Греции лечение болезней основывалось скорее на философии, чем на истинном понимании анатомии человека. Хирургическое вмешательство было редкостью, а препарирование трупов ещё не практиковалось. В результате врачи практически не имели сведений о внутреннем устройстве человека. Лишь в эпоху Ренессанса анатомия зародилась как наука.

    Бельгийский врач Андреас Везалий шокировал многих, когда решил изучать анатомию, вскрывая трупы. Материал для исследований приходилось добывать под покровом ночи. Учёные типа Везалия должны были прибегать к не совсем легальным методам. Когда Везалий стал профессором в Падуе, он завёл дружбу с распорядителем казней. Везалий решил передать опыт, накопленный за годы искусных вскрытий, написав книгу по анатомии человека. Так появилась книга «О строении человеческого тела». Опубликованная в 1538 году, книга считается одним из величайших трудов в области медицины, а также одним из величайших открытий, так как в ней впервые даётся верное описание строения человеческого тела. Это был первый серьёзный вызов, брошенный авторитету древнегреческих врачей. Книга разошлась огромным тиражом. Её покупали образованные люди, даже далёкие от медицины. Весь текст очень скрупулёзно иллюстрирован. Так сведения об анатомии человека стали гораздо более доступными. Благодаря Везалию, изучение анатомии человека посредством вскрытия, стало неотъемлемой частью подготовки врачей. И это подводит нас к следующему великому открытию.

    Кровообращение

    Сердце человека – мышца размером с кулак. Оно сокращается более ста тысяч раз в день, за семьдесят лет – это два с лишним миллиарда сердцебиений. Сердце перекачивает 23 литра крови в минуту. Кровь течёт по телу, проходя через сложную систему артерий и вен. Если все кровеносные сосуды в человеческом теле вытянуть в одну линию, то получится 96 тысяч километров, что в два с лишним раза больше окружности Земли. До начала 17 века процесс кровообращения представляли неверно. Преобладала теория, согласно которой кровь приливала к сердцу через поры в мягких тканях тела. Среди приверженцев этой теории был и английский врач Уильям Гарвей. Работа сердца завораживала его, но чем больше он наблюдал биение сердца у животных, тем сильнее понимал, что общепринятая теория кровообращения попросту неверна. Он недвусмысленно пишет: «…Я подумал, не может ли кровь двигаться, словно по кругу?». И первая же фраза в следующем абзаце: «Впоследствии я выяснил, что так оно и есть…». Проводя вскрытия, Гарвей обнаружил, что у сердца есть однонаправленные клапаны, позволяющие крови течь лишь в одном направлении. Одни клапаны впускали кровь, другие - выпускали. И это было великое открытие. Гарвей понял, что сердце качает кровь в артерии, затем она проходит через вены и, замыкая круг, возвращается к сердцу, чтобы затем начать цикл сначала. Сегодня это кажется прописной истиной, но для 17 века открытие Вильяма Гарвея было революционным. Это был сокрушительный удар по установившимся в медицине представлениям. В конце своего трактата Гарвей пишет: «При мысли о бессчетных последствиях, которое это будет иметь для медицины, я вижу поле почти безграничных возможностей».
    Открытие Гарвея серьёзно продвинуло вперёд анатомию и хирургию, а многим попросту спасло жизнь. Во всём мире в операционных применяют хирургические зажимы, блокирующие течение крови и сохраняющие систему кровообращения пациента в неприкосновенности. И каждый из них - напоминание о великом открытии Уильяма Гарвея.

    Группы крови

    Другое великое открытие, связанное с кровью, было сделано в Вене в 1900 году. Всю Европу переполнял энтузиазм по поводу переливания крови. Сначала прошли заявления, что лечебный эффект поразительный, а затем, через несколько месяцев, сообщения о погибших. Почему иногда переливание проходило удачно, а иногда - нет? Австрийский врач Карл Ландштейнер был полон решимости найти ответ. Он смешал образцы крови от разных доноров и изучил результаты.
    В некоторых случаях кровь смешалась удачно, зато в других - свернулась и стала вязкой. При ближайшем рассмотрении Ландштейнер обнаружил, что кровь сворачивается, когда особые белки в крови реципиента, так называемые антитела, вступают в реакцию с другими белками в эритроцитах донора – антигенами. Для Ландштейнера это был поворотный момент. Он осознал, что не вся человеческая кровь одинакова. Оказалось, что кровь можно чётко разделить на 4 группы, которым он дал обозначения: А, Б, АБ и нулевая. Выяснилось, что переливание крови проходит успешно лишь в том случае, если человеку переливают кровь той же группы. Открытие Ландштейнера тут же отразилось на медицинской практике. Через несколько лет переливанием крови занимались уже во всём мире, спасая множество жизней. Благодаря точному определению группы крови, к 50-м годам стала возможна пересадка органов. Сегодня в одних только Соединённых Штатах каждые 3 секунды производится переливание крови. Без него ежегодно погибало бы около 4, 5 миллионов американцев.

    Анестезия

    Хотя первые великие открытия в области анатомии и позволили врачам спасти множество жизней, они никак не могли облегчить боль. Без анестезии операции были кошмаром наяву. Пациентов держали или привязывали к столу, хирурги старались работать как можно быстрее. В 1811 году одна женщина писала: «Когда ужасная сталь вонзилась в меня, рассекая вены, артерии, плоть, нервы, меня уже не нужно было просить не вмешиваться. Я издала вопль и кричала, пока всё не закончилось. Так невыносима была мука». Хирургия была последним средством, многие предпочитали умереть, чем лечь под нож хирурга. На протяжении веков для облегчения боли во время операций использовались подручные средства некоторые из них, например, опиум или экстракт мандрагоры, были наркотиками. К 40-м годам 19 века сразу несколько человек занимались поиском более эффективного анестетика: два бостонских дантиста Вильям Мортон и Хорост Уэлс, знакомые друг с другом, и доктор по имени Крофорд Лонг из Джорджии.
    Они экспериментировали с двумя веществами, способными, как считалось, облегчить боль - с закисью азота, она же - веселящий газ, а также - с жидкой смесью спирта и серной кислоты. Вопрос о том, кто именно открыл анестезию, остаётся спорным, на это претендовали все трое. Одна из первых публичных демонстраций анестезии состоялась 16 октября 1846 года. В. Мортон месяцами экспериментировал с эфиром, пытаясь найти дозировку, которая позволила бы пациенту перенести операцию без боли. На суд широкой публики, состоявшей из бостонских хирургов и студентов медицины, он представил устройство своего изобретения.
    Пациенту, которому предстояло удалить опухоль на шее, дали эфир. Мортон подождал, хирург произвёл первый надрез. Поразительно, но пациент не закричал. После операции пациент сообщил, что всё это время ничего не чувствовал. Весть об открытии разнеслась по всему миру. Оперировать без боли можно, теперь есть анестезия. Но, несмотря на открытие, многие отказывались воспользоваться анестезией. Согласно некоторым вероучениям, боль надо терпеть, а не облегчать, особенно родовые муки. Но здесь свое слово сказала королева Виктория. В 1853 году она рожала принца Леопольда. По её просьбе ей дали хлороформ. Оказалось, что он облегчает муки деторождения. После этого женщины стали говорить: «Я тоже приму хлороформ, ведь если им не брезгует королева, то и мне не зазорно».

