Вконтакте Facebook Twitter Лента RSS

Способы переработки твердых отходов. Разбираем вопросы по утилизации бытовых отходов

В нашем мире, благодаря тому, что численность населения постоянно увеличивается, потребление ресурсов также неуклонно растет. А потребление восстанавливаемых ресурсов и невосстанавливаемых ресурсов сопровождается увеличением количества отходов. Мусорные свалки, загрязнение водоемов – это все то, к чему приводит жизнедеятельность человека.

И логично, что без применения инновационных способов мусоропереработки, существует большая вероятность превращения планеты в одну громадную свалку. И неудивительно, что ученые постоянно придумывают и внедряют на практике новые способы переработки ТБО. Какие же методики применяются сегодня?

1. Захоронение отходов на полигонах. Сюда относятся

  • Земляная засыпка

2. Естественные методы разложения ТБО. Сюда относится

  • Компостирование

3. Термическая переработка ТБО. Сюда относится

  • Сжигание
  • Низкотемпературный пиролиз,
  • Высокотемпературный пиролиз (плазменная переработка)

Расскажем обо всем вкратце.


Захоронение на полигонах сегодня является наиболее распространенным в мире способом утилизации отходов. Данный метод применяется к несгораемым отходам и к таким отходам, которые в процессе горения выделяют токсичные вещества.

Полигон отходов (ТБО) не является обычной свалкой. Современные полигоны для утилизации- это сложные инженерные сооружения, оснащенные системами борьбы с загрязнениями подземных вод и атмосферного воздуха. Некоторые полигоны умеют перерабатывать газ, образующийся в процессе гниения отходов газ в электроэнергию и тепло. К сожалению, сегодня это в большей степени относится к европейским странам, поскольку в России очень малый процент полигонов соответствует данным характеристикам.

Главный минус традиционного захоронения отходов заключается в том, что даже при использовании многочисленных систем очистки и фильтров этот вид утилизации не дает возможности полностью избавиться от таких негативных эффектов разложения отходов как гниение и ферментация, которые загрязняют воздух и воду. Поэтому, хотя относительно других способов утилизации, захоронение ТБО стоит достаточно дешево, экологи рекомендуют перерабатывать отходы, сводя к минимуму тем самым риски загрязнения окружающей среды.


Компостирование представляет собой технологию переработки отходов, которая основана на их естественном биоразложении. По этой причине компостирование широко применяется для переработки отходов имеющих органическое происхождение. Сегодня существуют технологии компостирования как пищевых отходов, так и неразделенного потока ТБО.

В нашей стране компостирование не получило достаточно широкого распространения, и обычно оно применяется населением в индивидуальных домах либо на садовых участках. Однако процесс компостирования также может быть централизован и осуществляться на специальных площадках, представляющих собой завод по переработке (ТБО) мусора органического происхождения. Конечным продуктом данного процесса является компост, которому можно найти различные применения в сельском хозяйстве.


Поскольку бытовые отходы содержат достаточно высокий процент органической фракции, для переработки ТБО довольно часто применяют термические методы. Термическая переработка мусора (ТБО) представляет собой совокупность процессов теплового воздействия на отходы, необходимых для уменьшения их объема и массы, обезвреживания, и получения энергоносителей и инертных материалов (с возможностью утилизации).

Важными преимуществами современных методов термической переработки являются:

  • эффективное обезвреживание отходов (полное уничтожение патогенной микрофлоры).
  • снижение объема отходов до 10 раз.
  • использование энергетического потенциала органических отходов.

Из всего многообразия, которым могут похвастаться методы переработки ТБО, наиболее распространено сжигание. Основными преимуществами сжигания являются:

  • высокий уровень апробированности технологий
  • серийно выпускаемое оборудование.
  • продолжительный гарантийный срок эксплуатации
  • высокий уровень автоматизации.

Основной тенденция развития мусоросжигания является переход от прямого сжигания отходов к оптимизированному сжиганию полученной из ТБО топливной фракции и плавный переход от сжигания как процесса ликвидации мусору к сжиганию как процессу, который обеспечивает дополнительное получение электрической и тепловой энергии. И наиболее перспективно сегодня применение плазменных технологий, благодаря которым обеспечивается температура выше, чем температуры плавления шлака, что дает возможность получить на выходе безвредный остеклованный продукт и полезную энергию.


Плазменная переработка мусора (ТБО), по существу, представляет собой не что иное как процедуру газификации мусора. Технологическая схема данного способа предполагает собой получение из биологической составляющей отходов газа с целью применения его для получения пара и электроэнергии. Составной частью процесса плазменной переработки являются твердые продукты в виде непиролизуемых остатков или шлака.

Явным преимуществом высокотемпературного пиролиза является то, что данная методика дает возможность экологически чисто и относительно просто с технической стороны перерабатывать и уничтожать самые различные бытовые отходы без необходимости их предварительной подготовки, т.е. сушки, сортировки и т.д. И само собой, использование данной методики сегодня более выгодно с экономической точки зрения, чем применение других, более устаревших методик.

К тому же, при использовании данной технологии получаемый на выходе шлак является совершенно безопасным продуктом, и он может быть использован впоследствии для самых различных целей.

Правильная утилизация отходов - огромный шаг на пути улучшения экологии.

Существует не один способ переработки мусора.

Главная задача каждого из методов состоит в том, чтобы выполнить поставленную задачу, не допуская распространения вредных бактерий и микроорганизмов. При этом нужно минимизировать и выделяющиеся при самой утилизации вредные вещества.

Рассмотрим варианты уничтожения отходов и оценим, насколько каждый из них эффективен.

Захоронение отходов на полигонах

Полигоны служат для сбора и переработки мусора природным путем. На многих из них практикуется очень простая и понятная система утилизации: как только соберется определенный объем мусора, его закапывают. Мало того, что этот метод устаревший, он является бомбой замедленного действия, ведь есть такие материалы, которые не разлагаются десятилетиями.

Те немногие полигоны, которые имеют в своем распоряжении цеха по , работают следующим образом: приезжающие машины регистрируют на пункте пропуска. Там же измеряется объем кузова, чтобы определить стоимость утилизации; измеряется уровень радиации. Если он превышает допустимые нормы, машину не пропускают.

От пропускного пункта машина направляется в цех сортировки мусора. Сортировка происходит вручную: машина подает мусор на транспортировочную ленту, а работники оттуда выбирают бутылки, бумагу и т. д. Отсортированные материалы складывают в контейнеры без дна, из которых мусор попадает сразу в клетку и под пресс. Когда процесс окончен, оставшиеся отходы (не вошедшие ни в одну из категорий) также спрессовывают и отвозят непосредственно на свалку. Так как долго разлагающиеся материалы отсортированы, оставшийся мусор можно засыпать землей.

Пластиковые бутылки, картон и некоторые другие отходы покупаются предприятиями для производства. Например, из пластиковых бутылок и контейнеров изготовляют сетки для овощей, из стеклянных бутылок и осколков - новые изделия, из картона - туалетную бумагу.

Материалы, которые принимают на полигонах:

  • Бытовые отходы жилых домов, учреждений, предприятий, занимающихся торговлей пром- и продтоваров.
  • Отходы строительных организаций, которые могут быть приравнены к твердым бытовым отходам.
  • Могут приниматься промышленные отходы 4 класса опасности, если их количество не превышает третьей части принимаемого мусора.

Отходы, ввоз которых запрещен на полигон:

  • Строительный мусор 4 класса опасности, который содержит асбест, золу, шлаки.
  • Промышленный мусор 1, 2, 3 класса опасности.
  • Радиоактивные отходы.
  • Полигоны устраиваются согласно строгим санитарным нормам и только на тех участках, где риск заражения человека бактериями через воздушное или водное пространство сводится к минимуму. Занимаемая площадь рассчитана примерно на 20 лет.

Компостирование

Этот метод переработки знаком огородникам, которые для удобрения растений применяют перегнившие органические материалы. Компостирование отходов - метод утилизации, основанный на естественном разложении органических материалов.

Сегодня известен способ компостирования даже неотсортированного потока бытовых отходов.

Из мусора вполне реально получить компост, который впоследствии мог бы использоваться в сельском хозяйстве. В СССР было построено множество заводов, но прекратили они функционировать из-за большого количества тяжелых металлов в мусоре.