    Рентгеновские лучи

    Невозможно представить себе жизнь без следующего великого открытия. Вообразите, что мы не знаем, где оперировать больного, или какая именно кость сломана, где застряла пуля и какая может быть патология. Способность заглянуть внутрь человека, не разрезая его, стала поворотным моментом в истории медицины. В конце 19 века люди использовали электричество, толком не понимая, что это такое. В 1895 году немецкий физик Вильгельм Рентген экспериментировал с электронно-лучевой трубкой, стеклянным цилиндром с сильно разреженным воздухом внутри. Рентгена заинтересовало свечение, создаваемое лучами, исходившими из трубки. Для одного из экспериментов Рентген окружил трубку чёрным картоном и затемнил комнату. Затем он включил трубку. И тут, его поразила одна вещь - фотографическая пластина в его лаборатории светилась. Рентген понял, что происходит нечто, весьма необычное. И что луч, исходящий из трубки - вовсе не катодный луч; он также обнаружил, что на магнит он не реагирует. И его нельзя было отклонить магнитом, как катодные лучи. Это было совершенно неизвестное явление, и Рентген назвал его «лучи икс». Совершенно случайно Рентген открыл излучение, неизвестное науке, которое мы зовём рентгеновским. Несколько недель он вёл себя очень загадочно, а потом позвал жену в кабинет и сказал: «Берта, давай я покажу тебе, чем я тут занимаюсь, потому что никто в это не поверит». Он положил её руку под луч и сделал снимок.
    Утверждают, что жена сказала: «Я видела свою смерть». Ведь в те времена нельзя было увидеть скелет человека, если он не умер. Сама мысль о том, чтобы заснять внутреннее строение живого человека, просто не укладывалась в голове. Словно распахнулась тайная дверь, а за ней открылась целая вселенная. Рентген открыл новую, мощную технологию, которая произвела переворот в области диагностики. Открытие рентгеновского излучения - это единственное в истории науки открытие, сделанное непреднамеренно, совершенно случайное. Едва оно было сделано, мир тотчас же принял его на вооружение безо всяких дебатов. За неделю-другую наш мир преобразился. На открытие рентгена опираются многие из самых современных и мощных технологий, от компьютерной томографии до рентгенографического телескопа, улавливающего рентгеновские лучи из глубин космоса. И всё это – из-за открытия, сделанного случайно.

    Теория микробного происхождения болезней

    Одни открытия, например, рентгеновские лучи, совершаются случайно, над другими долго и упорно работают различные учёные. Так было и в 1846 год. Вена. Воплощение красоты и культуры, но в венской городской больнице витает призрак смерти. Многие из находившихся здесь рожениц умирали. Причина – родильная горячка, инфекция матки. Когда доктор Игнац Земмельвейс начал работать в этой больнице, он был встревожен масштабом бедствия и озадачен странной несообразностью: там было два отделения.
    В одном роды принимали врачи, а в другом роды у матерей принимали акушерки. Земмельвейс обнаружил, что в том отделении, где роды принимали врачи, 7% рожениц умерло от так называемой родильной горячки. А в отделении, где работали акушерки, от родильной горячки скончались лишь 2%. Это его удивило, ведь у врачей подготовка гораздо лучше. Земмельвейс решил выяснить, в чём же причина. Он заметил, что одним из главных различий в работе врачей и акушерок было то, что врачи проводили вскрытие умерших рожениц. Затем они шли принимать роды или осматривать матерей, даже не вымыв рук. Земмельвейс задумался, не переносят ли врачи на своих руках некие невидимые частички, которые затем передаются пациенткам и влекут за собой смерть. Чтобы выяснить это, он провёл опыт. Он решил проследить, чтобы все студенты медики в обязательном порядке мыли руки в растворе хлорной извести. И количество летальных исходов тут же упало до 1%, ниже, чем у акушерок. Благодаря этому эксперименту, Земмельвейс осознал, что инфекционные заболевания, в данном случае, родильная горячка, имеют лишь одну причину и если ее исключить, болезнь не возникнет. Но в 1846 году никто не усматривал связи между бактериями и инфекцией. Идеи Земмельвейса не приняли всерьёз.

    Прошло ещё целых 10 лет, прежде чем на микроорганизмы обратил внимание другой учёный. Его звали Луи Пастер.Трое из пяти детей Пастера умерли от брюшного тифа, что отчасти объясняет, почему он так упорно искал причину инфекционных болезней. На верный след Пастера вывела его работа для винодельческой и пивоваренной промышленности. Пастер пытался выяснить, почему лишь малая часть вина, производимого в его стране, портится. Он обнаружил, что в прокисшем вине есть особые микроорганизмы, микробы, и именно они заставляют вино скисать. Но путём простого нагрева, как показал Пастер, микробы можно убить, и вино будет спасено. Так родилась пастеризация. Поэтому, когда потребовалось найти причину инфекционных заболеваний, Пастер знал, где её искать. Это микробы, сказал он, вызывают определённые болезни, и доказал это, проведя серию экспериментов, из которых родилось великое открытие – теория микробного развития организмов. Её суть состоит в том, что определённые микроорганизмы вызывают определённую болезнь у любого.

    Вакцинация

    Следующее из великих открытий было сделано в 18 веке, когда от оспы во всём мире умерло около 40 млн. человек. Врачи не могли найти ни причины возникновения болезни, ни средства от неё. Но в одной английской деревушке разговоры о том, что часть местных жителей не восприимчивы к оспе, привлекли внимание местного врача по имени Эдвард Дженнер.

    Ходили слухи, что работницы молочных ферм не болеют оспой, потому что уже перенесли коровью оспу, родственную, но более лёгкую болезнь, поражавшую скот. У больных коровьей оспой поднималась температура и на руках возникали язвочки. Дженнер изучил этот феномен и задумался, может быть, гной из этих язвочек каким-то образом защищает организм от оспы? 14 мая 1796 года во время вспышки эпидемии оспы, он решил проверить свою теорию. Дженнер взял жидкость из язвочки на руке доярки, больной коровьей оспой. Затем, он посетил другую семью; там он ввёл здоровому восьмилетнему мальчику вирус коровьей оспы. В последующие дни у мальчика был лёгкий жар, и появилось несколько оспенных пузырьков. Затем он поправился. Через шесть недель Дженнер вернулся. На этот раз он привил мальчику оспу и стал ждать, чем обернётся эксперимент – победой или провалом. Через несколько дней Дженнер получил ответ – мальчик был совершенно здоров и невосприимчив к оспе.
    Изобретение вакцинации от оспы произвело революцию в медицине. Это была первая попытка вмешаться в течение болезни, предотвратив её заранее. Впервые средства, изготовленные человеком, активно использовались, чтобы предотвратить болезнь ещё до её появления.
    Через 50 лет после открытия Дженнера, Луи Пастер развил идею вакцинации, разработав вакцину от бешенства у людей и от сибирской язвы у овец. А в 20 веке Джонас Солк и Альберт Сейбин, независимо друг от друга, создали вакцину от полиомиелита.

    Витамины

    Следующее открытие состоялось трудами учёных, многие годы независимо друг от друга бившихся над одной и той же проблемой.
    На протяжении всей истории цинга была тяжёлым заболеванием, вызывавшим у моряков поражения кожи и кровотечения. Наконец, в 1747 году корабельный хирург шотландец Джеймс Линд нашёл от неё средство. Он обнаружил, что цингу можно предотвратить, включив в рацион матросов цитрусовые.

    Другим частым заболеванием у моряков была бери-бери, болезнь, поражавшая нервы, сердце и пищеварительный тракт. В конце 19 века голландский врач Христиан Эйкман определил, что болезнь обусловлена употреблением в пищу белого шлифованного риса, вместо бурого нешлифованного.

    Хотя оба этих открытия указывали на связь заболеваний с питанием и его недостатками, в чём заключалась эта связь смог выяснить лишь английский биохимик Фредерик Хопкинс. Он предположил, что организму необходимы вещества, которые есть только в определённых продуктах. Чтобы доказать свою гипотезу, Хопкинс провёл серию экспериментов. Он давал мышам искусственное питание, состоящее исключительно из чистых белков, жиров, углеводов и солей. Мыши ослабли и перестали расти. Но после небольшого количества молока, мыши снова поправились. Хопкинс открыл, как он выразился, «незаменимый фактор питания», который позже назвали витаминами.
    Оказалось, что бери-бери связана с недостатком тиамина, витамина В1, которого нет в шлифованном рисе, но много в натуральном. А цитрусовые предотвращают цингу, потому что содержат аскорбиновую кислоту, витами С.
    Открытие Хопкинса стало определяющим шагом в понимании важности правильного питания. От витаминов зависит множество функций организма – от борьбы с инфекциями до регулирования обмена веществ. Без них трудно представить себе жизнь, как и без следующего великого открытия.