Сегодня технологии компостирования в России сводятся к сбраживанию неотсортированного мусора в биореакторах.

Полученный продукт нельзя использовать в сельском хозяйстве, поэтому он находит применение тут же, на свалках - им покрывают отходы.

Этот метод утилизации считается эффективным при условии, что завод оснащен высокотехнологичным оборудованием. Из отходов вначале удаляют металлы, аккумуляторы, а также пластик.

Преимущества мусоросжигания:

  • меньше неприятных запахов;
  • уменьшается количество вредных бактерий, выбросов;
  • полученная масса не привлекает грызунов и птиц;
  • есть возможность при сжигании получать энергию (тепловую и электрическую).

Недостатки:

  • дорогостоящее строительство и эксплуатация мусоросжигательных заводов;
  • строительство занимает не менее 5 лет;
  • при сжигании отходов в атмосферу попадают вредные вещества;
  • зола от мусоросжигания токсична и не может храниться на обычных свалках. Для этого нужны специальные хранилища.

По причине нехватки городских бюджетов, несогласованности с мусороперерабатывающими компаниями и по другим причинам в России пока не налажено производство мусоросжигающих заводов.

Пиролиз, его виды и преимущества

Пиролизом называют сжигание мусора в специальных камерах, препятствующих доступу кислорода . Есть два вида :

  • Высокотемпературный - температура сжигания в печи свыше 900°С.
  • Низкотемпературный - от 450 до 900°С.

При сравнении обычного сжигания как метода утилизации мусора и низкотемпературного пиролиза можно выделить следующие преимущества второго способа:

  • получение пиролизных масел, которые впоследствии используют при производстве пластмасс;
  • выделение пиролизного газа, который получают в достаточном количестве для обеспечения производства энергоносителей;
  • выделяется минимальное количество вредных веществ;
  • установки для пиролиза перерабатывают почти все виды бытовых отходов, но мусор предварительно должен быть отсортирован.

Высокотемпературный пиролиз в свою очередь имеет достоинства перед низкотемпературным:

  • не требуется сортировать отходы;
  • масса зольного остатка значительно меньше, и его можно использовать в промышленных и строительных целях;
  • при температуре горения свыше 900°С разлагаются опасные вещества, не попадая в окружающую среду;
  • полученные пиролизные масла не требуют очистки, так как они имеют достаточную степень чистоты.

Преимущества есть у каждого из методов переработки мусора, но все упирается в стоимость установок: чем эффективнее и выгоднее метод утилизации, тем дороже его установка и длиннее срок окупаемости. Несмотря на эти недостатки, государство стремится реализовать проекты по эффективной и безопасной переработке мусора, понимая: за этими технологиями будущее.

Комплекс технических и технологических решений, сопровождающих процессы обращения с отходами с момента их образования и до захоронения неутилизируемых компонентов, является основой управления в системе обращения с отходами.

Основными методами переработки отходов являются:

 компостирование,

 биоразложение,

 сжигание.

Эти методы особенно эффективны при переработке ТБО.

1. Компостирование.

Компостирование считается формой переработки, нацеленной на сырую органическую отходную массу. Компостирование – это биологический метод обезвреживания ТБО. Иногда его называют биотермическим методом.

Сущность процесса заключается в следующем: разнообразные, в основном теплолюбивые микроорганизмы активно растут и развиваются в толще мусора, в результате чего происходит его саморазогревание до 60 0 С. При такой температуре погибают болезнетворные и патогенные микроорганизмы. Разложение твердых органических загрязнений в бытовых отходах продолжается до получения относительно стабильного материала, подобного гумусу.

Механизм основных реакций компостирования такой же, как при разложении любых органических веществ. При компостировании более сложные соединения разлагаются и переходят в более простые.

Стоимость методов компостирования растет с применением специализированной техники и может достигать значительных величин.

Схема работы мусороперерабатывающего завода следующая . Законченный цикл обезвреживания ТБО состоит из трех технологических этапов:

 прием и предварительная подготовка мусора;

 собственно биотермический процесс обезвреживания и компостирования;

 обработка компоста.

Переработка мусора должна обязательно сочетаться с выдачей продукции, безопасной и в эпидемиологическом отношении.

Обезвреживание отходов обеспечивается в первую очередь высокой температурой аэробной ферментации. В ходе биотермического процесса происходит гибель большей части патогенных микроорганизмов.

Однако, компост, получаемый в результате биотермического обезвреживания ТБО на мусороперерабатывающих заводах, не должен быть использован в сельском и лесном хозяйства, т.к. содержит примеси тяжелых металлов, которые через травы, ягоды, овощи или молоко могут причинить вред здоровью человека.

2. Биоразложение органических отходов

Общепризнанно, что биологические методы разложения органических загрязнений считаются наиболее экологически приемлемыми и экономически эффективными.

Технология процесса биоразложения отходов различна. Например: в биопрудах – жидкие отходы, в биореакторах – жидкие, пастообразные, твердые, в биофильтрах - газообразные. Существуют и другие модификации биотехнологии.

Существенными недостатками аэробных технологий, особенно при обработке концентрированных сточных вод, являются энергозатраты на аэрацию и проблемы, связанные с обработкой и утилизацией большого количества образующегося избыточного ила (до 1–1,5 кг биомассы микроорганизмов на каждый удаленный килограмм органических веществ).

Исключить указанные недостатки помогает анаэробная обработка сточных вод методом метанового сбраживания. При этом не требуется затрат энергии на аэрацию, что играет большую роль в условиях энергетического кризиса, уменьшается объем осадка и, кроме того, образуется ценное органическое топливо – метан.

В перечень веществ, биоразлагаемых анаэробным способом, входят органические соединения различных классов: спирты; альдегиды; кислоты алифатического и ароматического рядов.

Последовательное многоступенчатое разрушение молекул органических веществ возможно благодаря уникальным способностям определенных групп микроорганизмов осуществлять катаболический процесс расщепление сложных молекул до простых и существовать за счет энергии разрушения сложных молекул, не имея доступа ни к кислороду, ни к другим, предпочтительным в энергетическом отношении акцепторам электронов (нитрат, сульфат, сера и др.). Микроорганизмы используют для этой цели углерод органических веществ. Следовательно, в процессе восстановительного расщепления сложные органические молекулы разрушаются до метана и углекислого газа.

3. Сжигание отходов

Твердые бытовые отходы представляют собой гетерогенную смесь, в которой присутствуют почти все химические элементы в виде различных соединений. Наиболее распространенными элементами являются углерод, на долю которого приходится около 30% (по массе) и водород 4% (по массе), входящие в состав органических соединений. Теплотворная способность отходов во многом определяется именно этими элементами. В промышленно развитых европейских регионах теплотворная способность ТБО составляет 1900–2400 ккал/кг, а в ряде случаев достигает 3300 ккал/кг и прогнозируется дальнейший рост теплотворной способности отходов, что окажет влияние на конструктивные особенности элементов термического оборудования.

Сжигание ТБО, как правило, является окислительным процессом. Поэтому и в камере сжигания превалируют окислительные реакции. Главными продуктами сгорания углерода и водорода являются соответственно СО 2 и Н 2 О.

При сжигании необходимо учитывать, что в ТБО присутствуют потенциально опасные элементы, характеризующиеся высокой токсичностью, высокой летучестью и содержанием, такие как например различные соединения галогенов (фтора, хлора, брома), азота, серы, тяжелых металлов (меди, цинка, свинца, кадмия, олова, ртути).

Можно отметить два основных пути образования диоксинов и фуранов при термической переработке ТБО:

 первичное образование в процессе сжигания ТБО при температуре 300–600 º С;

 вторичное образование на стадии охлаждения дымовых газов, содержащих HCl , соединения меди (и железа) и углеродсодержащие частицы при температуре 250–450 º С (реакция гетерогенного оксихлорирования частиц углерода).

Температура начала распада диоксинов –700 º С, нижний температурный предел образования диоксинов –250–350 º С.

Для того, чтобы при сжигании на стадии газоочистки обеспечить снижение содержания диоксинов и фуранов до требуемых норм (0,1 нг/м 3) должны быть реализованы так называемые первичные мероприятия, в частности, «правило двух секунд» геометрия печи должна обеспечить продолжительность пребывания газов не менее 2 сек. в зоне печи с температурой не менее 850 º С (при концентрации кислорода не менее 6%).

Стремление к достижению при сжигании максимально высоких температур и созданию каких-либо дополнительных зон дожигания не решает полностью проблему снижения концентрации диоксинов в отходящих газах, так как не учитывает способности диоксинов в новому синтезу при снижении температуры.

Высокие температуры приводят к увеличению выхода летучих компонентов и росту выбросов опасных металлов.

Теоретически возможны два способа подавления образования диоксинов:

 связывание образующегося при сжигании ТБО HCl с помощью соды, извести или гидроксида калия;

 перевод в неактивную форму ионов меди и железа, например, связывание меди в комплексы с помощью аминов.

В зависимости от температуры процесса, все методы термической переработки ТБО, нашедшие промышленное применение или прошедшие опытную апробацию, можно разделить на две большие группы:

 процессы при температурах ниже температуры плавления шлака;

 процессы при температурах выше температуры плавления шлака.

Слоевое сжигание ТБО осуществляют на подвижных решетках (колосниковых и валковых) и во вращающихся барабанных печах.

3.1. Слоевое сжигание.

Сжигание на колосниковых решетках.

Все колосниковые решетки устанавливаются в топке, которая представляет собой камеру сгорания, куда подаются отходы и дутьевой воздух в качестве окислителя органических веществ.

Переталкивающие решетки как с прямой, так и с обратной подачей материала представляют собой систему, состоящую из подвижных и неподвижных колосников для перемещения и перемешивания отходов. Колосниковые решетки с прямой подачей (поступательно-переталкивающие решетки) имеют малый угол наклона (6–12,5 º) и переталкивают материал в сторону выгрузки шлака (в направлении перемещения материала). Колосниковые решетки с обратной подачей (обратно-переталкивающие решетки) имеют большой угол наклона (обычно 21–25 º) и переталкивают материал (нижний слой отходов) в сторону, противоположную выгрузке шлака и перемещению отходов. При этом часть горящего слоя отходов возвращается к началу решетки, что интенсифицирует процесс горения.

Сжигание на валковых решетках.

Слоевое сжигание ТБО на валковых решетках применяется в промышленной практике достаточно широко. При использовании топок с валковыми решетками, заимствованными из практики сжигания угля, материал перемещается с помощью вращающихся валков (барабанов).

Опыт эксплуатации заводов, на которых реализовано слоевое сжигание ТБО в топках с валковыми решетками, позволил выявить целый ряд недостатков:

 неудовлетворительная работа и отрицательное экологическое влияние вследствие плохой стабилизации процесса сжигания;

 часто не достигается оптимальная температура;

 большой выход недожога;

 плохое качество шлака;

 значительная потеря черных металлов;

 эксплуатационные осложнения при попадании в печь бордюрного камня и больших количеств металла;

 сложность организации эффективной газоочистки при нестабильном горении отходов и др.

Механическое внедрение европейского оборудования, предназначенного для прямого сжигания неподготовленных городских отходов в России недопустимо, так как в городах РФ практически отсутствует сбор отходов.

Сжигание в барабанных печах.

Барабанные вращающиеся печи для сжигания исходных (неподготовленных) ТБО применяют редко. Чаще всего эти печи используют для сжигания специальных, в том числе и больничных, отходов, а также жидких и пастообразных промышленных отходов, обладающих абразивным действием.

Барабанные печи устанавливаются с небольшим наклоном в направлении движения отходов. Скорость вращения печи от 0,05 до 2 об./мин. Со стороны загрузки подаются отходы, воздух и топливо. Шлак и зола выгружаются с противоположного конца печи. В первой части печи отходы подсушиваются до температуры 400 º С а затем происходит газификация и сжигание, обычно при температуре 900–1000 º С.

В практике мусоросжигания барабанные печи ранее часто использовали в качестве дожигательных барабанов после колосниковых решеток.

Практика применения барабанных печей в качестве дожигательных барабанов на мусоросжигательных заводах считается устаревшей и подобная технология не закладывается в проекты новых заводов.

3.2. Сжигание в кипящем слое.

Сжигание в кипящем слое осуществляется за счет создания двухфазной псевдогомогенной системы «твердое-газ» за счет превращения слоя отходов в «псевдожидкость» под действием восходящего потока газа, достаточного для поддержания твердых частиц во взвешенном состоянии.

Слой напоминает кипящую жидкость, и его поведение подчиняется законам гидростатики.

Считается, что сжигание в кипящем слое по эколого-экономическим параметрам в ряде случаев превосходит традиционное слоевое сжигание.

Печи для сжигания ТБО в кипящем слое обеспечивают наилучший режим теплопередачи и перемешивания обрабатываемого материала и по этим характеристикам превосходят котлоагрегаты с переталкивающими решетками. Кроме того, аппараты кипящего слоя не имеют движущихся частей или механизмов. Однако необходимость обеспечения режима псевдоожижения обрабатываемого материала накладывает ограничение на его гранулометрический и морфологический состав, а также на теплотворную способность. В ряде случаев процесс сжигания в кипящем слое, особенно в циркулирующем кипящем слое, оказывается более дорогим, чем слоевое сжигание.

Производительность печей для сжигания ТБО в кипящем слое составляет от 3 до 25 т/час. Преобладающая температура сжигания 850–920 º С.

В связи с тем, что температура сжигания ТБО в кипящем слое на 50–100 º С ниже по сравнению со слоевым сжиганием, заметно снижается возможность образования оксидов азота за счет окисления азота воздуха, в результате чего снижаются выбросы NO с отходящими газами.

Роль теплоносителя в системах кипящего слоя обычно выполняет тонкозернистый песок , поверхность частиц которого создает большую по сравнению с традиционным колосниковым сжиганием поверхность нагрева.

После разогревания песка с помощью запальной горелки до температуры 750–800 º С начинают подачу отходов в кипящий слой, где они смешиваются с песком и в процессе движения истираются.

В результате хорошей теплопроводности песка отходы начинают быстро и равномерно гореть. Выделяющееся при этом тепло обеспечивает поддержание песка в горячем состоянии, что позволяет работать в автогенном режиме без подвода дополнительного топлива для поддержания режима горения.

3.3. Сжигание при температурах выше температуры плавления шлака.

Основными недостатками традиционных методов термической переработки ТБО являются большой объем отходящих газов (5000–6000 м 3 на 1 т отходов) и образование значительных количеств шлаков (около 25% по массе или менее 10% по объему). Кроме того, шлаки имеют повышенное содержание тяжелых металлов и по этой причине находят лишь ограниченное применение, в основном, в качестве пересыпного материала на свалках.

Для получения расплава шлака непосредственно в процессе термической переработки ТБО необходимо обеспечить температуру в аппарате выше температуры плавления шлаков (около 1300 º С). Это, как правило, требует либо использования кислорода, либо подвода дополнительной энергии. Замена части дутьевого воздуха на кислород одновременно обеспечивает снижение количества отходящих газов.

Наиболее очевидным способом повышения температуры сгорания отходов является уменьшение содержания в используемом окислителе (воздухе) доли инертного компонента (азота), на нагрев которого расходуется значительная часть выделяющейся энергии.

Вторым значительным преимуществом сжигания в кислороде является резкое сокращение объема дымовых газов и следовательно, снижение затрат на газоочистку. Кроме этого, сниженная концентрация азота в дутьевом воздухе позволяет уменьшить количество образующихся при высоких температурах оксидов азота, очистка от которых представляет собой серьезную проблему.

В начале 90-х годов для термической переработки ТБО при температуре 1350–1400 º С предложены металлургические печи Ванюкова. Сжигание осуществляется в кипящем слое барботируемого шлакового расплава, который образуется из загружаемых в печь золошлаковых отходов ТЭЦ.

Механический перенос этого процесса для широкомасштабной термической переработки ТБО не может быть осуществлен из-за:

 того, что КПД печи Ванюкова из-за высокой температуры отводимых газов (1400–1600 º С) очень низок;

 того, что в переработку поступает преимущественно органическое сырье, т.к. ТБО на 70–80% состоят из органических компонентов. При нагревании минеральные вещества переходят в жидкую фазу, а органические в газообразную,

 отсутствия широкомасштабных испытаний процесса применительно к ТБО, что не позволяет отработать: узлы загрузки и разгрузки; автоматизацию процесса с учетом колебаний состава сырья, состава и объема отходящих газов и др.; автогенность процесса применительно к термообработке отходов как гетерогенной смеси многих компонентов, отличающихся составом, крупностью и теплотворной способностью. Следует заметить, что колебания состава ТБО несопоставимы с колебаниями состава порошкообразных концентратов, направляемых для плавки в печи Ванюкова. Тщательное усреднение колебаний состава концентратов позволяет добиться колебаний в пределах 0,5%, в то время как исходные ТБО усреднению практически не поддаются;

 высокой стоимость процесса и оборудования.