    Пенициллин

    После Первой Мировой войны, унесшей свыше 10 млн. жизней, поиски безопасных методов отражения бактериальной агрессии усилились. Ведь многие умерли не на полях сражений, а от инфицированных ран. В исследованиях участвовал и шотландский врач Александр Флеминг. Изучая бактерии стафилококки, Флеминг заметил, что в центре лабораторной чаши растёт нечто необычное - плесень. Он увидел, что вокруг плесени бактерии погибли. Это заставило его предположить, что она выделяет вещество, губительное для бактерий. Это вещество он назвал пенициллином. Следующие несколько лет Флеминг пытался выделить пенициллин и применить его в лечении инфекций, но неудачно, и, в конце концов, сдался. Однако результаты его трудов оказались неоценимыми.

    В 1935 году сотрудники Оксфордского университета Хоуард Флори и Эрнст Чейн наткнулись на отчёт о любопытных, но незаконченных экспериментах Флеминга, и решили попытать счастья. Этим учёным удалось выделить пенициллин в чистом виде. И в 1940-ом году они провели его испытание. Восьми мышам была введена смертельная доза бактерий стрептококков. Затем, четырём из них ввели пенициллин. Через несколько часов результаты были налицо. Все четыре, не получившие пенициллин мыши умерли, но три из четверых получивших его - выжили.

    Так, благодаря Флемингу, Флори и Чейну, мир получил первый антибиотик. Это лекарство стало настоящим чудом. Оно лечило от стольких недугов, которые причиняли много боли и страданий: острый фарингит, ревматизм, скарлатина, сифилис и гонорея… Сегодня мы уже совсем забыли, что от этих болезней можно умереть.

    Сульфидные препараты

    Следующее великое открытие подоспело во время Второй Мировой войны. Оно избавило от дизентерии американских солдат, сражавшихся в тихоокеанском бассейне. А затем привело к революции в химиотерапевтическом лечении бактериальных инфекций.
    Случилось всё это благодаря патологу по имени Герхард Домагк. В 1932 году он изучал возможности применения в медицине некоторых новых химических красителей. Работая с недавно синтезированным красителем под названием пронтозил, Домагк ввёл его нескольким лабораторным мышам, заражённым бактериями стрептококками. Как и ожидал Домагк, краситель обволок бактерии, но бактерии выжили. Казалось, краситель недостаточно токсичен. Затем случилось нечто поразительное: хотя краситель и не убил бактерии, он остановил их рост, распространение инфекции прекратилось и мыши выздоровели. Когда Домагк впервые испытал пронтозил на людях - неизвестно. Однако новое лекарство стяжало славу после того, как спасло жизнь мальчику, серьёзно больному стафилококком. Пациентом был Франклин Рузвельт-младший, сын президента Соединённых Штатов. Открытие Домагка мгновенно стало сенсацией. Поскольку пронтозил содержал сульфамидную молекулярную структуру, его назвали сульфамидным препаратом. Он стал первым в этой группе синтетических химических веществ, способных лечить и предотвращать бактериальные инфекции. Домагк открыл новое революционное направление в лечении болезней, использовании химиотерапевтических препаратов. Оно спасёт десятки тысяч человеческих жизней.

    Инсулин

    Следующее великое открытие помогло спасти жизнь миллионам больных диабетом во всём мире. Диабет - это недуг, нарушающий процесс усвоения организмом сахара, что может привести к слепоте, отказу почек, заболеваниям сердца и даже к смерти. Столетиями медики изучали диабет, безуспешно ища от него средства. Наконец, в конце 19 века, произошёл прорыв. Было установлено, что у больных диабетом есть общая черта - неизменно поражена группа клеток в поджелудочной железе - эти клетки выделяют гормон, контролирующий содержание сахара в крови. Гормон назвали инсулином. А в 1920 году - новый прорыв. Канадский хирург Фредерик Бантинг и студент Чарльз Бест изучали секрецию инсулина поджелудочной железы у собак. Повинуясь интуиции, Бантинг ввёл экстракт из вырабатывающих инсулин клеток здоровой собаки собаке, страдающей диабетом. Результаты были ошеломляющими. Через несколько часов уровень сахара в крови больного животного существенно понизился. Теперь внимание Бантинга и его помощников сосредоточилось на поисках животного, чей инсулин был бы схож с человеческим. Они нашли близкое соответствие в инсулине, взятом у зародышей коров, очистили его для безопасности эксперимента и в январе 1922 года провели первое клиническое испытание. Бантинг ввёл инсулин 14-летнему мальчику, умиравшему от диабета. И тот стремительно пошёл на поправку. На сколько важно открытие Бантинга? Спросите об этом 15 миллионов американцев, которые ежедневно получают инсулин, от которого зависит их жизнь.

    Генетическая природа рака

    Рак - вторая по летальности болезнь в Америке. Интенсивные исследования его возникновения и развития привели к замечательным научным свершениям, но, пожалуй, самым важным из них стало следующее открытие. Нобелевские лауреаты, исследователи рака Майкл Бишоп и Харольд Вармус, объединили усилия в исследовании рака в 70-х годах 20 века. В то время доминировало несколько теорий о причине этого заболевания. Злокачественная клетка очень непроста. Она способна не только делиться, но и вторгаться. Это клетка с высокоразвитыми возможностями. В одной из теорий рассматривался вирус саркомы Рауса, вызывающий рак у кур. Когда вирус нападает на клетку курицы, он вводит свой генетический материал в ДНК хозяина. Согласно гипотезе, ДНК вируса становится впоследствии агентом, вызывающим заболевание. По другой теории, при вводе вирусом своего генетического материала в клетку хозяина, гены, вызывающие рак, не активируются, а ждут, пока их не запустит внешнее воздействие, например, вредные химикаты, радиация или обычная вирусная инфекция. Эти вызывающие рак гены, так называемые онкогены, и стали объектом исследований Вармуса и Бишопа. Главный вопрос: содержит ли геном человека гены, являющиеся или способные стать онкогенами вроде тех, что содержатся в вирусе, вызывающем опухоли? Есть ли такой ген у кур, у других птиц, у млекопитающих, у человека? Бишоп и Вармус взяли меченную радиоактивную молекулу и использовали её в качестве зонда, чтобы выяснить, похож ли онкоген вируса саркомы Рауса на какой-нибудь нормальный ген в хромосомах курицы. Ответ утвердительный. Это было настоящее откровение. Вармус и Бишоп установили, что вызывающий рак ген уже содержится в ДНК здоровых клеток курицы и, что ещё важнее, они обнаружили его и в ДНК человека, доказав, что зародыш рака может явиться в любом из нас на клеточном уровне и ждать активации.

    Как может наш собственный ген, с которым мы прожили всю жизнь, вызвать рак? При делении клеток случаются ошибки и они чаще, если клетка угнетена космическим излучением, табачным дымом. Важно также помнить, что, когда клетка делится, ей надо скопировать 3 млрд. комплементарных пар ДНК. Всякий, кто хоть раз пытался печатать, знает, как это трудно. У нас есть механизмы, позволяющие замечать и исправлять ошибки, и всё же, при больших объёмах, пальцы промахиваются.
    В чём же важность открытия? Раньше рак пытались осмыслить, исходя из различий между геном вируса и геном клетки, а теперь мы знаем, что совсем небольшое изменение в определённых генах наших клеток может превратить здоровую клетку, которая нормально растёт, делится и т.д., в злокачественную. И это стало первой ясной иллюстрацией истинного положения вещей.

    Поиски данного гена - определяющий момент в современной диагностике и предсказании дальнейшего поведения раковой опухоли. Открытие дало чёткие цели специфическим видам терапии, которых раньше попросту не было.
    Население Чикаго около 3 млн. человек.

    ВИЧ

    Столько же ежегодно умирают от СПИДа, одной из самых страшных эпидемий в новой истории. Первые признаки этого заболевания появились в начале 80-х годов прошлого века. В Америке стало расти число пациентов, умиравших от редких видов инфекций и рака. Анализ крови у жертв выявил крайне низкий уровень лейкоцитов - белых кровяных клеток, жизненно важных для иммунной системы человека. В 1982 году Центр контроля и предотвращения заболеваний дал болезни название СПИД - синдром приобретённого иммунодефицита. За дело взялись двое исследователей, Люк Монтанье из института Пастера в Париже и Роберт Галло из Национального института онкологии в Вашингтоне. Им обоим удалось сделать важнейшее открытие, которое выявило возбудителя СПИДа - ВИЧ, вирус иммунодефицита человека. В чём отличие вируса иммунодефицита человека от других вирусов, например, гриппа? Во-первых, этот вирус годами не выдаёт наличие болезни, в среднем, 7 лет. Вторая проблема весьма уникальна: например, СПИД наконец проявился, люди понимают, что больны и идут в клинику, а у них, мириад других инфекций, что именно стало причиной заболевания. Как это определить? В большинстве случаев вирус существует ради единственной цели: проникнуть в клетку-акцептор и размножиться. Обычно, он прикрепляется к клетке и выпускает в неё свою генетическую информацию. Это позволяет вирусу подчинить себе функции клетки, перенаправив их на производство новых особей вирусов. Затем эти особи нападают на другие клетки. Но ВИЧ - это не рядовой вирус. Он принадлежит к той категории вирусов, которых учёные называют ретровирусами. Что же в них необычного? Подобно тем классам вирусов, куда входят полиомиелит или грипп, ретровирусы - особые категории. Они уникальны тем, что их генетическая информация в виде рибонуклеиновой кислоты конвертируется в дезоксирибонуклеиновую кислоту (ДНК) и как раз то, что происходит с ДНК, и составляет нашу проблему: ДНК встраивается в наши гены, ДНК вируса становится частью нас, и тогда клетки, призванные защищать нас, начинают воспроизводить ДНК вируса. Имеются клетки, содержащие вирус, иногда они воспроизводят его, иногда - нет. Молчат. Затаиваются…Но лишь для того, чтобы потом снова воспроизводить вирус. Т.е. когда инфекция становится очевидной, она, скорее всего, укоренилась на всю жизнь. В этом заключается главная проблема. Лекарство от СПИДа до сих пор не найдено. Но открытие, что ВИЧ - ретровирус, и что он является возбудителем СПИДа, привело к значительным достижениям в борьбе с этим недугом. Что изменилось в медицине после открытия ретровирусов, в особенности ВИЧ? Например, из СПИДа мы убедились, что медикаментозная терапия возможна. Раньше считалось, что поскольку для размножения вирус узурпирует наши клетки, воздействовать на него без тяжёлого отравления самого пациента практически невозможно. Никто не инвестировал антивирусных программ. СПИД открыл дверь антивирусным исследованиям в фармацевтических кампаниях и университетах всего мира. К тому же, СПИД дал положительный социальный эффект. По иронии судьбы, этот ужасный недуг сплачивает людей.

    И так день за днем, столетие за столетием, крохотными шажками или грандиозными прорывами, совершались великие и малые открытия в медицине. Они дают надежду, что человечество победит рак и СПИД, аутоиммунные и генетические заболевания, достигнет совершенства в профилактике, диагностике и лечении, облегчая страдания больных людей и предотвращая прогрессирование заболеваний.

    Зачастую научные изобретения приятно удивляют и вселяют оптимизм. Ниже представлены шесть изобретений, которые, возможно, найдут широкое применение в будущем и облегчат жизнь пациентов. Читаем и удивляемся!

    Выращенные кровеносные сосуды

    20 процентов людей в США умирают каждый год из-за курения сигарет. Наиболее часто используемые методы отказа от курения на самом деле малоэффективны. Исследователи Гарвардского университета обнаружили во время исследования, что никотиновые жевательные резинки и пластыри слабо помогают заядлым курильщикам со стражем бросить курить.

    Никотиновые жевательные резинки и пластыри слабо помогают заядлым курильщикам со стражем бросить курить.

    Компания Chrono Therapeutics, расположенная в Hayward, штат Калифорния, США предложила устройство, которое совмещает в себе технологии и смартфона, и гаджета. По своему действию это похоже на пластырь, но его эффективность увеличена во много раз. Курильщики носят на запястье небольшое электронное устройство, которое изредка, но тогда, когда это максимально необходимо для курильщика со стажем, поставляет никотин в организм. Утром после пробуждения и после еды девайс отслеживает "пиковые" для курильщика моменты, когда нарастает потребность в никотине, и сразу реагирует на это. Так как никотин может мешать сну, устройство выключается, когда человек засыпает.

    Электронный гаджет соединяется с приложением в смартфоне. Смартфон использует методы геймификации (игровые подходы, которые широко распространены в компьютерных играх, для неигровых процессов), чтобы помочь пользователям отслеживать улучшения здоровья после отказа от сигарет, давать подсказки на каждом новом этапе, . Также пользователи помогают друг другу бороться с вредной привычкой, объдинившись в особую сеть и обмениваясь проверенными рекомендациями. Компания Chrono планирует исследовать гаджет дополнительно в этом году. Ученые надеются, что продукт появится на рынке через 1,5 года.

    Нейромодуляция в лечении артрита и болезни Крона

    Искусственное управление активностью нервов (нейромодуляция) поможет излечивать такие тяжелые заболевания, как ревматоидный артрит и болезнь Крона.. Чтобы достичь этого, ученые планируют встроить небольшой электрический стимулятор возле блуждающего нерва в области шеи. Компания, расположенная в Валенсии, штат Калифорния (США) использует в своей работе открытие нейрохирурга Кевина Дж Трейси. Он утверждает, что блуждающий нерв тела помогает уменьшить воспаление. Кроме того, к изобретению гаджета подтолкнули исследования, доказывающие, что у людей с воспалительными процессами наблюдается низкая активность блуждающего нерва.

    Компания SetPoint Medical разрабатывает устройство, использующее электрическую стимуляцию для лечения таких воспалительных заболеваний, как и . Первые испытания на добровольцах изобретения SETPOINT начнутся в ближайшие 6-9 месяцев, говорит глава компании Энтони Арнольд.

    Ученые надеются, что устройство уменьшит потребность в лекарственных препаратах, которые обладают побочными эффектами. "Это для иммунной системы", говорит глава компании.

    Чип поможет двигаться при параличе

    Исследователи в Огайо стремятся помочь парализованным людям двигать руками и ногами с помощью компьютерного чипа. Он подключает мозг прямо к мышцам. Устройство под названием NeuroLife уже помогло 24-летнему молодому человеку с диагнозом квадриплегия ( четырех конечностей) двигать рукой. Благодаря изобретению пациент смог зажать в руке кредитную карточку и провести ею по считывающему устройству. Кроме этого, теперь молодой человек может похвастаться игрой на гитаре в видеоигре.

    Устройство под названием NeuroLife помогло мужчине с диагнозом квадриплегия (паралич 4х конечностей) двигать рукой. Пациент смог зажать в руке кредитную карточку и провести ею по считывающему устройству. Он может похвастаться игрой на гитаре в видеоигре.

    Чип передает сигналы мозга к программному обеспечению, которое распознает, какие движения человек хочет совершить. Программа перекодирует сигналы перед отправкой их по проводам в одежде с электродами ().