Таким образом, наиболее целесообразно использовать сжигание при температурах выше температуры плавления шлака для переработки не исходных ТБО, а для обезвреживания шлаков или их обогащенных фракций, образовавшихся в термических процессах переработки ТБО при температурах ниже температуры плавления шлака. Выход шлаков в этих процессах составляет 10–25% от исходных ТБО, что резко снижает потребную производительность печей и позволяет периодически вовлекать шлак в переработку.

Наиболее распространённым методом утилизации ТБО является сжигание с последующим захоронением образующейся золы на специальном полигоне. Существует довольно много технологий сжигания мусора - камерное, слоевое, в кипящем слое. Мусор может сжигаться в смеси с природным топливом.

Термическая переработка: процесс, преимущества и недостатки

Метод сжигания (или в общем виде термические методы обезвреживания ТБО) имеет как несомненные достоинства (можно использовать теплоту сгорания ТБО для получения электроэнергии и отопления зданий, надёжное обезвреживание отходов), так и существенные недостатки. Необходима хорошая система очистки топочных газов, так как при сжигании ТБО в атмосферу выделяются хлористый и фтористый водород, сернистый газ, оксиды азота, а также металлы и их соединения (Zn, Cd, Pb, Hg и т. д. в основном в виде аэрозолей) и, что особенно важно, в процессе горения отходов образуются диоксины, дифенилы, присутствие которых в отходящих газах значительно осложняет их очистку из-за малой концентрации этих высокотоксичных соединений.

Разновидностью процесса сжигания является пиролиз – термическое разложение ТБО без доступа воздуха. Применение пиролиза позволяет уменьшить воздействие ТБО на окружающую среду и получать такие полезные продукты, как горючий газ, масло, смолы и твёрдый остаток (пирокарбон).

Широко рекламируется процесс высокотемпературной переработки бытовых и промышленных отходов в барботируемом шлаковом расплаве (рис.1). Основным агрегатом технологической схемы является барботажная печь, конструкция которой разработана в содружестве со специалистами института Стальпроекта (Москва).

Печь проста и имеет небольшие габариты, высокую производительность и высокую эксплуатационную надёжность.

Процесс осуществляется следующим образом. Бытовые отходы подают в загрузочное устройство периодически. Толкатель сбрасывает их в шлаковую ванну, продуваемую воздухом, обогащенным кислородом. В ванне отходы быстро погружаются в интенсивно перешиваемый вспененный расплав. Температура шлака составляет 1400 – 1500 °С. За счёт интенсивной теплопередачи отходы подвергаются скоростному пиролизу и газифицируются. Минеральная их часть растворяется в шлаке, а металлические предметы расплавляются, и жидкий металл опускается на подину. При низкой калорийности отходов для стабилизации теплового режима в качестве дополнительного топлива в печь подают в небольших количествах энергетический уголь. Вместо угля может быть использован природный газ. Для получения шлака заданного состава загружают флюс.

Шлак выпускается из печи через сифон непрерывно или периодически и подаётся на переработку. Химический состав шлака можно регулировать в широких пределах, получая композиции, подходящие для производства различных строительных материалов – каменного литья, щебня, наполнителей для бетонов, минерального волокна, цемента.

Металл через переток поступает в сифон и непрерывно или порциями сливается в ковш и далее передаётся на переработку или непосредственно у печи разливается в чушки, либо гранулируется. Горючие газы – продукты пиролиза и газификации отходов и угля, выделяющиеся из ванны, – дожигают над ванной путём подачи воздуха, обогащенного кислородом, или чистого кислорода.

Печные высокотемпературные (1400 – 1600 °С) газы отсасываются дымососом в паровой котёл для охлаждения и полезного использования их энергии. В котле осуществляется полное дожигание газов. Затем охлаждённые газы направляются в систему очистки. Перед сбросом их в атмосферу производится их очистка от пыли и вредных примесей. Высокие температуры процесса, рациональная схема сжигания, заключающиеся в сочетании окислительно-восстановительного потенциала газовой фазы и температурного режима, обуславливают низкое содержание оксидов азота (NOx) и других примесей в дымовых газах.

Дымовые газы благодаря высокотемпературному сжиганию содержат значительно меньше органических соединений, в частности диоксинов.

Перевод в условиях процесса щелочных и щелочноземельных металлов в парогазовую фазу способствует связыванию хлора, фтора и оксидов серы в безопасные соединения, улавливаемые при газоочистке в виде твёрдых частиц пыли. Замена воздуха кислородом позволяет в 2 – 4 раза снизить объём дымовых газов, облегчить их очистку и уменьшить сброс токсичных веществ в атмосферу. Вместо большого количества зольного остатка (до 25 % при обычном сжигании), содержащего тяжёлые цветные металлы и диоксины, образуется инертный шлак, являющийся сырьём для производства строительных материалов. Пыль, выносимая из печи с дымовыми газами, селективно улавливается на разных ступенях очистки. Количество пыли в 2 – 4 раза меньше, чем при использовании традиционных печей. Крупная пыль (до 60 %) возвращается в печь, мелкая, представляющая собой концентрат тяжёлых цветных металлов (Zn, Pb Cd, Sn и др.), пригодна для дальнейшего использования.

Современные методы термической переработки твёрдых бытовых отходов

Институтом «Гинцветмет» совместно с другими российскими организациями разработана технология термической переработки ТБО в барботируемом расплаве шлака. Основным её достоинством является решение актуальной общемировой диоксиновой проблемы: уже на выходе из барботажного агрегата практически отсутствуют высокотоксичные соединения (диоксины, фураны, полиароматические углеводороды). Вместе с тем сейчас имеется ряд отечественных и зарубежных методов термической переработки ТБО, находящихся на разных стадиях освоения. В таблице приведены основные показатели термических методов переработки ТБО, наиболее известных экологам и специалистам по утилизации таких отходов. Эти методы или уже получили промышленное распространение или прошли крупномасштабную апробацию. Суть используемых процессов:

  • процесс КР – сжигание ТБО в печи с колосниковыми решетками (КР) или котлоагрегате на колосниковых решётках разных конструкций;
  • процесс КС – сжигание отходов в кипящем слое (КС) инертного материала (обычно песок определённой крупности);
  • процесс «Пироксэл» – электрометаллургический, включающий сушку, пиролиз (сжигание) отходов, обработку минерального остатка сжигания в шлаковом расплаве, а также пылегазоочистку дымовых газов;
  • процесс в агрегате типа печи Ванюкова (ПВ) – плавка в барботируемом расплаве;
  • процесс, разработанный в Институте химической физики РАН - сжигание – газификация отходов в плотном слое кускового материала без его принудительного перемешивания и перемещения;
  • процесс «Thermoselect» – комбинированный, включающий стадии уплотнения отходов, пиролиз и высокотемпературную газификацию (с получением синтез-газа, инертных и некоторых минеральных продуктов и металлов);
  • процесс «Siemens» - пиролиз – сжигание пирогаза и отсепарированного углеродистого остатка с использованием необогащённого кислородом дутья.

Сжигание ТБО в печах-котлоагрегатах (процесс КР) ввиду сравнительно низких температур (600 – 900 °С) практически не решает диоксиновой проблемы. Кроме того, при этом образуются вторичные (твёрдые несгоревшие) шлаки и пыли, которые требуют отдельной переработки или направляются на захоронение с последующими негативными последствиями для окружающей среды. Эти недостатки в определённой мере присущи и процессу КС. Здесь добавляется необходимость подготовки сырья к переработке с целью соблюдения гранулометрического состава.

К недостаткам процесса, разработанного Институтом химической физики РАН, относятся:

  • необходимость сортировки и дробления отходов до определённых размеров; добавка и последующая сепарация теплоносителя заданного гранулометрического состава;
  • потребность в разработке дорогостоящей системы очистки дымовых газов – синтез-газа, представляющего собой смесь моноокиси углерода и водорода.

Процесс плавки ТБО в барботируемом расплаве (в печи ПВ) следует отметить (помимо диоксиновой безопасности) ещё два преимущества: сравнительно высокую удельную производительность и низкий пылевынос. Эти показатели обусловлены барботажным эффектом (интенсивной продувкой газами ванны расплава и брызго-насыщенностью рабочего пространства печи над ванной). Немаловажный положительный фактор – наличие промышленного опыта их эксплуатации на предприятиях цветной металлургии в России и Казахстане. В целом можно констатировать, что последняя отечественная разработка превосходит по основным показателям другие отечественные и зарубежные технологии переработки ТБО и является определённым научно-техническим прорывом в решении мировой экологической проблемы.

В настоящее время одним из авторов под руководством руководителя дипломного проекта разрабатывается проект полигона ТБО для ст. Архонской РСО-Алания, где остро стоит вопрос о неудовлетворительном обращении с твердыми бытовыми отходами. При разработке указанного проекта будут учтены изложенные пути решения обращения с ТБО и в первую очередь предварительная сортировка этих отходов и извлечение полимерных и иных отходов для дальнейшей переработки.

Биотермическая переработка ТБО: Аэробная ферментация

Из биотермических методов в практике наибольшее распространение получила аэробная ферментация, которую часто называют компостированием (по названию конечного продукта ферментации - компоста, используемого в сельском хозяйстве).

Ферментация - это биохимический процесс разложения органической части отходов микроорганизмами. В биохимических реакциях взаимодействуют органический материал, кислород и бактерии (сапрофитные аэробные микроорганизмы, присутствующие в ТБО в достаточных количествах), а выделяются диоксид углерода, вода и тепло (материал саморазогревается до 60-70°С). Процесс сопровождается синтезом гумуса. Размножение микроорганизмов-деструкторов отходов возможно при определенном соотношении углерода и азота.

Наилучший контакт между органическим веществом и микроорганизмами обеспечивается при перемешивании материала, в результате саморазогрева которого в процессе ферментации происходит уничтожение большинства болезнетворных микроорганизмов, яиц гельминтов, личинок мух.

По результатам исследований английских специалистов, на начальной стадии ферментации происходит минерализация смеси, о чем свидетельствует уменьшение общего содержания углерода органического вещества и гуминовых кислот. Образующаяся биомасса обладает высокой степенью полимеризации и характеризуется значительной (по сравнению с почвой) концентрацией азота. В процессе ферментации уменьшается содержание в биомассе фенольных групп и увеличивается содержание групп НООС и С=0.

В итоге законченного процесса ферментации масса биоразлагаемого материала уменьшается вдвое и получается твердый стабилизированный продукт.

Компостирование после утилизации ТБО в мировой практике развивалось как альтернатива сжиганию. Экологической задачей компостирования можно считать возвращение части отходов в круговорот природы.

Наиболее интенсивно компостирование ТБО развивалось с конца 60-х до начала 80-х годов преимущественно в странах Западной Европы (Италия, Франция, Нидерланды). В Германии пик строительства заводов пришелся на вторую половину 80-х годов (в 1985 г. в компост перерабатывали 3% ТБО, в 1988 г. - около 5%). Интерес к компостированию вновь повысился в середине 90-х годов на основе вовлечения в переработку не ТБО, а селективно собранных пищевых и растительных отходов, а также отходов садово-паркового комплекса (термическая переработка этих отходов затруднена из-за большой влажности, а захоронение связано с неконтролируемым образованием фильтрата и биогаза). В европейской практике к 2000 г. с применением аэробной ферментации ежегодно перерабатывали около 4,5 млн. т отходов более чем на 100 заводах (из них в 1992-95 гг. построено 60 заводов).

В странах СНГ прямое компостирование исходных ТБО применяют на девяти заводах: в Санкт-Петербурге (первый завод в бывшем СССР, построен в 1971 г.; в конце 1994 г. в Санкт-Петербурге введен в строй второй завод), Нижнем Новгороде, Минске и Могилеве, Ташкенте, Алма-Ате, Тбилиси и Баку (все заводы запроектированы институтом «Гипрокоммунстрой», Могилевский - институтом «Белкоммунпроект»), В 1998 г. вошел в строй завод в Тольятти, на котором реализована предварительная, но малоэффективная сортировка ТБО.

Следует отметить, что из-за гетерогенного состава отходов прямое компостирование ТБО нецелесообразно, поскольку получаемый компост загрязняется стеклом и тяжелыми металлами (последние, как отмечено, содержатся в опасных бытовых отходах - отработанных гальванических элементах, люминесцентных лампах).

На первых механизированных промышленных установках ТБО наиболее часто компостировали в штабелях, периодически подвергая материал ворошению.

В настоящее время в промышленности наиболее распространены три метода аэробной ферментации:

  • ферментация (компостирование) в биобарабанах;
  • туннельное компостирование (ферментация);
  • ферментация (компостирование) в бассейне выдержки.

В СНГ с 1971 г. практикуется исключительно компостирование в биобарабанах (в режиме загрузки-разгрузки материала частота вращения биобарабана составляет 1,5 мин1, остальное время 0,2 мин1). В России (завод в г. Тольятти) на базе цементных печей выпускаются биобарабаны двух типоразмеров - длиной 36 и 60 м; диаметр биобарабанов - 4 м.

Природные ресурсы, которые потребляет человечество, можно условно разделить на две части: возобновляемые и невозобновляемые. К возобновляемым ресурсам относятся все те ресурсы, которые можно восстановить с помощью фотосинтеза в обозримый отрезок времени. Речь идёт в первую очередь о всех видах растительности и тех ресурсах, которые можно из неё получить. К невозобновляемым относятся полезные ископаемые, которые в обозримое геологическое время уже не восстановятся.

Используемые человечеством технологии ориентированы в первую очередь на использование невозобновляемых природных ресурсов. Это нефть, уголь, руды и т.п. При этом их использование технологически влечёт за собой нарушения в окружающем мире: уменьшается плодородие почв и количество пресной воды, загрязняется атмосфера и т.п.

Сегодня, используя сложившиеся технологии, человечество имеет разнообразнейшую структуру всевозможных отходов бытового и промышленного происхождения. Эти отходы, постепенно накапливаясь, превратились в настоящее бедствие. Правительства развитых стран начинают все большее внимание уделять вопросам охраны окружающей среды и поощряют создание соответствующих технологий. Развиваются системы очистки территорий от мусора и технологии его сжигания. Однако есть достаточно много причин считать, что технологии сжигания мусора являются тупиковыми. Уже в настоящее время затраты на сжигание 1 кг мусора составляют 65 центов. Если не перейти на другие технологии ликвидации отходов, то затраты будут расти. При этом следует иметь в виду, что необходимы такие новые технологии, которые со временем могли бы обеспечить, с одной стороны, потребительские запросы населения, а с другой стороны, сохранность окружающей среды.

В настоящее время такие технологии уже появились. Появилась принципиальная возможность не только существенно снизить затраты на ликвидацию отходов, но и получить при этом экономический эффект.

Недостатком технологий термического фракционирования является необходимость предварительно классифицировать отходы по видам мусора, что требует внедрения на государственном уровне технологий по сбору мусора. В этой области уже есть положительные примеры. Например, Австрия. Но для большинства стран такие технологии ещё необходимо создавать.

Поэтому очень большой интерес представляют технологии переработки мусора (городских свалок и т.п.) с получением при этом полезных продуктов и положительного экономического эффекта.

Помимо серьезного загрязнения воздуха, технологии утилизации отходов при помощи сжигания, по утверждению экологических организаций, "сжигают не только мусор, но и реальные деньги". Альтернативой этому методу является переработка мусора, с его последующей сортировкой на составляющие. Технология, применяемая на ЗАО "Белэкоком", белгородском предприятии по переработке отходов, отвечает всем нормативным показателям экологического контроля, применяемым к подобным заводам. Здесь отсутствуют процессы химической и термической переработки мусора, что существенно повышает экологическую безопасность. А спрессованные отходы реализуются на рынке переработанных материалов.

По оценкам специалистов, более 60% городских отходов - это потенциальное вторичное сырье, которое можно переработать и с выгодой реализовать. Еще около 30% - это органические отходы, которые можно превратить в компост.