    Девайс разрабатывается исследователями в Battelle, некоммерческой исследовательской организации и в Университете штата Огайо, США. Самой сложной задачей была разработка программных алгоритмов, которые расшифровывают намерения пациента через сигналы мозга. Затем сигналы преобразуются в электрические импульсы, и руки пациентов начинают двигаться, говорит Херб Бреслер, старший руководитель по исследованиям Battelle.

    Роботы-хирурги

    Хирургический робот с крошечным механическим запястьем может делать микроразрезы тканей.

    Исследователи из Университета Вандербильта стремятся внедрить в сферу медицины минимально инвазивную хирургию при помощи робота. У него есть крошечная механическая рука для минимального разрезания ткани.

    Робот состоит из руки, изготовленной из крошечных концентрических трубок, с механическим запястьем на конце. Толщина запястья менее 2 мм, и оно может поворачиваться на 90 градусов.

    В последнее десятилетие в все чаще используются роботы-хирурги. Особенность лапароскопии состоит в том, что разрезы — всего от 5 до 10 мм. Такие крошечные разрезы по сравнению с традиционной хирургией позволяют тканям намного быстрее ускорить восстановление и делают заживление куда менее болезненным. Но это не предел! Разерзы могут быть еще в половину меньше. Доктор Роберт Уэбстер надеется, что его технология будет широко применяться в иглоскопической (микролапароскопической) хирургии, где требуются разрезы менее 3-х мм.

    Скрининг рака

    Самое важное в лечении рака — ранняя диагностика заболевания. К несчастью, многие опухоли остаются незамеченными до тех пор, пока не станет слишком поздно. Вадим Бекман, биомедицинский инженер и профессор Северо-Западного университета, работает над ранней диагностикой рака с помощью неинвазивного диагностического теста.

    Рак легких трудно обнаружить на ранней стадии без дорогостоящих рентгеновских снимков. Такой вид диагностики может быть опасен для пациентов с низким уровнем риска. А вот для теста Бекмана, который указывает на то, что начал развиваться рак легких, не нужно ни облучение, ни получение изборажения легких, ни определение онкомаркеров, которые далеко не всегда достоверны. Достаточно взять образцы клеток... изнутри щеки пациента. Тест обнаруживает изменения в клеточной структуре, используя свет для измерения изменений.

    Специальный микроскоп, разработанный лабораторией Бекмана, позволяет сделать обследование доступным (около 100 долларов) и быстрым. Если результат теста окажется положительным, то пациенту будет рекомендовано продолжать дальнейшее обследование. Компания Preora Diagnostics, соучредитель Бекмана, надеется представить свой первый скрининг-тест рака легких на рынке в 2017 году.

    В 21 веке ученые каждый год удивляют поразительными открытиями, в которые верится с трудом. Нанороботы, способные убивать раковые клетки, превращение карих глаз в голубые, изменение цвета кожи, 3D принтер, печатающий ткани тела (это очень пригодится в для решения проблем) — далеко не полный перечень новостей из мира медицины. Что ж, ждем с нетерпением новых изобретений!

    Прошедший год для науки был очень плодотворным. Особенного прогресса ученые достигли в сфере медицины. Человечество совершило удивительные открытия, научные прорывы и создало множество полезных медикаментов, которые непременно в скором времени окажутся в свободном доступе. Предлагаем ознакомиться с десяткой самых удивительных медицинских прорывов 2015 года, которые обязательно внесут серьезный вклад в развитие медицинских услуг в самое ближайшее время.

    Открытие теиксобактина

    В 2014 году Всемирная организация здравоохранения предупредила всех о том, что человечество вступает в так называемую постантибиотическую эру. И ведь, она оказалась правой. Наука и медицина аж с 1987 не производили, действительно, новых видов антибиотиков. Однако, болезни не стоят на месте. Каждый год появляются новые заразы, более устойчивые к существующим медикаментам. Это стало настоящей мировой проблемой. Тем не менее, в 2015 году ученые совершили открытие, которое, по их мнению, привнесет кардинальные перемены.

    Ученые открыли новый класс антибиотиков из 25 противомикробных препаратов, включая очень важный, получивший название теиксобактин. Этот антибиотик уничтожает микробов, блокируя их способность производить новые клетки. Другими словами, микробы, под воздействием этого лекарства, не могут развиваться и вырабатывать со временем устойчивость к препарату. Теиксобактин, к настоящему моменту, доказал свою высокую эффективность в борьбе с резистентным золотистым стафилококком и несколькими бактериями, вызывающими туберкулез.

    Лабораторные испытания теиксобактина проводились на мышах. Подавляющее большинство экспериментов показали эффективность препарата. Человеческие испытания должны начаться в 2017 году.

    Медики вырастили новые голосовые связки

    Одно из самых интересных и перспективных направлений в медицине является регенерация тканей. В 2015 году список воссозданных искусственным методом органов пополнился новым пунктом. Врачи из Висконсинского университета научились выращивать человеческие голосовые связки, фактически, из ничего.
    Группа ученых под руководством доктора Натана Вельхэна биоинженерным способом создала ткань, способную имитировать работу слизистой оболочки голосовых связок, а именно, ту ткань, которая представляется двумя лепестками связок, которые вибрируя позволяют создавать человеческую речь. Клетки-доноры, из которых впоследствии были выращены новые связки, были взяты у пяти пациентов-добровольцев. В лабораторных условиях за две недели ученые вырастили необходимую ткань, после чего добавили ее к искусственному макету гортани.

    Создаваемый полученными голосовыми связками звук, ученые описывают как металлический и сравнивают его со звуком роботизированного казу (игрушечный духовой музыкальный инструмент). Однако ученые уверены в том, что созданные ими голосовые связки в реальных условиях (то есть при имплантации в живой организм) будут звучать, почти, как настоящие.

    В рамках одного из последних экспериментов на лабораторных мышах с привитым человеческим иммунитетом исследователи решили проверить, будет ли организм грызунов отторгать новую ткань. К счастью, этого не случилось. Доктор Вельхэм уверен, что ткань не будет отторгаться и человеческим организмом.

    Лекарство от рака может помочь и пациентам с болезнью Паркинсона

    Тисинга (или нилотиниб) является проверенным и одобренным лекарством, которое обычно используют для лечения людей с признаками лейкемии. Однако, новое исследование, проведенное медицинским центром Джорджтаунского университета, показывает, что лекарство Тасинга может являться очень сильным средством для контроля моторных симптомов у людей с болезнью Паркинсона, улучшая их моторные функции и контролируя немоторные симптомы этой болезни.

    Фернандо Паган, один из докторов, проводивших данное исследование, считает, что нилотинибная терапия может являться первым в своем роде эффективным методом снижения деградации когнитивных и моторных функции у пациентов с нейродегенеративными заболеваниями, такими как болезнь Паркинсона.

    Ученые в течение шести месяцев давали увеличенные дозы нилотиниба 12 пациентам-добровольцам. У всех 12 пациентов, прошедших данное испытание препарата до конца, наблюдалось улучшение моторных функций. У 10 из них отметили значительное улучшение.

    Основной задачей данного исследования была проверка безопасности и безвредности нилотиниба на человеческий организм. Используемая доза препарата была гораздо меньше той дозы, которая обычно дается пациентам с лейкемией. Несмотря на то, что препарат показал свою эффективность, исследование все же проводилось на небольшой группе людей без привлечения контрольных групп. Поэтому перед тем, как Тасингу начнут использовать в качестве терапии болезни Паркинсона, придется провести еще несколько испытаний и научных исследований.

    Первая в мире 3D-напечатанная грудная клетка

    Последние несколько лет технология 3D-печати проникает во многие сферы, приводя к удивительным открытиям, разработкам и новым методам производства. В 2015 году доктора из университетского госпиталя Саламанка в Испании провели первую в мире операцию по замене поврежденной грудной клетки пациента на новый 3D-напечатанный протез.

    Человек страдал редким видом саркомы, и у врачей не осталось другого выбора. Чтобы избежать распространение опухоли дальше по организму, специалисты удалили у человека почти всю грудину и заменили кости титановым имплантатом.

    Как правило, имплантаты для крупных отделов скелета производят из самых разных материалов, которые со временем могут изнашиваться. Помимо этого, замена столь сложного сочленения костей, как кости грудины, которые, как правило, уникальны в каждом отдельном случае, потребовала от врачей провести тщательное сканирование грудины человека, чтобы разработать имплантат нужного размера.

    В качестве материала для новой грудины было решено использовать титановый сплав. После проведения высокоточной трехмерной компьютерной томографии, ученые использовали принтер Arcam стоимостью 1,3 миллиона долларов и создали новую титановую грудную клетку. Операция по установке новой грудины пациенту прошла успешно, и человек уже прошел полный курс реабилитации.

    Из клеток кожи в клетки мозга

    Ученые из калифорнийского Института Солка в Ла-Холья посвятили ушедший год исследованиям человеческого мозга. Они разработали метод трансформирования клеток кожи в мозговые клетки и уже нашли несколько полезных сфер применения новой технологии.

    Следует отметить, что ученые нашли способ превращения кожных клеток в старые мозговые клетки, что упрощает дальнейшее их использование, например, при исследованиях болезней Альцгеймера и Паркинсона и их взаимосвязи с эффектами, вызываемыми старением. Исторически сложилось, что для таких исследований применялись клетки мозга животных, однако, ученые, в этом случае, были ограничены в своих возможностях.

    Относительно недавно, ученые смогли превратить стволовые клетки в клетки мозга, которые можно использовать для исследований. Однако, это довольно трудоемкий процесс, и на выходе получаются клетки, не способные имитировать работу мозга пожилого человека.

    Как только, исследователи разработали способ искусственного создания клеток мозга, они направили свои усилия на создание нейронов, которые обладали бы возможностью производства серотонина. И хотя, полученные клетки обладают лишь крошечной долей возможностей работы человеческого мозга, они активно помогают ученым в исследованиях и поиске лекарств от таких болезней и расстройств, как аутизм, шизофрения и депрессия.

    Противозачаточные таблетки для мужчин

    Японские ученые из Научно-исследовательского института исследований микробных заболеваний в Осаке опубликовали новую научную работу, согласно которой в недалеком будущем мы сможем производить реально действующие противозачаточные таблетки для мужчин. В своей работе ученые описывают исследования препаратов «Такролимус» и «Цикслоспорин А».

    Обычно, эти лекарства используются после проведения операций по трансплантации органов для подавления иммунной системы организма, чтобы та не отторгала новую ткань. Блокада происходит благодаря ингибированию производства энзима кальцинейрина, который содержит белки PPP3R2 и PPP3CC, обычно имеющиеся в мужском семени.

    В своем исследовании на лабораторных мышах ученые обнаружили, что как только в организмах грызунов производится недостаточно белка PPP3CC, то их репродуктивные функции резко сокращаются. Это натолкнуло исследователей к выводу, что недостаточный объем этого белка может привести к стерильности. После более тщательного изучения специалисты заключили, что данный белок дает клеткам спермы гибкость и необходимые силу и энергию для проникновения через мембрану яйцеклетки.

    Проверка на здоровых мышах только подтвердила их открытие. Всего пять дней применения препаратов «Такролимус» и «Цикслоспорин А» привело к полной бесплодности мышей. Однако, их репродуктивная функция полностью восстановилась всего через неделю после того, как им перестали давать эти препараты. Важно отметить, что кальцинейрин не является гормоном, поэтому применение препаратов никоим образом не снижает половое влечение и возбудимость организма.

    Несмотря на многообещающие результаты, потребуется несколько лет для создания реальных мужских противозачаточных таблеток. Около 80 процентов исследований на мышах не применимы для человеческих случаев. Однако, ученые по-прежнему надеются на успех, так как эффективность препаратов была доказана. Кроме того, аналогичные препараты уже прошли человеческие клинические испытания и широко используются.

    Печать ДНК

    Технологии 3D-печати привели к появлению уникальной новой индустрии - печати и продаже ДНК. Правда, термин «печать» здесь скорее используется именно для коммерческих целей, и необязательно описывает то, что же в этой сфере происходит на самом деле.

    Исполнительный директор компании Cambrian Genomics объясняет, что данный процесс лучше всего описывает фраза «проверка на ошибки», нежели «печать». Миллионы частей ДНК помещаются на крошечные металлические подложки и сканируются компьютером, который отбирает те цепи, которые в конечном итоге должны будут составлять всю последовательность ДНК-цепочки. После этого, лазером аккуратно вырезаются нужные связи и помещаются в новую цепочку, предварительно заказанную клиентом.

    Такие компании, как Cambrian, считают, что в будущем люди смогут благодаря специальному компьютерному оборудованию и программному обеспечению создавать новые организмы просто для развлечения. Конечно же, такие предположения сразу же вызовут праведный гнев людей, сомневающихся в этической корректности и практической пользе данных исследований и возможностей, но рано или поздно, как бы мы этого хотели или не хотели, мы к этому придем.

    Сейчас же ДНК-печать демонстрирует немногообещающий потенциал в медицинской сфере. Производители лекарств и исследовательские компании - вот, список первых клиентов таких компаний, как Cambrian.

    Исследователи из Каролинского института в Швеции пошли еще дальше и начали создавать из ДНК-цепочек различные фигурки. ДНК-оригами, как они это называют, может на первый взгляд показаться обычным баловством, однако, практический потенциал использования у этой технологии тоже имеется. Например, его можно будет применять при доставке лекарственных средств в организм.

    Наноботы в живом организме

    В начале 2015 года сфера робототехники одержала большую победу, когда группа исследователей из Калифорнийского университета в Сан-Диего объявила о том, что провела первые успешные тесты с применением наноботов, которые выполнили поставленную перед ними задачу, находясь внутри живого организма.

    Живым организмом в данном случае выступали лабораторные мыши. После помещения наноботов внутрь животных микромашины направились к желудкам грызунов и доставили помещенный на них груз, в качестве которого выступали микроскопические частички золота. К концу процедуры ученые не отметили никаких повреждений внутренних органов мышей и, тем самым, подтвердили полезность, безопасность и эффективность наноботов.

    Дальнейшие тесты показали, что доставленных наноботами частичек золота в желудках остается больше, чем тех, которые были просто введены туда с приемом пищи. Это натолкнуло ученых на мысль о том, что наноботы в будущем смогут гораздо эффективные доставлять нужные лекарства внутрь организма, чем при более традиционных методах их введения.

    Моторная цепь крошечных роботов состоит из цинка. Когда она попадает в контакт с кислотно-щелочной средой организма, происходит химическая реакция, в результате которой производятся пузырьки водорода, которые и продвигают наноботов внутри. Спустя какое-то время, наноботы просто растворяются в кислотной среде желудка.

    Несмотря на то, что данная технология разрабатывается уже почти десятилетие, только в 2015 году ученые смогли провести ее фактические тесты в живой среде, а не обычных чашках Петри, как делалось много раз до этого. В будущем наноботов можно будет использовать для определения и даже лечения различных болезней внутренних органов, путем воздействия нужными лекарствами на отдельные клетки.

    Инъекционный мозговой наноимплантат

    Группа ученых из Гарварда разработала имплантат, обещающий возможность лечения ряда нейродегенеративных расстройств, которые приводят к параличу. Имплантат представляет собой электронное устройство, состоящее из универсального каркаса (сетки), к которому в дальнейшем можно будет подсоединять различные наноустройства уже после введения его в мозг пациента. Благодаря имплантату, можно будет следить за нейронной активностью мозга, стимулировать работу определенных тканей, а также ускорять регенерацию нейронов.

    Электронная сетка состоит из проводящих полимерных нитей, транзисторов или наноэлектродов, которые соединяют между собой пересечения. Почти вся площадь сетки состоит из отверстий, что позволяет живым клеткам образовывать новые соединения вокруг нее.

    К началу 2016 года команда ученых из Гарварда, по-прежнему, проводит тесты безопасности использования подобного имплантата. Например, двум мышам имплантировали в мозг устройство, состоящее из 16 электрических компонентов. Устройства успешно используются для мониторинга и стимуляции определенных нейронов.

    Искусственное производство тетрагидроканнабинола

    Многие годы марихуана использовалась в медицине в качестве обезболивающего средства и в частности, для улучшения состояний больных раком и СПИДом. В медицине также активно используется и синтетический заменитель марихуаны, а точнее ее основного психоактивного компонента тетрагидроканнабинола (или THC).

    Однако, биохимики из Технического университета Дортмунда объявили о создании нового вида дрожжевого грибка, производящего THC. Более того, по неопубликованным данным известно, что эти же ученые создали еще один вид дрожжевого грибка, который производит каннабидиол, другой психоактивный компонент марихуаны.

    В марихуане содержится сразу несколько молекулярных соединений, которые интересуют исследователей. Поэтому, открытие эффективного искусственного способа создания этих компонентов в больших количествах могло бы принести медицине огромную пользу. Однако, метод обычного выращивания растений и последующая добыча необходимых молекулярных соединений является сейчас наиболее эффективным способом. Внутри 30 процентов сухой массы современных видов марихуаны может содержаться нужный компонент THC.

    Несмотря на это, дортмундские ученые уверены, что смогут найти более эффективный и быстрый способ добычи THC в будущем. К настоящему моменту, созданный дрожжевой грибок повторно выращивается на молекулах такого же грибка, вместо предпочтительной альтернативы в виде простых сахаридов. Все это приводит к тому, что с каждой новой партией дрожжей уменьшается и количество свободного компонента THC.

    В будущем, ученые обещают оптимизировать процесс, максимизировать производство THC и увеличить масштабы до индустриальных нужд, что, в конечном итоге, удовлетворит нужды медицинских исследований и европейских регуляторов, которые ищут новый способы производства тетрагидроканнабинола без выращивания самой марихуаны.

    Доктор биологических наук Ю. ПЕТРЕНКО.

    Несколько лет назад в Московском государственном университете был открыт факультет фундаментальной медицины, на котором готовят врачей, обладающих широкими знаниями в естественных дисциплинах: математике, физике, химии, молекулярной биологии. Но вопрос о том, насколько необходимы фундаментальные знания врачу, продолжает вызывать острые споры.

    Наука и жизнь // Иллюстрации

    Среди символов медицины, изображенных на фронтонах здания библиотеки Российского государственного медицинского университета, - надежда и исцеление.

    Настенная роспись в фойе Российского государственного медицинского университета, на которой изображены великие врачи прошлого, сидящие в раздумье за одним длинным столом.

    У. Гильберт (1544-1603), придворный врач английской королевы, естествоиспытатель, открывший земной магнетизм.

    Т. Юнг (1773-1829), известный английский врач и физик, один из создателей волновой теории света.

    Ж.-Б. Л. Фуко (1819-1868), французский врач, увлекавшийся физическими исследованиями. С помощью 67-метрового маятника доказал вращение Земли вокруг оси и сделал много открытий в области оптики и магнетизма.

    Ю. Р. Майер (1814-1878), немецкий врач, установивший основные принципы закона сохранения энергии.

    Г. Гельмгольц (1821-1894), немецкий врач, занимался физиологической оптикой и акустикой, сформулировал теорию свободной энергии.

    Надо ли преподавать физику будущим врачам? В последнее время этот вопрос волнует многих, и не только тех, кто готовит профессионалов в области медицины. Как обычно, существуют и сталкиваются два крайних мнения. Те, кто "за", рисуют мрачную картину, которая явилась плодом пренебрежительного отношения к базисным дисциплинам в образовании. Те, кто "против", считают, что в медицине должен доминировать гуманитарный подход и врач прежде всего должен быть психологом.

    КРИЗИС МЕДИЦИНЫ И КРИЗИС ОБЩЕСТВА

    Современная теоретическая и практическая медицина достигла больших успехов, и физические знания ей сильно в этом помогли. Но в научных статьях и публицистике не перестают звучать голоса о кризисе медицины вообще и медицинского образования в частности. Факты, свидетельствующие о кризисе, определенно есть - это и появление "божественных" целителей, и возрождение экзотических методов врачевания. Заклинания типа "абракадабры" и амулеты вроде лягушачьей лапки вновь в ходу, как в доисторические времена. Приобретает популярность неовитализм, один из основоположников которого, Ханс Дриш, считал, что сущность жизненных явлений составляет энтелехия (своего рода душа), действующая вне времени и пространства, и что живое не может сводиться к совокупности физико-химических явлений. Признание энтелехии в качестве жизненной силы отрицает значение физико-химических дисциплин для медицины.

    Можно привести множество примеров того, как псевдонаучные представления подменяют и вытесняют подлинно научные знания. Почему так происходит? По мнению нобелевского лауреата, открывателя структуры ДНК Фрэнсиса Крика, когда общество становится очень богатым, молодежь проявляет нежелание работать: она предпочитает жить легкой жизнью и заниматься пустяками, вроде астрологии. Это справедливо не только для богатых стран.

    Что касается кризиса в медицине, то преодолеть его можно, только повышая уровень фундаментальности. Обычно считают, что фундаментальность - это более высокий уровень обобщения научных представлений, в данном случае - представлений о природе человека. Но и на этом пути можно дойти до парадоксов, например, рассматривать человека как квантовый объект, полностью абстрагируясь от физико-химических процессов, протекающих в организме.

    ВРАЧ-МЫСЛИТЕЛЬ ИЛИ ВРАЧ-ГУРУ?

    Никто не отрицает, что вера больного в исцеление играет важную, иногда даже решающую роль (вспомним эффект плацебо). Так какой же врач нужен больному? Уверенно произносящий: "Ты будешь здоров" или же долго раздумывающий, какое лекарство выбрать, чтобы получить максимальный эффект и при этом не навредить?

    По воспоминаниям современников, знаменитый английский ученый, мыслитель и врач Томас Юнг (1773-1829) нередко застывал в нерешительности у постели больного, колебался в установлении диагноза, часто и надолго умолкал, погружаясь в себя. Он честно и мучительно искал истину в сложнейшем и запутанном предмете, о котором писал так: "Нет науки, сложностью превосходящей медицину. Она выходит за пределы человеческого разума".

    С точки зрения психологии врач-мыслитель мало соответствует образу идеального врача. Ему недостает смелости, самонадеянности, безапелляционности, нередко свойственных именно невеждам. Наверное, такова природа человека: заболев, уповать на быстрые и энергичные действия врачующего, а не на размышления. Но, как сказал Гёте, "нет ничего страшнее деятельного невежества". Юнг как врач большой популярности у больных не приобрел, а вот среди коллег его авторитет был высоким.

    ФИЗИКУ СОЗДАВАЛИ ВРАЧИ

    Познай самого себя, и ты познаешь весь мир. Первым занимается медицина, вторым - физика. Изначально связь между медициной и физикой была тесной, недаром совместные съезды естествоиспытателей и врачей проходили вплоть до начала XX века. И между прочим, физику во многом создали врачи, а к исследованиям их часто побуждали вопросы, которые ставила медицина.

    Врачи-мыслители древности первыми задумались над вопросом, что есть теплота. Они знали, что здоровье человека связано с теплотой его тела. Великий Гален (II век н.э.) ввел в обиход понятия "температура" и "градус", ставшие основополагающими для физики и других дисциплин. Так что врачи древности заложили основы науки о тепле и изобрели первые термометры.

    Уильям Гильберт (1544-1603), лейб-медик английской королевы, изучал свойства магнитов. Он назвал Землю большим магнитом, доказал это экспериментально и придумал модель для описания земного магнетизма.

    Томас Юнг, о котором уже упоминалось, был практикующим врачом, но при этом сделал великие открытия во многих областях физики. Он по праву считается, вместе с Френелем, создателем волновой оптики. Кстати, именно Юнг открыл один из дефектов зрения - дальтонизм (неспособность различать красный и зеленый цвета). По иронии судьбы это открытие обессмертило в медицине имя не врача Юнга, а физика Дальтона, который оказался первым, у кого обнаружился этот дефект.

    Юлиус Роберт Майер (1814-1878), внесший огромный вклад в открытие закона сохранения энергии, служил врачом на голландском корабле "Ява". Он лечил матросов кровопусканием, которое считалось в то время средством от всех болезней. По этому поводу даже острили, что врачи выпустили больше человеческой крови, чем ее было пролито на полях сражений за всю историю человечества. Майер обратил внимание, что, когда корабль находится в тропиках, при кровопускании венозная кровь почти такая же светлая, как артериальная (обычно венозная кровь темнее). Он предположил, что человеческий организм, подобно паровой машине, в тропиках, при высокой температуре воздуха, потребляет меньше "топлива", а потому и "дыма" выделяет меньше, вот венозная кровь и светлеет. Кроме того, задумавшись над словами одного штурмана о том, что во время штормов вода в море нагревается, Майер пришел к выводу, что всюду должно существовать определенное соотношение между работой и теплотой. Он высказал положения, которые легли по существу в основу закона сохранения энергии.

    Выдающийся немецкий ученый Герман Гельмгольц (1821-1894), тоже врач, независимо от Майера сформулировал закон сохранения энергии и выразил его в современной математической форме, которой до настоящего времени пользуются все, кто изучает и использует физику. Помимо этого Гельмгольц сделал великие открытия в области электромагнитных явлений, термодинамике, оптике, акустике, а также в физиологии зрения, слуха, нервных и мышечных систем, изобрел ряд важных приборов. Получив медицинское образование и будучи профессиональным медиком, он пытался применить физику и математику к физиологическим исследованиям. В 50 лет профессиональный врач стал профессором физики, а в 1888 году - директором физико-математического института в Берлине.

    Французский врач Жан-Луи Пуазейль (1799-1869) экспериментально изучал мощность сердца как насоса, качающего кровь, и исследовал законы движения крови в венах и капиллярах. Обобщив полученные результаты, он вывел формулу, оказавшуюся чрезвычайно важной для физики. За заслуги перед физикой его именем названа единица динамической вязкости - пуаз.

    Картина, показывающая вклад медицины в развитие физики, выглядит достаточно убедительной, но можно добавить к ней еще несколько штрихов. Любой автомобилист слышал о карданном вале, передающем вращательное движение под разными углами, но мало кто знает, что изобрел его итальянский врач Джероламо Кардано (1501-1576). Знаменитый маятник Фуко, сохраняющий плоскость колебаний, носит имя французского ученого Жан-Бернара-Леона Фуко (1819-1868), врача по образованию. Знаменитый русский врач Иван Михайлович Сеченов (1829-1905), чье имя носит Московская государственная медицинская академия, занимался физической химией и установил важный физико-химический закон, описывающий изменение растворимости газов в водной среде в зависимости от присутствия в ней электролитов. Этот закон и сейчас изучают студенты, причем не только в медицинских вузах.

    "НАМ ФОРМУЛ НЕ ПОНЯТЬ!"

    В отличие от врачей прошлого многие современные студенты-медики попросту не понимают, зачем им преподают естественно-научные дисциплины. Вспоминается одна история из моей практики. Напряженная тишина, второкурсники факультета фундаментальной медицины МГУ пишут контрольную. Тема - фотобиология и ее применение в медицине. Заметим, что фотобиологические подходы, основанные на физических и химических принципах действия света на вещество, признаются сейчас самыми перспективными для лечения онкологических заболеваний. Незнание этого раздела, его основ - серьезный ущерб в медицинском образовании. Вопросы не слишком сложные, все в рамках материала лекционных и семинарских занятий. Но итог неутешителен: почти половина студентов получили двойки. И для всех, кто не справился с заданием, характерно одно - в школе физику не учили или учили спустя рукава. На некоторых этот предмет наводит самый настоящий ужас. В стопке контрольных работ мне попался листок со стихами. Студентка, не сумевшая ответить на вопросы, в поэтической форме жаловалась, что ей приходится зубрить не латынь (вечное мучение студентов-медиков), а физику, и в конце восклицала: "Что делать? Ведь мы - медики, нам формул не понять!" Юная поэтесса, назвавшая в своих стихах контрольную "судным днем", испытания физикой не выдержала и в конце концов перевелась на гуманитарный факультет.

    Когда студенты, будущие медики, оперируют крысу, никому и в голову не придет спрашивать, зачем это надо, хотя организмы человека и крысы различаются довольно сильно. Зачем будущим врачам физика - не так очевидно. Но сможет ли врач, не понимающий основных физических законов, грамотно работать со сложнейшим диагностическим оборудованием, которым "напичканы" современные клиники? Кстати, многие студенты, преодолев первые неудачи, начинают с увлечением заниматься биофизикой. В конце учебного года, когда были изучены такие темы, как "Молекулярные системы и их хаотические состояния", "Новые аналитические принципы рН-метрии", "Физическая природа химических превращений веществ", "Антиоксидантное регулирование процессов перекисного окисления липидов", второкурсники написали: "Мы открывали фундаментальные законы, определяющие основу живого и, возможно, мироздания. Открывали их не на основе умозрительных теоретических построений, а в реальном объективном эксперименте. Нам было тяжело, но интересно". Возможно, среди этих ребят есть будущие Федоровы, Илизаровы, Шумаковы.

    "Лучший способ изучить что-либо - это открыть самому, - утверждал немецкий физик и писатель Георг Лихтенберг. - То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете снова воспользоваться, когда в том возникнет необходимость". Этот самый эффективный принцип обучения стар как мир. Он лежит в основе "метода Сократа" и носит название принципа активного обучения. Именно на этом принципе построено обучение биофизике на факультете фундаментальной медицины.

    РАЗВИВАЯ ФУНДАМЕНТАЛЬНОСТЬ

    Фундаментальность для медицины - залог ее сегодняшней состоятельности и будущего развития. По-настоящему достичь цели можно, рассматривая организм как систему систем и идя путем более углубленного ее физико-химического осмысления. А как быть с медицинским образованием? Ответ ясен: повышать уровень знаний студентов в области физики и химии. В 1992 году в МГУ создан факультет фундаментальной медицины. Цель состояла в том, чтобы не только вернуть в университет медицину, но и, не снижая качества врачебной подготовки, резко усилить естественно-научную базу знаний будущих врачей. Такая задача требует интенсивной работы и преподавателей и студентов. Предполагается, что студенты сознательно выбирают фундаментальную медицину, а не обычную.

    Еще раньше серьезной попыткой в этом направлении стало создание медико-биологического факультета в Российском государственном медицинском университете. За 30 лет работы факультета подготовлено большое число врачей-специалистов: биофизиков, биохимиков и кибернетиков. Но проблема этого факультета в том, что до сих пор его выпускники могли заниматься только медицинскими научными исследованиями, не имея права лечить больных. Сейчас эта проблема решается - в РГМУ совместно с Институтом повышения квалификации врачей создан учебно-научный комплекс, который позволяет студентам старших курсов пройти дополнительную врачебную подготовку.

    Доктор биологических наук Ю. ПЕТРЕНКО.
    Партнеры
    © 2020 Женские секреты. Отношения, красота, дети, мода