Проблема полного уничтожения или частичной утилизации твердых бытовых отходов (ТБО) — бытового мусора — актуальна, прежде всего, с точки зрения отрицательного воздействия на окружающую среду. Твердые бытовые отходы - это богатый источник вторичных ресурсов (в том числе черных, цветных, редких и рассеянных металлов), а также "бесплатный" энергоноситель, так как бытовой мусор - возобновляемое углеродсодержащее энергетическое сырье для топливной энергетики. Однако для любого города и населенного пункта проблема удаления или обезвреживания твердых бытовых отходов всегда является в первую очередь проблемой экологической. Весьма важно, чтобы процессы утилизации бытовых отходов не нарушали экологическую безопасность города, нормальное функционирование городского хозяйства с точки зрения общественной санитарии и гигиены, а также условия жизни населения в целом. Как известно, подавляющая масса ТБО в мире пока складируется на мусорных свалках, стихийных или специально организованных в виде "мусорных полигонов". Однако это самый неэффективный способ борьбы с ТБО, так как мусорные свалки, занимающие огромные территории часто плодородных земель и характеризующиеся высокой концентрацией углеродсодержащих материалов (бумага, полиэтилен, пластик, дерево, резина), часто горят, загрязняя окружающую среду отходящими газами. Кроме того, мусорные свалки являются источником загрязнения как поверхностных, так и подземных вод за счет дренажа свалок атмосферными осадками. Зарубежный опыт показывает, что рациональная организация переработки ТБО дает возможность использовать до 90% продуктов утилизации в строительной индустрии, например в качестве заполнителя бетона.

По данным специализированных фирм, осуществляющих в настоящее время даже малоперспективные технологии прямого сжигания твердых бытовых отходов, реализация термических методов при сжигании 1000 кг ТБО позволит получить тепловую энергию, эквивалентную сжиганию 250 кг мазута. Однако реальная экономия будет еще больше, поскольку не учитывают сам факт сохранения первичного сырья и затраты на добычу его, т. е. нефти и получения из нее мазута. Кроме того, в развитых странах существует законодательное ограничение на содержание в 1 м3 выбрасываемого в атмосферу дымового газа не более 0,1х10-9 г двуокиси азота и фуранов при сжигании отходов. Эти ограничения диктуют необходимость поисков технологических путей обеззараживания ТБО с наименьшим отрицательным влиянием на окружающую среду, особенно мусорных свалок. Следовательно, присутствие бытового мусора в открытых свалках крайне отрицательно влияет на окружающую среду и как следствие — на человека.

В настоящее время существует ряд способов хранения и переработки твердых бытовых отходов, а именно: предварительная сортировка, санитарная земляная засыпка, сжигание, биотермическое компостирование, низкотемпературный пиролиз, высокотемпературный пиролиз.

Предварительная сортировка.

Этот технологический процесс предусматривает разделение твердых бытовых отходов на фракции на мусороперерабатывающих заводах вручную или с помощью автоматизированных конвейеров. Сюда входит процесс уменьшения размеров мусорных компонентов путем их измельчения и просеивания, а также извлечение более или менее крупных металлических предметов, например консервных банок. Отбор их как наиболее ценного вторичного сырья предшествует дальнейшей утилизации ТБО (например, сжиганию). Поскольку сортировка ТБО — одна из составных частей утилизации мусора, то имеются специальные заводы для решения этой задачи, т. е. выделения из мусора фракций различных веществ: металлов, пластмасс, стекла, костей, бумаги и других материалов с целью дальнейшей их раздельной переработки.

Санитарная земляная засыпка.

Такой технологический подход к обезвреживанию твердых бытовых отходов связан с получением биогаза и последующим использованием его в качестве топлива. С этой целью бытовой мусор засыпают по определенной технологии слоем грунта толщиной 0,6-0,8 м в уплотненном виде. Биогазовые полигоны снабжены вентиляционными трубами, газодувками и емкостями для сбора биогаза. Наличие в толщах мусора на свалках пористости и органических компонентов создаст предпосылки для активного развития микробиологических процессов. Толщу свалки условно можно разделить на несколько зон (аэробную, переходную и анаэробную), различающихся характером микробиологических процессов. В самом верхнем слое, аэробном (до 1—1,5 м), бытовой мусор благодаря микробному окислению постепенно минерализуется до двуокиси углерода, воды, нитратов, сульфатов и ряда других простых соединений. В переходной зоне происходит восстановление нитратов и нитритов до газообразного азота и его оксидов, т. е. процесс денитрификации. Наибольший объем занимает нижняя анаэробная зона, в которой интенсивные микробиологические процессы протекают при малом (ниже 2%) содержании кислорода. В этих условиях образуются самые различные газы и летучие органические вещества. Однако центральным процессом этой зоны является образование метана. Постоянно поддерживающаяся здесь температура (30-40° С) становится оптимальной для развития метанообразующих бактерий. Таким образом, свалки представляют собой наиболее крупные системы по производству биогаза из всех современных. Можно предположить, что и в перспективе роль мусорных свалок заметно не уменьшится, поэтому извлечение биогаза из них с целью его полезного использования будет оставаться актуальным. Однако возможно и существенное сокращение мусорных свалок за счет максимально возможного вторичного использования бытовых отходов путем селективного сбора составляющих его компонентов - макулатуры, стекла, металлов и т. д.

Сжигание.

Это широко распространенный способ уничтожения твердых бытовых отходов, который широко применяется с конца XIX в. Сложность непосредственной утилизации ТБО обусловлена, с одной стороны, их исключительной многокомпонентностью, с другой — повышенными санитарными требованиями к процессу их переработки. В связи с этим сжигание до сих пор остается наиболее распространенным способом первичной обработки бытовых отходов. Сжигание бытового мусора, помимо снижения объема и массы, позволяет получать дополнительные энергетические ресурсы, которые могут быть использованы для централизованного отопления и производства электроэнергии. К числу недостатков этого способа относится выделение в атмосферу вредных веществ, а также уничтожение ценных органических и других компонентов, содержащихся в составе бытового мусора. Сжигание можно разделить на два вида: непосредственное сжигание, при котором получается только тепло и энергия, и пиролиз, при котором образуется жидкое и газообразное топливо. В настоящее время уровень сжигания бытовых отходов в отдельных странах различен. Так, из общих объемов бытового мусора доля сжигания колеблется в таких странах, как Австрия, Италия, Франция, Германия, от 20 до 40%; Бельгия, Швеция — 48-50%; Япония — 70%; Дания, Швейцария 80%; Англия и США — 10%. В России сжиганию подвергаются пока лишь около 2% бытового мусора, а в Москве — около 10%. Для повышения экологической безопасности необходимым условием при сжигании мусора является соблюдение ряда принципов. К основным из них относятся температура сжигания, которая зависит от вида сжигаемых веществ; продолжительность высокотемпературного сжигания, зависящая также от вида сжигаемых отходов; создание турбулентных воздушных потоков для полноты сжигания отходов. Различие отходов по источникам образования и физико-химическим свойствам предопределяет многообразие технических средств и оборудования для сжигания. В последние годы ведутся исследования по совершенствованию процессов сжигания, что связано с изменением состава бытовых отходов, ужесточением экологических норм. К модернизированным способам сжигания отходов можно отнести замену воздуха, подаваемого к месту сжигания отходов для ускорения процесса, на кислород. Это позволяет снизить объем горючих отходов, изменить их состав, получить стеклообразный шлак и полностью исключить фильтрационную пыль, подлежащую подземному складированию. Сюда же относится и способ сжигания мусора в псевдосжиженном слое. При этом достигается высокая полнота сгорания при минимуме вредных веществ. По зарубежным данным, сжигание мусора целесообразно применять в городах с населением не менее 15 тыс. жителей при производительности печи около 100 т/сут. Из каждой тонны отходов можно выработать около 300-400 кВт-ч электроэнергии. В настоящее время топливо из бытовых отходов получают в измельченном состоянии, в виде гранул и брикетов. Предпочтение отдается гранулированному топливу, так как сжигание измельченного топлива сопровождается большим пылевыносом, а использование брикетов создает трудности при загрузке в печь и поддержании устойчивого горения. Кроме того, при сжигании гранулированного топлива намного выше КПД котла. Мусоросжигание обеспечивает минимальное содержание в шлаке и золе разлагающихся веществ, однако оно является источником выбросов в атмосферу. Мусоросжигательными заводами (МСЗ) выбрасываются в газообразном виде хлористый и фтористый водород, сернистый газ, а также твердые частицы различных металлов: свинца, цинка, железа, марганца, сурьмы, кобальта, меди, никеля, серебра, кадмия, хрома, олова, ртути и др. Установлено, что содержание кадмия, свинца, цинка и олова в копоти и пыли, выделяющихся при сжигании твердых горючих отходов, изменяется пропорционально содержанию в мусоре пластмассовых отходов. Выбросы ртути обусловлены присутствием в отходах термометров, сухих гальванических элементов и люминесцентных ламп. Наибольшее количество кадмия содержится в синтетических материалах, а также в стекле, коже, резине. Исследованиями США выявлено, что при прямом сжигании твердых бытовых отходов большая часть сурьмы, кобальта, ртути, никеля и некоторых других металлов поступает в отходящие газы из негорючих компонентов, т. е. удаление негорючей фракции из бытовых отходов понижает концентрацию в атмосфере этих металлов. Источниками загрязнения атмосферы кадмием, хромом, свинцом, марганцем, оловом, цинком являются в равной степени как горючая, так и негорючая фракции твердых бытовых отходов. Существенное уменьшение загрязнения атмосферного воздуха кадмием и медью возможно за счет отделения из горючей фракции полимерных материалов.

Таким образом, можно констатировать, что главным направлением в сокращении выделения вредных веществ в окружающую среду является сортировка или раздельный сбор бытовых отходов. В последнее время все более распространяется метод совместного сжигания твердых бытовых отходов и шламов сточных вод. Этим достигается отсутствие неприятного запаха, использование тепла от сжигания отходов для сушки осадков сточных вод. Надо отметить, что технология ТБО развивалась в период, когда не были еще ужесточены нормы выброса газовой составляющей. Однако сейчас стоимость газоочистки на мусоросжигательных заводах резко возросла. Все мусоросжигательные предприятия являются убыточными. В этой связи разрабатываются такие способы переработки бытовых отходов, которые позволили бы утилизировать и вторично использовать ценные компоненты, содержащиеся в них.

Биотермическое компостирование. Этот способ утилизации твердых бытовых отходов основан на естественных, но ускоренных реакциях трансформации мусора при доступе кислорода в виде горячего воздуха при температуре порядка 60°С. Биомасса ТБО в результате данных реакций в биотермической установке (барабане) превращается в компост. Однако для реализации этой технологической схемы исходный мусор должен быть очищен от крупногабаритных предметов, а также металлов, стекла, керамики, пластмассы, резины. Полученная фракция мусора загружается в биотермические барабаны, где выдерживается в течение 2 сут. с целью получения товарного продукта. После этого компостируемый мусор вновь очищается от черных и цветных металлов, доизмельчается и затем складируется для дальнейшего использования в качестве компоста в сельском хозяйстве или биотоплива в топливной энергетике. Биотермическое компостирование обычно проводится на заводах по механической переработке бытовых отходов и является составной частью технологической цепи этих заводов. Однако современные технологии компостирования не дают возможности освободиться от солей тяжелых металлов, поэтому компост из ТБО фактически малопригоден для использования в сельском хозяйстве. Кроме того, большинство таких заводов убыточны. Поэтому предпринимаются разработки концепций получения синтетического газообразного и жидкого топлива для автотранспорта из продуктов компостирования, выделенных на мусороперерабатывающих заводах. Например, предполагается реализовать получаемый компост в качестве полуфабриката для дальнейшей его переработки в газ.

Способ утилизации бытовых отходов пиролизом известен достаточно мало, особенно в нашей стране, из-за своей дороговизны. Он может стать дешевым и не отравляющим окружающую среду приемом обеззараживания отходов. Технология пиролиза заключается в необратимом химическом изменении мусора под действием температуры без доступа кислорода. По степени температурного воздействия на вещество мусора пиролиз как процесс условно разделяется на низкотемпературный (до 900°С) и высокотемпературный (свыше 900° С).

Низкотемпературный пиролиз - это процесс, при котором размельченный материал мусора подвергается термическому разложению. При этом процесс пиролиза бытовых отходов имеет несколько вариантов: пиролиз органической части отходов под действием температуры в отсутствии воздуха; пиролиз в присутствии воздуха, обеспечивающего неполное сгорание отходов при температуре 760°С; пиролиз с использованием кислорода вместо воздуха для получения более высокой теплоты сгорания газа; пиролиз без разделения отходов на органическую и неорганическую фракции при температуре 850°С и др. Повышение температуры приводит к увеличению выхода газа и уменьшению выхода жидких и твердых продуктов. Преимущество пиролиза по сравнению с непосредственным сжиганием отходов заключается, прежде всего, в его эффективности с точки зрения предотвращения загрязнения окружающей среды. С помощью пиролиза можно перерабатывать составляющие отходов, неподдающиеся утилизации, такие как автопокрышки, пластмассы, отработанные масла, отстойные вещества. После пиролиза не остается биологически активных веществ, поэтому подземное складирование пиролизных отходов не наносит вреда природной среде. Образующийся пепел имеет высокую плотность, что резко уменьшает объем отходов, подвергающийся подземному складированию. При пиролизе не происходит восстановления (выплавки) тяжелых металлов. К преимуществам пиролиза относятся и легкость хранения и транспортировки получаемых продуктов, а, также то, что оборудование имеет небольшую мощность. В целом процесс требует меньших капитальных вложений. Установки или заводы по переработке твердых бытовых отходов способом пиролиза функционируют в Дании, США, ФРГ, Японии и других странах. Активизация научных исследований и практических разработок в этой области началась в 70-х годах ХХ столетия, в период "нефтяного бума". С этого времени получение из пластмассовых, резиновых и прочих горючих отходов энергии и тепла путем пиролиза стало рассматриваться как один из источников выработки энергетических ресурсов. Особенно большое значение придают этому процессу в Японии.

Высокотемпературный пиролиз. Этот способ утилизации ТБО, по существу, есть не что иное, как газификация мусора. Технологическая схема этого способа предполагает получение из биологической составляющей (биомассы) отходов вторичного синтез-газа с целью использования его для получения пара, горячей воды, электроэнергии. Составной частью процесса высокотемпературного пиролиза являются твердые продукты в виде шлака, т. е. непиролизуемые остатки. Технологическая цепь этого способа утилизации состоит из четырех последовательных этапов: отбор из мусора крупногабаритных предметов, цветных и черных металлов с помощью электромагнита и путем индукционного сепарирования; переработка подготовленных отходов в газофикаторе для получения синтез-газа и побочных химических соединений — хлора, азота, фтора, а также шкала при расплавлении металлов, стекла, керамики; очистка синтез-газа с целью повышения его экологических свойств и энергоемкости, охлаждение и поступление его в скруббер для очистки щелочным раствором от загрязняющих веществ соединений хлора, фтора, серы, цианидов; сжигание очищенного синтез-газа в котлах-утилизаторах для получения пара, горячей воды или электроэнергии. Научно-производственной фирмой "Термоэкология" акционерного общества "ВНИИЭТО" (г. Москва) предложена комбинированная технология переработки шлаковых и зольных отвалов ТЭЦ с добавлением части ТБО. Этот метод высокотемпературного пиролиза переработки отходов основан на комбинации процессов в цепи: сушка—пиролиз—сжигание электрошлаковая обработка. В качестве основного агрегата предполагается использовать рудно-термическую электропечь в герметичном варианте, в которой будут расплавляться подаваемые шлак и зола, выжигаться из них углеродные остатки, а металлические включения осаживаться. Электропечь должна иметь раздельный выпуск металла, который в дальнейшем перерабатывается, и шлака, из которого предполагается изготовлять строительные блоки или гранулировать с последующим использованием в строительной индустрии. Параллельно в электропечь будут подаваться ТБО, где они газифицируются под действием высокой температуры расплавленного шлака. Количество воздуха, подаваемого в расплавленный шлак, должно быть достаточным для окисления углеродного сырья и ТБО. Научно-производственным предприятием "Сибэкотерм" (г. Новосибирск) разработана экологически чистая технология высокотемпературной (плазменной) переработки ТБО. Технологическая схема этого производства не предъявляет жестких требований к влажности исходного сырья — бытовых отходов в процессе предварительной подготовки, морфологическому и химическому составам и агрегатному состоянию. Конструкция аппаратуры и технологическое обеспечение позволяет получить вторичную энергию в виде горячей воды или перегретого водяного пара с подачей их потребителю, а также вторичной продукции в виде керамической плитки или гранулированного шлака и металла. По существу, это и есть вариант комплексной переработки ТБО, их полной экологически чистой утилизации с получением полезных продуктов и тепловой энергии из "бросового" сырья — бытового мусора.

Высокотемпературный пиролиз является одним из самых перспективных направлений переработки твердых бытовых отходов с точки зрения как экологической безопасности, так и получения вторичных полезных продуктов синтез-газа, шлака, металлов и других материалов, которые могут найти широкое применение в народном хозяйстве. Высокотемпературная газификация дает возможность экономически выгодно, экологически чисто и технически относительно просто перерабатывать твердые бытовые отходы без их предварительной подготовки, т. е. сортировки, сушки и т. д.

Традиционные свалки непереработанных муниципальных отходов не только портят ландшафт, но и представляют потенциальную угрозу здоровью людей. Загрязнение происходит не только в непосредственной близости от свалок, в случае заражения грунтовых вод загрязненной может оказаться огромная территория.

Основная задача, стоящая перед системами переработки ТБО - это наиболее полно утилизировать отходы, образующиеся на некоторой территории. При подборе технологий для реализуемых проектов нужно руководствоваться двумя важными требованиями: обеспечить минимум или полное отсутствие выбросов и произвести максимум ценных конечных продуктов, для реализации их на рынке. Наиболее полно эти задачи могут быть достигнуты при использовании систем автоматической сортировки и разделенной переработки различных видов отходов при помощи современных технологий.

Комбинации указанных технологических решений устанавливаются на нескольких площадках в регионе так, чтобы обеспечить минимальную транспортировку отходов к месту переработки и непосредственную поставку ценных конечных продуктов на сопутствующие производства. Полный завод по переработке ТБО состоит из модулей всех видов и может включать сопутствующие производства. Количество технологических линий в каждом модуле определяется требованиями к производительности завода. Минимальное оптимальное соотношение достигается для завода производительностью 90 000 тонн ТБО в год.

Переработка горючих отходов.

Предлагаемая технология газификации позволяет перерабатывать горючие отходы в закрытом реакторе с получением горючего газа. Могут быть переработаны отходы следующих типов:

* горючая фракция твердых бытовых отходов (ТБО), выделенная при сортировке;
* твердые промышленные отходы - нетоксичные твердые отходы, произведенные промышленными, торговыми и другими центрами, например: пластик, картон, бумага и т. д.;
* твердые горючие продукты переработки автомобилей: большинство автомобильных пластиков, резина, пеноматериалы, ткань, дерево и т. д.;
* сточные воды после осушения (наиболее эффективная переработка сточных вод достигается при использовании биотермической технологии);
* сухая биомасса, такая как отходы деревообработки, опилки, кора и т. д.

Процесс газификации является модульной технологией. Ценным продуктом переработки является горючий газ, производимый в объеме от 85 до 100 м3 в минуту (для модуля переработки 3.000 кг/ч), с приблизительной энергетической ценностью от 950 до 2.895 кКал/м3 в зависимости от исходного сырья. Газ может быть использован для производства тепло-/электроэнергии для сопутствующих производств или на продажу. Модуль газификации не производит выбросов в атмосферу и не имеет трубы: продуктом технологии является горючий газ, направляемый на производство энергии, и, таким образом, выбросы образуются только на выходе двигателей, бойлеров или газовых турбин, перерабатывающих горючий газ. Основное оборудование монтируется на рамах с общими внешними размерами 10 х 13 х 5 м. Технология проста в управлении и эксплуатации и может быть использована в рамках комплексных схем переработки отходов.

Переработка гниющих отходов.

Органическая фракция ТБО, полученная в результате сортировки, а также отходы ферм и очистных сооружений могут быть подвергнуты анаэробной переработке с получением метана и компоста, пригодного для сельскохозяйственных и садоводческих работ.

Переработка органики происходит в реакторах, где бактерии, производящие метан, перерабатывают органическую субстанцию в биогаз и гумус. Субстанция выдерживается в реакторе при определенной температуре 15-20 дней. Завод обычно состоит из двух или более параллельных линий. Биореакторы стационарны и расположены вертикально. Размер одного реактора может достигать 5000 куб. м. Это примерно соответствует отходам, производимым населением в 200 000 человек. Для переработки большего объема отходов требуется два или более параллельных реактора. При необходимости, по окончании анаэробной переработки субстанция пастеризуется и после этого полностью осушается в твердую массу, составляющую 35-45% от первоначального объема. На следующей стадии масса может быть подвергнута постаэрации и просеиванию для улучшения показателей хранения, эстетического вида и удобства использования.

Конечный продукт, гумус, полностью переработан, стабилизирован и пригоден для ландшафтных работ, садоводства и сельского хозяйства. Метан может быть использован для производства тепло/электроэнергии.

Переработка использованных шин.

Для переработки шин используется технология низкотемпературного пиролиза с получением электроэнергии, сорбента для очистки воды или высококачественной сажи, пригодной для производства автопокрышек.

Линии демонтажа старых автомобилей.

Для переработки старых автомобилей используется технология промышленного демонтажа, позволяющая вторично использовать отдельные детали. Стандартная линия линии промышленного демонтажа, способна перерабатывать 10 000 старых автомобилей в год или до 60 машин в день при смене 12 человек (всего персонал завода 24 человека). Линия предназначена для оптимального демонтажа деталей в безопасных рабочих условиях. Основными элементами линии являются автоматический конвейер, передвигающий автомобили, устройство переворачивания автомобилей для демонтажа деталей днища и подготовки автомобиля к снятию двигателя, а также оборудование для демонтажа деталей и хранения снятых материалов. Предприятие состоит из цеха линии демонтажа, зоны для удаления аккумуляторов и слива автомобильных жидкостей, крытых складских помещений и офисного здания. Экономическая эффективность предприятия обеспечивается продажей автомобильных деталей и отсортированных материалов. Для эффективной эксплуатации завода в зависимости от транспортных тарифов в радиусе 25-30 км от завода должно быть в наличии 25 000 остовов старых автомобилей. В общем случае для завода требуется площадка, по крайней мере, 20 000 м2. Поставка линии промышленного демонтажа включает обучение рабочего персонала на площадке заказчика и в Западной Европе, обучение управлению предприятием и тренинг по организации сбора старых автомобилей и продаже запчастей и материалов.

Утилизация медицинских отходов.

Предлагаемая технология очистки медицинских отходов стерилизует такие виды медицинских отходов как иглы, ланцеты, медицинские контейнеры, металлические зонды, стекло, биологические культуры, физиологические вещества, медикаменты, шприцы, фильтры, пузырьки, подгузники, катетеры, лабораторные отходы и т.д. Технология очистки медицинских отходов измельчает и стерилизует отходы, так что они превращаются в сухую, однородную пыль без запаха (гранулы диаметром 1-2 мм). Этот остаток является целиком инертным продуктом, не содержит микроорганизмов и не обладает бактерицидными свойствами. Остаток может быть утилизирован как обычные городские отходы или использован при ландшафтных работах. Технология переработки медицинских отходов — это закрытый процесс. Стандартное оборудование работает в полуавтоматическом режиме, в функции оператора входит загрузка установки при помощи подъемника и запуск процесса. После начала процесса все операции осуществляются автоматически и контролируются программируемым модулем, в то время как сообщения о состоянии процесса и сигналы о возможных неисправностях отображаются на пульте управления. Возможна поставка целиком автоматической системы. Учитывая специфический вес материала и время переработки, производительность установки составляет 100 кг/час.

Предлагаемые современные технологии позволяют одновременно решить проблему утилизации мусора и создать местные источники энергии. Таким образом, мусор вернется к нам не в виде разрастающихся свалок и загрязненной воды, а в виде электричества по проводам, тепла в батареях отопления или выращенных в теплицах овощей и фруктов.

Взято здесь: http://www.waste.ru/modules/section/item.php?itemid=61

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода