Вконтакте Facebook Twitter Лента RSS

Инфляционная теория возникновения вселенной. Инфляция вселенной

Почему против трех астрофизиков ополчились тридцать три известных ученых самых разных специализаций во главе со Стивеном Хокингом, по каким сценариям образовывалась наша Вселенная и верна ли инфляционная теория ее расширения, сайт разбирался вместе со специалистами.

Стандартная теория Большого взрыва и ее проблемы

Теория горячего Большого взрыва установилась в середине XX века, а общепризнанной стала пару десятилетий спустя после открытия реликтового излучения. Она объясняет многие свойства окружающей нас Вселенной и предполагает, что Вселенная возникла из некоторого начального сингулярного состояния (формально бесконечно плотного) и с тех пор непрерывно расширяется и охлаждается.

Само реликтовое излучение - световое «эхо», родившееся спустя всего 380 000 лет после , - оказалось невероятно ценным источником информации. Львиная доля современной наблюдательной космологии связана с анализом различных параметров реликтового излучения. Оно достаточно однородно, его средняя температура по различным направлениям меняется в масштабе всего 10 –5 , причем эти неоднородности равномерно распределены по небу. В физике такое свойство принято называть статистической изотропией. Это означает, что локально такая величина изменяется, но глобально все выглядит одинаково.

Схема расширения Вселенной

NASA/WMAP Science Team/Wikimedia Commons

Исследуя возмущения реликтового излучения, астрономы с высокой точностью вычисляют многие величины, характеризующие Вселенную в целом: соотношение обычной материи, темной материи и темной энергии, возраст Вселенной, глобальную геометрию Вселенной, вклад нейтрино в эволюцию крупномасштабной структуры и другие.

Несмотря на «общепринятость» теории Большого взрыва, у нее были и недостатки: она не давала ответа на некоторые вопросы возникновения Вселенной. Основные из них получили названия «проблема горизонта» и «проблема плоскостности».

Первая связана с тем, что скорость света конечна, а реликтовое излучение статистически изотропно. Дело в том, что на момент рождения реликтового излучения даже свет не успел пройти расстояние между теми далеко отстоящими на небе точками, откуда мы сегодня его улавливаем. Поэтому непонятно, почему разные области настолько одинаковы, ведь они еще не успели обменяться сигналами с момента рождения Вселенной, их причинные горизонты не пересекаются.

Вторая проблема, проблема плоскостности, связана с неотличимой от нуля (на уровне точности современных экспериментов) глобальной кривизной пространства. Проще говоря, на больших масштабах пространство Вселенной плоское, а из теории горячего Большего взрыва не следует, что плоское пространство более предпочтительно, чем другие варианты кривизны. Поэтому близость этой величины к нулю как минимум неочевидна.

Тридцать три против троих

Для решения этих проблем астрономы создали космологические теории следующего поколения, наиболее успешная из которых - теория инфляционного расширения Вселенной (проще ее называют теорией инфляции). Повышение цен на товары тут ни при чем, хотя оба термина происходят от одного латинского слова - inflatio - «вздутие».

Инфляционная модель Вселенной предполагает, что до горячей стадии (то, что в обычной теории Большого взрыва считается началом времени) существовала другая эпоха с совсем иными свойствами. В то время пространство расширялось экспоненциально быстро благодаря заполнявшему его специфическому полю. За крохотные доли секунды пространство растянулось в невероятное количество раз. Это решило обе вышеупомянутые проблемы: Вселенная оказалась в целом однородной, так как произошла из существовавшего на предыдущей стадии чрезвычайно малого объема. К тому же, если в ней и были какие-то геометрические неоднородности, они разгладились во время инфляционного расширения.

В становлении теории инфляции приняло участие много ученых. Первые модели независимо друг от друга предложили физик, доктор философии Корнеллского университета Алан Гут в США и физик-теоретик, специалист в области гравитации и космологии Алексей Старобинский в СССР около 1980 года. Они отличались механизмами (Гут рассматривал ложный вакуум, а Старобинский - модифицированную общую теорию относительности), но приводили к похожим выводам. Некоторые проблемы изначальных моделей решил советский физик, доктор физико-математических наук, сотрудник Физического института имени П.Н. Лебедева Андрей Линде, который ввел понятие медленно меняющегося потенциала (slow-roll inflation) и объяснил с его помощью завершение стадии экспоненциального расширения. Следующим важным шагом было понимание, что инфляция не порождает идеально симметричную Вселенную, так как необходимо учитывать квантовые флуктуации. Это сделали советские физики, выпускники МФТИ Вячеслав Муханов и Геннадий Чибисов.

Норвежский король Харальд награждает Алана Гута, Андрея Линде и Алексея Старобинского (слева направо) премией Кавли по физике. Осло, сентябрь 2014 года.

Norsk Telegrambyra AS/Reuters

В рамках теории инфляционного расширения ученые делают проверяемые предсказания, некоторые из которых уже подтверждены, но одно из основных - существование реликтовых гравитационных волн - пока подтвердить не удается. Первые попытки их зафиксировать уже делаются , однако на данном этапе это остается за рамками технологических возможностей человечества.

Тем не менее у инфляционной модели Вселенной есть противники, которые считают, что она сформулирована слишком общо, вплоть до того, что с ее помощью можно получить любой результат. Некоторое время эта полемика шла в научной литературе , но недавно группа из трех астрофизиков IS&L (сокращение образовано по первым буквам фамилий ученых - Ijjas, Steinhardt и Loeb - Анны Ийас, Пола Стейнхардта и Абрахама Леба) опубликовала научно-популярное изложение своих претензий к инфляционной космологии в издании Scientific American. В частности, IS&L, ссылаясь на карту температур реликтового излучения, полученную при помощи спутника Planck, считают, что теория инфляции не может быть оценена научными методами. Вместо теории инфляции астрофизики предлагают свой вариант развития событий: якобы Вселенная началась не с Большого взрыва, а с Большого отскока - стремительного сжатия некоей «предыдущей» Вселенной.

В ответ на эту статью 33 ученых, среди которых и основоположники теории инфляции (Алан Гут, Алексей Старобинский, Андрей Линде) и другие известные ученые, например Стивен Хокинг, опубликовали в том же журнале ответное письмо, в котором они категорически не соглашаются с претензиями IS&L.

сайт попросил космологов и астрофизиков высказаться по поводу обоснованности этих претензий, сложностей с интерпретацией предсказаний инфляционных теорий и необходимости пересмотра подхода к теории ранней Вселенной.

Один из основоположников теории инфляционного расширения, профессор физики Стэнфордского университета Андрей Линде, считает претензии надуманными, а сам подход критиков - недобросовестным: «Если отвечать подробно, то получится большая научная статья, а коротко - будет похоже на агитацию. Этим люди и пользуются. Вкратце, лидер критиков - Стейнхардт, который в течение 16 лет пытается создать альтернативу [теории] инфляции, а в его статьях - ошибка на ошибке. Ну, а когда у самого не получается, то появляется желание обругать более популярные теории, применяя методы, хорошо известные из учебников по истории. Большинство теоретиков перестало их читать, но журналисты очень любят. Физика здесь почти что ни при чем».

Кандидат физико-математических наук, сотрудник Института ядерный исследований РАН Сергей Миронов напоминает, что научная истина не может быть рождена в полемике на непрофессиональном уровне. Критическая статья, по его мнению, написана научно и аргументированно, там сведены вместе различные проблемы инфляционной теории. Подобные обзоры необходимы, они помогают предотвратить закостеневание науки.

Однако ситуация меняется, когда такая дискуссия переходит на страницы популярного издания, потому что, правильно ли таким образом продвигать свою научную идею, вопрос спорный. В связи с этим Миронов отмечает, что ответ на критику смотрится некрасиво, так как одна часть из его авторов вообще не специалисты в рассматриваемой области, а другая сама пишет популярные тексты про инфляционную модель. Миронов обращает внимание, что ответная статья написана так, будто авторы даже не читали работу IS&L, и они не привели никаких контраргументов к ней. Утверждения же о провокационной манере, в которой написана заметка с критикой, означают, что «авторы ответа просто повелись на троллинг».

«Доля истины»

Тем не менее ученые, в том числе сторонники инфляционной модели, признают ее недостатки. Физик Александр Виленкин, профессор и директор института космологии в Университете Тафтса в Медфорде (США), который внес важный вклад в становление современной теории инфляции, замечает: «В заявлениях Стейнхардта и коллег есть доля истины, но я думаю, что их претензии чрезвычайно преувеличены. Инфляция предсказывает существование множества областей, подобных нашей, с начальными условиями, которые определяются квантовыми флуктуациями. Теоретически, любые начальные условия возможны с некоторой вероятностью. Проблема заключается в том, что мы не знаем, как посчитать эти вероятности. Количество областей каждого типа бесконечно, поэтому приходится сравнивать бесконечные числа - эта ситуация называется проблемой меры. Конечно, отсутствие единой меры, выводимой из фундаментальной теории, является тревожным знаком».

Упомянутое множество моделей Сергей Миронов относит к недостаткам теории, так как это позволяет подогнать ее под любые экспериментальные наблюдения. А это означает, что теория не удовлетворяет критерию Поппера (согласно этому критерию теория считается научной, если ее можно опровергнуть при помощи эксперимента, - прим. сайт) , по крайней мере в обозримом будущем. Также к проблемам теории Миронов относит тот факт, что в рамках инфляции начальные условия требуют тонкой подстройки параметров, что делает ее в некотором смысле не натуральной. Специалист по ранней Вселенной, кандидат физико-математических наук, сотрудник Научного института Гран-Сассо Национального института ядерной физики (Италия) Сабир Рамазанов также признает реальность этих проблем, но отмечает, что их существование не обязательно означает, что инфляционная теория неверна, но ряд ее аспектов действительно заслуживает более глубокого осмысления.

Создатель одной из первых инфляционных моделей, академик РАН, главный научный сотрудник Института теоретической физики РАН Алексей Старобинский поясняет, что одна из простейших моделей, которую Андрей Линде предложил в 1983 году, действительно была опровергнута. Она предсказывала слишком много гравитационных волн, поэтому недавно Линде указал, что необходимо пересмотреть инфляционные модели.

Критический эксперимент

Астрономы обращают особое внимание на то, что важным предсказанием, которое стало возможным благодаря теории инфляции, стало предсказание реликтовых гравитационных волн. Специалист по анализу реликтового излучения и наблюдательной космологии, доктор физико-математических наук, ведущий научный сотрудник Специальной астрофизической обсерватории РАН Олег Верходанов считает этот прогноз знаменательным наблюдательным тестом для простейших вариантов инфляционного расширения, в то время как для отстаиваемой критиками теории «Большого отскока» такого решающего эксперимента нет.

Иллюстрация теории Большого отскока

Wikimedia Commons

Поэтому говорить о другой теории можно будет только в том случае, если на реликтовые волны установят серьезные ограничения. Сергей Миронов тоже называет потенциальное открытие таких волн серьезным аргументом в пользу инфляции, однако отмечает, что пока их амплитуда только ограничивается, что уже позволило отмести некоторые варианты, на место которых приходят другие, не предсказывающие слишком сильных первичных гравитационных возмущений. Сабир Рамазанов согласен с важностью этого теста и, более того, считает, что инфляционная теория не может считаться доказанной, пока это явление не будет открыто в наблюдениях. Поэтому пока ключевое предсказание инфляционной модели о существовании первичных гравитационных волн с плоским спектром не подтверждено, говорить об инфляции как о физической реальности рано.

«Правильный ответ, от которого старательно пытаются увести читателя»

Алексей Старобинский подробно разобрал претензии IS&L. Он выделил три главных утверждения.

Утверждение 1. Инфляция предсказывает что угодно. Или ничего.

«Правильный ответ, от которого старательно пытаются увести читателя IS&L, состоит в том, что такие слова, как "инфляция", "квантовая теория поля", "модель элементарных частиц", очень общие: они объединяют множество разных моделей, отличающихся степенью сложности (например, количеством сортов нейтрино)», - разъясняет Старобинский.

После того как ученые зафиксируют входящие в каждую конкретную модель свободные параметры из экспериментов или наблюдений, предсказания модели считаются однозначными. Современная Стандартная модель элементарных частиц содержит около 20 таких параметров (это главным образом массы кварков, массы нейтрино и угол их смешивания). Простейшая из жизнеспособных инфляционных моделей содержит только один такой параметр, величина которого фиксируется измеренной амплитудой начального спектра неоднородностей материи. После этого все остальные предсказания однозначны.

Академик уточняет: «Конечно, ее можно усложнить, добавив новые члены различной физической природы, каждый из которых будет входить с новым свободным числовым параметром. Но, во-первых, и в этом случае предсказания будут не "что угодно", а определенными. А во-вторых, и это самое главное, сегодняшние наблюдения показывают, что эти члены не нужны, на современном уровне точности порядка 10% их нет!»

Утверждение 2. Маловероятно, что в рассматриваемых моделях вообще возникнет инфляционная стадия, поскольку в них у потенциальной энергии инфлатона есть длинное плоское «плато».

«Утверждение ложно, - категоричен Старобинский. - В моих работах 1983 и 1987 годов было доказано, что инфляционный режим в моделях такого типа является общим, то есть он возникает во множестве начальных условий с ненулевой мерой». Впоследствии это было доказано и по более строгим математическим критериям, с численными симуляциями и т. д.

Результаты эксперимента Planck, по словам Старобинского, подвергли сомнению точку зрения, которую неоднократно высказывал Андрей Линде. Согласно ей инфляция должна обязательно начинаться на планковской плотности материи, и, уже начиная с этого предельного для классического описания пространства-времени параметра, материя была распределена однородно. Однако в тех доказательствах, о которых шла речь выше, это не предполагалось. То есть в моделях такого типа перед стадией инфляционного расширения находятся анизотропная и неоднородная стадия эволюции Вселенной с большей, чем при инфляции, кривизной пространства-времени.

«Чтобы было понятнее, воспользуемся следующей аналогией, - поясняет космолог. - В общей теории относительности одним из общих решений являются вращающиеся черные дыры, описываемые метрикой Керра. То, что черные дыры - это общие решения, не значит, что они есть повсюду. Например, их нет в Солнечной системе и в ее окрестностях (к счастью для нас). А значит это то, что, поискав, мы их обязательно найдем. Так оно и произошло». В случае инфляции происходит то же самое – эта промежуточная стадия есть не во всех решениях, но в достаточно широком их классе, так что она вполне может возникнуть в однократной реализации, то есть для нашей Вселенной, которая существует в одном экземпляре. А вот то, насколько вероятно это однократное событие, полностью определяется нашими гипотезами о том, что предшествовало инфляции.

Утверждение 3. Квантовое явление «вечной инфляции», которое имеет место почти во всех инфляционных моделях и влечет за собой возникновение мультивселенной, приводит к полной неопределенности предсказаний инфляционного сценария: «Все, что может случиться, случается».

«Утверждение частично ложно, частично не имеет отношения к наблюдаемым эффектам в нашей Вселенной, - непреклонен академик. - Хотя слова в кавычках заимствованы IS&L из обзоров Виленкина и Гута, их смысл искажен. Там они стояли в другом контексте и значили не больше банального даже для школьника замечания, что уравнения физики (например, механики) можно решать для любых начальных условий: где-нибудь и когда-нибудь эти условия реализуются».

Почему «вечная инфляция» и образование «мультивселенной» не влияют на все процессы в нашей Вселенной после конца инфляционной стадии? Дело в том, что они происходят вне нашего светового конуса прошлого (кстати, и будущего тоже)», - объясняет Старобинский. Поэтому нельзя сказать однозначно, происходят ли они в нашем прошлом, настоящем или будущем. «Строго говоря, это верно с точностью до экспоненциально малых квантово-гравитационных эффектов, но во всех существующих последовательных расчетах такими эффектами всегда пренебрегали», - подчеркивает академик.

«Я не хочу сказать, что не интересно исследовать то, что лежит вне нашего светового конуса прошлого, - продолжает Старобинский, - но прямо с наблюдательными данными это пока не связано. Однако и здесь IS&L сбивают читателя с толку: если описывать "вечную инфляцию" правильно, то при заданных условиях в начале инфляционной стадии никакого произвола в предсказаниях не возникает (хотя не все мои коллеги с этим согласны). Более того, многие предсказания, в частности спектр неоднородностей материи и гравитационных волн, возникающих в конце инфляции, от этих начальных условий вообще не зависят», - добавляет космолог.

«Нет острой необходимости в пересмотре основ физики ранней Вселенной»

Олег Верходанов отмечает, что пока отказываться от текущей парадигмы нет оснований: «Конечно, у инфляции есть простор для интерпретации - семейство моделей. Но и среди них можно выбирать наиболее соответствующие распределению пятен на карте реликтового излучения. Пока большинство результатов миссии Planck играет в пользу инфляции». Алексей Старобинский отмечает, что с данными эксперимента Planck, к которым апеллируют IS&L, хорошо согласуется самая первая модель с де-ситтеровской стадией, предшествовавшей горячему Большому взрыву, которую он предложил еще в 1980 году (во время де-ситтеровской стадии, которая длилась около 10 –35 секунды, Вселенная быстро расширялась, заполняющий ее вакуум как бы растягивался без изменения своих свойств, - прим. сайт).

С ним в целом согласен и Сабир Рамазанов: «Ряд предсказаний - гауссовость спектра первичных возмущений, отсутствие мод постоянной кривизны, наклон спектра - нашел подтверждение в данных WMAP и Planck. Инфляция заслуженно играет главенствующую роль в качестве теории ранней Вселенной. На данный момент нет острой необходимости в пересмотре основ физики ранней Вселенной». Космолог Сергей Миронов также признает положительные качества этой теории: «Сама идея инфляции чрезвычайно элегантна, она одним махом позволяет решить все принципиальные проблемы теории горячего Большого взрыва».

«В целом итог по статье IS&L – пустая болтовня от начала до конца, - подытоживает Старобинский. - Она не имеет отношения к реальным проблемам, над которыми сейчас работают космологи». И в то же время академик добавляет: «Другое дело, что любая модель - как общая теория относительности Эйнштейна, как современная модель элементарных частиц, так и модель инфляции - не есть последнее слово науки. Она всегда только приближенна, и на каком-то уровне точности обязательно появятся малые поправки к ней, из которых мы многое узнаем, так как за ними будет стоять новая физика. Именно такие малые поправки и ищут сейчас астрономы».

Сразу после зарождения Вселенная расширялась невероятно быстро.

С 30-х годов XX века астрофизики уже знали, что, согласно закону Хаббла , Вселенная расширяется, а значит, она имела свое начало в определенный момент в прошлом. Задача астрофизиков, таким образом, внешне выглядела простой: отследить все стадии хаббловского расширения в обратной хронологии, применяя на каждой стадии соответствующие физические законы, и, пройдя этот путь до конца — точнее, до самого начала, — понять, как именно всё происходило.

В конце 1970-х годов, однако, оставались нерешенными несколько фундаментальных проблем, связанных с ранней Вселенной, а именно:

  • Проблема антивещества . Согласно законам физики, вещество и антивещество имеют равное право на существование во Вселенной (см. Античастицы), однако Вселенная практически полностью состоит из вещества. Почему так произошло?
  • Проблема горизонта. По фоновому космическому излучению (см. Большой взрыв) мы можем определить, что температура Вселенной везде примерно одинакова, однако отдельные ее части (скопления галактик) не могли находиться в контакте (как принято говорить, они были за пределами горизонта друг друга). Как же получилось, что между ними установилось тепловое равновесие?
  • Проблема распрямления пространства. Вселенная, судя по всему, обладает именно той массой и энергией, которые необходимы для того, чтобы замедлить и остановить хаббловское расширение. Почему из всех возможных масс Вселенная имеет именно такую?

Ключом к решению этих проблем послужила идея, что сразу после своего рождения Вселенная была очень плотной и очень горячей. Всё вещество в ней представляло собой раскаленную массу кварков и лептонов (см. Стандартная модель), у которых не было никакой возможности объединиться в атомы. Действующим в современной Вселенной различным силам (таким, как электромагнитные и гравитационные силы) тогда соответствовало единое поле силового взаимодействия (см. Универсальные теории). Но когда Вселенная расширилась и остыла, гипотетическое единое поле распалось на несколько сил (см. Ранняя Вселенная).

В 1981 году американский физик Алан Гут осознал, что выделение сильных взаимодействий из единого поля, случившееся примерно через 10 -35 секунды после рождения Вселенной (только задумайтесь — это 34 нуля и единица после запятой!), стало поворотным моментом в ее развитии. Произошел фазовый переход вещества из одного состояния в другое в масштабах Вселенной — явление, подобное превращению воды в лед. И как при замерзании воды ее беспорядочно движущиеся молекулы вдруг «схватываются» и образуют строгую кристаллическую структуру, так под влиянием выделившихся сильных взаимодействий произошла мгновенная перестройка, своеобразная «кристаллизация» вещества во Вселенной.

Кто видел, как лопаются водопроводные трубы или трубки автомобильного радиатора на сильном морозе, стоит только воде в них превратиться в лед, тот на собственном опыте знает, что вода при замерзании расширяется. Алану Гуту удалось показать, что при разделении сильных и слабых взаимодействий во Вселенной произошло нечто подобное — скачкообразное расширение. Это расширение, которое называется инфляционным , во много раз быстрее обычного хаббловского расширения. Примерно за 10 -32 секунды Вселенная расширилась на 50 порядков — была меньше протона, а стала размером с грейпфрут (для сравнения: вода при замерзании расширяется всего на 10%). И это стремительное инфляционное расширение Вселенной снимает две из трех вышеназванных проблем, непосредственно объясняя их.

Решение проблемы распрямления пространства нагляднее всего демонстрирует следующий пример: представьте координатную сетку, нарисованную на тонкой эластичной карте, которую затем смяли как попало. Если теперь взять и сильно встряхнуть эту смятую в комок эластичную карту, она снова примет плоский вид, а координатные линии на ней восстановятся, независимо от того, насколько сильно мы деформировали ее, когда скомкали. Аналогичным образом, не важно, насколько искривленным было пространство Вселенной на момент начала ее инфляционного расширения, главное — по завершении этого расширения пространство оказалось полностью распрямленным. А поскольку из теории относительности мы знаем, что кривизна пространства зависит от количества материи и энергии в нем, становится понятно, почему во Вселенной находится ровно столько материи, сколько необходимо, чтобы уравновесить хаббловское расширение.

Объясняет инфляционная модель и проблему горизонта , хотя не так прямо. Из теории излучения черного тела мы знаем, что излучение, испускаемое телом, зависит от его температуры. Таким образом, по спектрам излучения удаленных участков Вселенной мы можем определить их температуру. Такие измерения дали ошеломляющие результаты: оказалось, что в любой наблюдаемой точке Вселенной температура (с погрешностью измерения до четырех знаков после запятой) одна и та же. Если исходить из модели обычного хаббловского расширения, то вещество сразу же после Большого взрыва должно было разлететься слишком далеко, чтобы температуры могли уравняться. Согласно же инфляционной модели, вещество Вселенной до момента t = 10 -35 секунды оставалось гораздо более компактным, чем при хаббловском расширении. Этого чрезвычайно краткого периода было вполне достаточно, чтобы установилось термическое равновесие, которое не было нарушено на стадии инфляционного расширения и сохранилось до сих пор.

Американский физик, специалист в области элементарных частиц и космологии. Родился в Нью-Брюнсвике, штат Нью-Джерси. Докторскую степень получил в Массачусетском технологическом институте, куда в 1986 году и вернулся, став профессором физики. Свою теорию инфляционного расширения Вселенной Гут разработал еще в Стэнфордском университете, занимаясь теорией элементарных частиц . Известен его отзыв о Вселенной как о «бескрайней скатерти-самобранке».

Помимо вопроса о происхождении Вселенной, современные космологи сталкиваются с рядом других проблем. Чтобы стандартная могла предсказать то распределение материи, которое мы наблюдаем, ее исходное состояние должно характеризоваться очень высокой степенью организованности. Сразу же возникает вопрос: каким образом такая структура могла образоваться?

Физик Алан Гут из Массачусетского технологического института предложил свою версию , которая объясняет спонтанное возникновение этой организации, устраняя необходимость искусственно вводить точные параметры в уравнения, описывающие исходное состояние Вселенной. Его модель была названа «инфляционной Вселенной». Суть ее в том, что внутри быстро расширяющейся, пере гретой Вселенной небольшой участок пространства охлаждается и начинает расширяться сильнее, подобно тому, как переохлажденная вода стремительно замерзает, расширяясь при этом. Эта фаза быстрого расширения позволяет устранить некоторые проблемы, присущие стандартным теориям большого взрыва.

Однако модель Гута тоже не лишена недостатков. Чтобы уравнения Гута правильно описывали инфляционную Вселенную, ему пришлось очень точно задавать исходные параметры для своих уравнений. Таким образом, он столкнулся с той же проблемой, что и создатели других теорий. Он надеялся избавиться от необходимости задавать точные параметры условий большого взрыва, но для этого ему пришлось вводить собственную параметризацию, оставшуюся необъясненной. Гут и его соавтор П. Штайнгарт признают, что в их модели «расчеты приводят к приемлемым предсказаниям только в том случае, если заданные исходные параметры уравнений варьируют в очень узком диапазоне. Большинство теоретиков (включая и нас самих) считают подобные исходные условия маловероятными». Далее авторы говорят о своих надеждах на то, что когда-нибудь будут разработаны новые математические теории, которые позволят им сделать свою модель более правдоподобной.

Эта зависимость от еще не открытых теорий — другой недостаток модели Гута. Теория единого поля, на которой основывается модель инфляционной Вселенной, полностью гипотетична и «плохо поддается экспериментальной проверке, так как большую часть ее предсказаний невозможно количественно проверить в лабораторных условиях». (Теория единого поля — это достаточно сомнительная попытка ученых связать воедино некоторые основные силы Вселенной.)

Другой недостаток теории Гута — это то, что в ней ничего не говорится о происхождении перегретой и расширяющейся материи. Гут проверил совместимость своей инфляционной теории с тремя гипотезами происхождения Вселенной. Сначала он рассмотрел стандартную теорию большого взрыва. В этом случае, по мнению Гута, инфляционный эпизод должен был произойти на одной из ранних стадий эволюции Вселенной. Однако эта модель ставит перед нами неразрешимую проблему сингулярности. Вторая гипотеза постулирует, что Вселенная возникла из хаоса. Некоторые ее участки были горячими, другие — холодными, одни расширялись, а другие сжимались. В этом случае инфляция должна была начаться в перегретой и расширяющейся области Вселенной. Правда, Гут признает, что эта модель не может объяснить происхождение первичного хаоса.

Третья возможность, которой Гут отдает предпочтение, заключается в том, что перегретый расширяющийся сгусток материи возникает квантово-механическим путем из пустоты. В статье, появившейся в журнале «Сайентифик Америкэн» в 1984 году, Гут и Штайнгарт утверждают: «Инфляционная модель Вселенной дает нам представление о возможном механизме, при помощи которого наблюдаемая Вселенная могла появиться из бесконечно малого участка пространства. Зная это, трудно удержаться от соблазна сделать еще один шаг и прийти к выводу, что Вселенная возникла буквально из ничего».

Однако какой бы привлекательной ни была эта идея для ученых, готовых ополчиться на любое упоминание о возможности существования высшего сознания, создавшего Вселенную, при внимательном рассмотрении она не выдерживает критики. «Ничто», о котором говорит Гут, — это гипотетический квантово-механический вакуум, описываемый еще не разработанной теорией единого поля, которая должна объединить уравнения квантовой механики и общей теории относительности. Другими словами, в данный момент этот вакуум невозможно описать даже теоретически.

Надо отметить, что физики описали более простой тип квантово-механического вакуума, который представляет собой море так называемых «виртуальных частиц», фрагментов атомов, которые «почти существуют». Время от времени некоторые из этих субатомных частиц переходят из вакуума в мир материальной реальности. Это явление получило название вакуумных флуктуаций. Вакуумные флуктуации невозможно наблюдать непосредственно, однако теории, постулирующие их существование, были подтверждены экспериментально. Согласно этим теориям, частицы и античастицы без всякой причины возникают из вакуума и практически сразу исчезают, аннигилируя друг друга. Гут и его коллеги допустили, что в какой-то момент вместо крошечной частицы из вакуума появилась целая Вселенная, и вместо того, чтобы сразу исчезнуть, эта Вселенная каким-то образом просуществовала миллиарды лет. Авторы этой модели решили проблему сингулярности, постулировав, что состояние, в котором Вселенная появляется из вакуума, несколько отличается от состояния сингулярности.

Однако у этого сценария есть два основных недостатка. Во-первых, можно только удивляться смелости фантазии ученых, распространивших достаточно ограниченный опыт с субатомными частицами на целую Вселенную. С. Хоукинг и Г. Эллис мудро предостерегают своих излишне увлекающихся коллег: «Предположение о том, что законы физики, открытые и изученные в лаборатории, будут справедливы в других точках пространственно-временного континуума, безусловно, очень смелая экстраполяция». Во-вторых, строго говоря, квантово-механический вакуум нельзя называть «ничто». Описание квантово-механического вакуума даже в самой простой из существующих теорий занимает множество страниц в высшей степени абстрактных математических выкладок. Такая система, несомненно, представляет собой «нечто», и сразу же встает все тот же упрямый вопрос: «Как возник столь сложно организованный «вакуум»?»

Вернемся к изначальной проблеме, для решения которой Гут создал инфляционную модель: проблеме точной параметризации исходного состояния Вселенной. Без такой параметризации невозможно получить наблюдаемое распределение материи во Вселенной. Как мы убедились, решить эту проблему Гуту не удалось. Более того, сомнительной представляется сама возможность того, что какая-нибудь версия теории большого взрыва, включая версию Гута, может предсказать наблюдаемое распределение материи во Вселенной.

Высокоорганизованное исходное состояние в модели Гута, по его же словам, в конце концов, превращается во «Вселенную» диаметром 10 сантиметров, наполненную однородным сверхплотным, перегретым газом. Она будет расширяться и остывать, но нет никаких оснований предполагать, что она когда-нибудь превратится в нечто большее, чем однородное облако газа. По сути дела, к этому результату приводят все теории большого взрыва. Если Гуту пришлось пускаться на многие ухищрения и делать сомнительные допущения, чтобы в конце концов получить Вселенную в виде облака однородного газа, то можно представить себе, каким должен быть математический аппарат теории, приводящей ко Вселенной в том виде, в каком мы ее знаем!

Хорошая научная теория дает возможность предсказывать многие сложные природные явления, исходя из простой теоретической схемы. Но в теории Гута (и любой другой версии ) все наоборот: в результате сложных математических выкладок мы получаем расширяющийся пузырь однородного газа. Несмотря на это, научные журналы печатают восторженные статьи об инфляционной теории, сопровождающиеся многочисленными красочными иллюстрациями, которые должны создать у читателя впечатление, что Гут наконец достиг заветной цели — нашел объяснение происхождения Вселенной. Честнее было бы просто открыть постоянную рубрику в научных журналах, чтобы публиковать в ней теорию происхождения Вселенной, модную в этом месяце.

Трудно даже представить себе всю сложность исходного состояния и условий, необходимых для возникновения нашей Вселенной со всем многообразием ее структур и организмов. В случае нашей Вселенной степень этой сложности такова, что ее едва ли можно объяснить с помощью одних физических законов.

С середины 1970-х годов физики начали работать над теоретическими моделями Великого объединения трех фундаментальных взаимодействий - сильного, слабого и электромагнитного. Многие из этих моделей приводили к заключению, что вскоре после Большого взрыва должны были в изобилии рождаться очень массивные частицы, несущие одиночный магнитный заряд. Когда возраст Вселенной достиг 10 -36 секунды (по некоторым оценкам, даже несколько раньше), сильное взаимодействие отделилось от электрослабого и обрело самостоятельность. При этом в вакууме образовались точечные топологические дефекты с массой в 10 15 - 10 16 большей, чем масса тогда еще не существовавшего протона. Когда, в свою очередь, электрослабое взаимодействие разделилось на слабое и электромагнитное и появился настоящий электромагнетизм, эти дефекты обрели магнитные заряды и начали новую жизнь - в виде магнитных монополей.


Разделение фундаментальных взаимодействий в нашей ранней Вселенной носило характер фазового перехода. При очень высоких температурах фундаментальные взаимодействия были объединены, но при остывании ниже критической температуры разделения не произошло [это можно сравнить с переохлаждением воды]. В этот момент энергия скалярного поля, связанного с объединением, превысила температуру Вселенной, что наделило поле отрицательным давлением и послужило причиной космологической инфляции. Вселенная стала очень быстро расширяться, и в момент нарушения симметрии (при температуре около 10 28 К) ее размеры увеличились в 10 50 раз. Скалярное поле, связанное с объединением взаимодействий, исчезло, а его энергия трансформировалась в дальнейшее расширение Вселенной.

ГОРЯЧЕЕ РОЖДЕНИЕ



Эта красивая модель поставила космологию перед малоприятной проблемой. «Северные» магнитные монополи аннигилируют при столкновении с «южными», но в остальном эти частицы стабильны. Из-за огромной по меркам микромира массы нанограммового масштаба вскоре после рождения они были обязаны замедлиться до нерелятивистских скоростей, рассеяться по пространству и сохраниться до наших времен. Согласно стандартной модели Большого взрыва, их нынешняя плотность должна приблизительно совпадать с плотностью протонов. Но в этом случае общая плотность космической энергии как минимум в квадриллион раз превышала бы реальную.
Все попытки обнаружить монополи до сих пор завершались неудачей. Как показал поиск монополей в железных рудах и морской воде, отношение их числа к числу протонов не превышает 10 -30 . Либо этих частиц вообще нет в нашей области пространства, либо столь мало, что приборы неспособны их зарегистрировать, несмотря на четкую магнитную подпись. Это подтверждают и астрономические наблюдения: наличие монополей должно сказываться на магнитных полях нашей Галактики, а этого не обнаружено.
Конечно, можно допустить, что монополей вообще никогда не было. Некоторые модели объединения фундаментальных взаимодействий и в самом деле не предписывают их появления. Но проблемы горизонта и плоской Вселенной остаются. Так получилось, что в конце 1970-х космология столкнулась с серьезными препятствиями, для преодоления которых явно требовались новые идеи.

ОТРИЦАТЕЛЬНОЕ ДАВЛЕНИЕ


И эти идеи не замедлили появиться. Главной из них была гипотеза, согласно которой в космическом пространстве помимо вещества и излучения существует скалярное поле (или поля), создающее отрицательное давление. Такая ситуация выглядит парадоксальной, однако же она встречается в повседневной жизни. Система с положительным давлением, например сжатый газ, при расширении теряет энергию и охлаждается. Эластичная лента, напротив, пребывает в состоянии с отрицательным давлением, ведь, в отличие от газа, она стремится не расшириться, а сжаться. Если такую ленту быстро растянуть, она нагреется и ее тепловая энергия возрастет. При расширении Вселенной поле с отрицательным давлением копит энергию, которая, высвобождаясь, способна породить частицы и кванты света.

ПЛОСКАЯ ПРОБЛЕМА

АСТРОНОМЫ УЖЕ ДАВНО УВЕРИЛИСЬ В ТОМ, ЧТО ЕСЛИ НЫНЕШНЕЕ КОСМИЧЕСКОЕ ПРОСТРАНСТВО И ДЕФОРМИРОВАНО, ТО ДОВОЛЬНО УМЕРЕННО.
Модели Фридмана и Леметра позволяют вычислить, какой была искривленность пространства вскоре после Большого взрыва. Кривизна оценивается с помощью безразмерного параметра Ω, равного отношению средней плотности космической энергии к тому ее значению, при котором эта кривизна делается равна нулю, а геометрия Вселенной, соответственно, становится плоской. Лет 40 назад уже не было сомнений, что если этот параметр и отличается от единицы, то не больше, чем в десять раз в ту или иную сторону. Отсюда следует, что через одну секунду после Большого взрыва он отличался от единицы в большую или меньшую сторону всего лишь на 10 -14 ! Случайна такая фантастически точная «настройка» или обусловлена физическими причинами? Именно так в 1979 году сформулировали задачу американские физики Роберт Дике и Джеймс Пиблз.

ПЛОСКАЯ ПРОБЛЕМА


Отрицательное давление может иметь различную величину. Но существует особый случай, когда оно равно плотности космической энергии с обратным знаком. При таком раскладе эта плотность остается постоянной при расширении пространства, поскольку отрицательное давление компенсирует растущее «разрежение» частиц и световых квантов. Из уравнений Фридмана-Леметра следует, что Вселенная в этом случае расширяется экспоненциально.

Гипотеза экспоненциального расширения позволяет разрешить все три проблемы, приведенные выше. Предположим, что Вселенная возникла из крошечного «пузырька» сильно искривленного пространства, который претерпел превращение, наделившее пространство отрицательным давлением и тем заставившее его расширяться по экспоненциальному закону. Естественно, что после исчезновения этого давления Вселенная возвратится к прежнему «нормальному» расширению.

РЕШЕНИЕ ПРОБЛЕМ


Будем считать, что радиус Вселенной перед выходом на экспоненту всего на несколько порядков превышал планковскую длину, 10 -35 м. Если в экспоненциальной фазе он вырастет, скажем, в 10 50 раз, то к ее концу достигнет тысяч световых лет. Каким бы ни было отличие параметра кривизны пространства от единицы до начала расширения, к его концу оно уменьшится в 10 -100 раз, то есть пространство станет идеально плоским!
Аналогично решается проблема монополей. Если топологические дефекты, ставшие их предшественниками, возникли до или даже в процессе экспоненциального расширения, то к его концу они должны отдалиться друг от друга на исполинские расстояния, С тех пор Вселенная еще изрядно расширилась, и плотность монополей упала практически до нуля. Вычисления показывают, что даже если исследовать космический кубик с ребром а миллиард световых лет, то там с высочайшей степенью вероятности не найдется ни единого монополя.
Гипотеза экспоненциального расширения подсказывает и простое избавление от проблемы горизонта. Предположим, что размер зародышевого «пузырька», положивше- го начало нашей Вселенной, не превышал пути, который успел пройти свет после Большого взрыва. В этом случае в нем могло установиться тепловое равновесие, обеспечившее равенство температур по всему объему, которое сохранилось при экспоненциальном расширении. Подобное объяснение присутствует во многих учебниках космологии, однако можно обойтись и без него.

ИЗ ОДНОГО ПУЗЫРЯ


На рубеже 1970-1980-х несколько теоретиков, первым из которых стал советский физик Алексей Старобинский, рассмотрели модели ранней эволюции Вселенной с короткой стадией экспоненциального расширения. В 1981 году американец Алан Гут опубликовал работу, привлекшую к этой идее всеобщее внимание. Он первым понял, что подобное расширение (скорее всего, завершившееся на возрастной отметке в 10 -34 с) снимает проблему монополей, которыми он поначалу и занимался, и указывает путь к разрешению неувязок с плоской геометрией и горизонтом. Гут красиво назвал такое расширение космологической инфляцией, и этот термин стал общепринятым.

ТАМ, ЗА ГОРИЗОНТОМ

ПРОБЛЕМА ГОРИЗОНТА СВЯЗАНА С РЕЛИКТОВЫМ ИЗЛУЧЕНИЕМ, ИЗ КАКОЙ БЫ ТОЧКИ ГОРИЗОНТА ОНО НИ ПРИШЛО, ЕГО ТЕМПЕРАТУРА ПОСТОЯННА С ТОЧНОСТЬЮ ДО 0,001%.
В 1970-х этих данных еще не было, но астрономы и тогда полагали, что колебаний не превышают 0,1%. В этом и состояла загадка. Кванты микроволнового излучения разлетелись по космосу приблизительно через 400 000 лет после Большого взрыва. Если Вселенная все время эволюционировала по Фрид-ману-Леметру, то фотоны, пришедшие на Землю с участков небесной сферы, разделенных угловым расстоянием более двух градусов, были испущены из областей пространства, которые тогда не могли иметь друг с другом ничего общего. Между ними лежали расстояния, которые свет попросту не успел бы преодолеть за все время тогдашнего существования Вселенной - иначе говоря, их космологические горизонты не пересекались. Поэтому у них не было возможности установить друг с другом тепловое равновесие, которое почти точно уравняло бы их температуры. Но если эти области не были связаны в ранние моменты образования, как они оказались практически одинаково нагреты? Если это и совпадение, то слишком уж странное.

ПЛОСКАЯ ПРОБЛЕМА



Но модель Гута все же имела серьезный недостаток. Она допускала возникновение множества инфляционных областей, претерпевающих столкновения друг с другом. Это вело к формированию сильно неупорядоченного космоса с неоднородной плотностью вещества и излучения, который совершенно не похож на реальное космическое пространство. Однако вскоре Андрей Линде из Физического института Академии наук (ФИАН), а чуть позже Андреас Альбрехт с Полом Стейнхардтом из Университета Пенсильвании показали, что если изменить уравнение скалярного поля, то все становится на свои места. Отсюда следовал сценарий, по которому вся наша наблюдаемая Вселенная возникла из одного вакуумного пузыря, отделенного от других инфляционных областей непредставимо большими расстояниями.

ХАОТИЧЕСКАЯ ИНФЛЯЦИЯ


В 1983 году Андрей Линде совершил очередной прорыв, разработав теорию хаотической инфляции, которая позволила объяснить и состав Вселенной, и однородность реликтового излучения. Во время инфляции любые предшествующие неоднородности скалярного поля растягиваются настолько, что практически исчезают. На завершающем этапе инфляции это поле начинает быстро осциллировать вблизи минимума своей потенциальной энергии. При этом в изобилии рождаются частицы и фотоны, которые интенсивно взаимодействуют друг с другом и достигают равновесной температуры. Так что по окончании инфляции мы имеем плоскую горячую Вселенную, которая затем расширяется уже по сценарию Большого взрыва. Этот механизм объясняет, почему сегодня мы наблюдаем реликтовое излучение с мизерными колебаниями температуры, которые можно приписать квантовым флуктуациям в первой фазе существования Вселенной. Таким образом, теория хаотической инфляции разрешила проблему горизонта и без допущения, что до начала экспоненциального расширения зародышевая Вселенная пребывала в состоянии теплового равновесия.

Согласно модели Линде, распределение вещества и излучения в пространстве после инфляции просто обязано быть почти идеально однородным, за исключением следов первичных квантовых флуктуаций. Эти флуктуации породили локальные колебания плотности, которые со временем дали начало галактическим скоплениям и разделяющим их космическим пустотам. Очень важно, что без инфляционного "растяжения" флуктуации оказались бы слишком слабыми и не смогли бы стать зародышами галактик. В общем, инфляционный механизм обладает чрезвычайно мощной и универсальной космологической креативностью - если угодно, предстает в качестве вселенского демиурга. Так что заглавие этой статьи - отнюдь не преувеличение.
В масштабах порядка сотых долей величины Вселенной (сейчас это сотни мегапарсек) ее состав был и остается однородным и изотропным. Однако на шкале всего космоса однородность исчезает. Инфляция прекращается в одной области и начинается в другой, и так до бесконечности. Это самовоспроизводящийся бесконечный процесс, порождающий ветвящееся множество миров - Мультивселенную. Одни и те же фундаментальные физические законы могут там реализоваться в различных ипостасях - к примеру, внутриядерные силы и заряд электрона в других вселенных могут оказаться отличными от наших. Эту фантастическую картину в настоящее время на полном серьезе обсуждают и физики, и космологи.

БОРЬБА ИДЕЙ


«Основные идеи инфляционного сценария были сформулированы три десятка лет назад, - объясняет один из авторов инфляционной космологии, профессор Стэнфордского университета Андрей Линде. - После этого главной задачей стала разработка реалистических теорий, основанных на этих идеях, но только критерии реалистичности не раз изменялись. В 1980-х доминировало мнение, что инфляцию удастся понять с помощью моделей Великого объединения. Потом надежды растаяли, и инфляцию стали интерпретировать в контексте теории супергравитации, а позднее - теории суперструн. Однако такой путь оказался очень нелегким. Во-первых, обе эти теории используют чрезвычайно сложную математику, а во-вторых, они так устроены, что реализовать с их помощью инфляционный сценарий весьма и весьма непросто. Поэтому прогресс здесь оказался довольно медленным. В 2000 году трое японских ученых с немалым трудом получили в рамках теории супергравитации модель хаотической инфляции, которую я придумал почти на 20 лет раньше. Спустя три года мы в Стэнфорде сделали работу, которая показала принципиальную возможность конструирования инфляционных моделей с помощью теории суперструн и объясняла на ее основе четырехмерность нашего мира. Конкретно, мы выяснили, что так можно получить вакуумное состояние с положительной космологической постоянной, которое необходимо для запуска инфляции. Наш подход с успехом развили другие ученые, и это весьма способствовало прогрессу космологии. Сейчас понятно, что теория суперструн допускает существование гигантского количества вакуумных состояний, дающих начало экспоненциальному расширению Вселенной.
Теперь следует сделать еще один шаг и понять устройство нашей Вселенной. Эти работы ведутся, но встречают огромные технические трудности, и что получится в результате, пока не ясно. Мои коллеги и я последние два года занимаемся семейством гибридных моделей, которые опираются и на суперструны, и на супергравитацию. Прогресс есть, мы уже способны описать многие реально существующие вещи. Например, мы близки к пониманию того, почему сейчас столь невелика плотность энергии вакуума, которая всего втрое превышает плотность частиц и излучения. Но необходимо двигаться дальше. Мы с нетерпением ожидаем результатов наблюдений космической обсерватории Planck, которая измеряет спектральные характеристики реликтового излучения с очень высоким разрешением. Не исключено, что показания ее приборов пустят под нож целые классы инфляционных моделей и дадут стимул к развитию альтернативных теорий».
Инфляционная космология может похвастаться немалым числом замечательных достижений. Она предсказала плоскую геометрию нашей Вселенной задолго до того, как этот факт подтвердили астрономы и астрофизики. Вплоть до конца 1990-х считалось, что при полном учете всего вещества Вселенной численная величина параметра Ω не превышает 1/3. Понадобилось открыть темную энергию, чтобы удостовериться, что эта величина практически равна единице, как и следует из инфляционного сценария. Были предсказаны колебания температуры реликтового излучения и заранее вычислен их спектр. Подобных примеров немало. Попытки опровергнуть инфляционную теорию предпринимались неоднократно, но это никому не удалось. Кроме того, как считает Андрей Линде, в последние годы сложилась концепция множественности вселенных, формирование которой вполне можно назвать научной революцией: «Несмотря на свою незавершенность, она становится частью культуры нового поколения физиков и космологов».

НАРАВНЕ С ЭВОЛЮЦИЕЙ

«Инфляционная парадигма реализована сейчас во множестве вариантов, среди которых нет признанного лидера, - говорит директор Института космологии при университете Тафтса Александр Виленкин. - Моделей много, но никто не знает, которая из них правильная. Поэтому говорить о каком-то драматическом прогрессе, достигнутом в последние годы, я бы не стал. Да и сложностей пока хватает. Например, не совсем понятно, как сравнивать вероятности событий, предсказанных той или иной моделью. В вечной вселенной любое событие должно происходить бесчисленное множество раз. Так что для вычисления вероятностей надо сравнивать бесконечности, а это очень непросто. Также существует нерешенная проблема начала инфляции. Скорее всего, без него не обойтись, но еще не понятно, как к нему подобраться. И все же у инфляционной картины мира нет серьезных конкурентов. Я бы сравнил ее с теорией Дарвина, которая поначалу тоже имела множество неувязок. Однако альтернативы у нее так и не появилось, и в конце концов она завоевала признание ученых. Мне кажется, что и концепция космологической инфляции прекрасно справится со всеми трудностями».

Один из фрагментов первой микросекунды жизни вселенной сыграл огромную роль в ее дальнейшей эволюции.

Потеря связи Реликтовое излучение, которое мы сейчас видим с Земли, приходит с расстояния 46 млрд световых лет (по сопутствующей шкале), пропутешествовав чуть менее 14 млрд лет. Однако когда это излучение начало свое странствие, возраст Вселенной насчитывал всего лишь 300 000 лет. За это время свет мог пройти путь, соответственно, лишь в 300 000 световых лет (маленькие окружности), и две точки на иллюстрации просто не смогли бы связаться друг с другом - их космологические горизонты не пересекаются.

Концептуальный прорыв стал возможным благодаря очень красивой гипотезе, родившейся в попытках найти выход из трех серьезных неувязок теории Большого взрыва — проблемы плоской Вселенной, проблемы горизонта и проблемы магнитных монополей.

Редкая частица

С середины 1970-х годов физики начали работать над теоретическими моделями Великого объединения трех фундаментальных взаимодействий — сильного, слабого и электромагнитного. Многие из этих моделей приводили к заключению, что вскоре после Большого взрыва должны были в изобилии рождаться очень массивные частицы, несущие одиночный магнитный заряд. Когда возраст Вселенной достиг 10 -36 секунды (по некоторым оценкам, даже несколько раньше), сильное взаимодействие отделилось от электрослабого и обрело самостоятельность. При этом в вакууме образовались точечные топологические дефекты с массой в 10 15 -10 16 большей, чем масса тогда еще не существовавшего протона. Когда, в свою очередь, электрослабое взаимодействие разделилось на слабое и электромагнитное и появился настоящий электромагнетизм, эти дефекты обрели магнитные заряды и начали новую жизнь — в виде магнитных монополей.


Реликтовое излучение, которое мы сейчас видим с Земли, приходит с расстояния 46 млрд. световых лет (по сопутствующей шкале), пропутешествовав чуть менее 14 млрд лет. Однако когда это излучение начало свое путешествие, возраст Вселенной насчитывал всего лишь 300 000 лет. За это время свет мог пройти, соответственно, лишь 300 000 световых лет (маленькие окружности), и две точки на иллюстрации просто не смогли бы связаться друг с другом — их космологические горизонты не пересекаются.

Эта красивая модель поставила космологию перед малоприятной проблемой. «Северные» магнитные монополи аннигилируют при столкновении с «южными», но в остальном эти частицы стабильны. Из-за огромной по меркам микромира массы нанограммового масштаба вскоре после рождения они были обязаны замедлиться до нерелятивистских скоростей, рассеяться по пространству и сохраниться до наших времен. Согласно стандартной модели Большого взрыва, их нынешняя плотность должна приблизительно совпадать с плотностью протонов. Но в этом случае общая плотность космической энергии как минимум в квадриллион раз превышала бы реальную.

Все попытки обнаружить монополи до сих пор завершались неудачей. Как показал поиск монополей в железных рудах и морской воде, отношение их числа к числу протонов не превышает 10 -30 . Либо этих частиц вообще нет в нашей области пространства, либо столь мало, что приборы неспособны их зарегистрировать, несмотря на четкую магнитную подпись. Это подтверждают и астрономические наблюдения: наличие монополей должно сказываться на магнитных полях нашей Галактики, а этого не обнаружено.

Плоская проблема

Астрономы уже давно уверились в том, что если нынешнее космическое пространство и деформировано, то довольно умеренно. Модели Фридмана и Леметра позволяют вычислить, какой была эта искривленность вскоре после Большого Взрыва, чтобы находиться в согласии с современными измерениями. Кривизна пространства оценивается с помощью безразмерного параметра Ω, равного отношению средней плотности космической энергии к тому ее значению, при котором эта кривизна делается равна нулю, а геометрия Вселенной, соответственно, становится плоской. Лет сорок назад уже не было сомнений, что если этот параметр и отличается от единицы, то не больше, чем в десять раз в ту или иную сторону. Отсюда следует, что через одну секунду после Большого взрыва он отличался от единицы в большую или меньшую сторону всего лишь на 10 -14 ! Является ли такая фантастически точная «настройка» случайной или она обусловлена физическими причинами? Именно так в 1979 году задачу сформулировали американские физики Роберт Дике и Джеймс Пиблз.

Конечно, можно допустить, что монополей вообще никогда не было. Некоторые модели объединения фундаментальных взаимодействий и в самом деле не предписывают их появления. Но проблемы горизонта и плоской Вселенной остаются. Так получилось, что в конце 1970-х космология столкнулась с серьезными препятствиями, для преодоления которых явно требовались новые идеи.

Отрицательное давление

И эти идеи не замедлили появиться. Главной из них была гипотеза, согласно которой в космическом пространстве помимо вещества и излучения существует скалярное поле (или поля), создающее отрицательное давление. Такая ситуация выглядит парадоксальной, однако же она встречается в повседневной жизни. Система с положительным давлением, например сжатый газ, при расширении теряет энергию и охлаждается. Эластичная лента, напротив, пребывает в состоянии с отрицательным давлением, ведь, в отличие от газа, она стремится не расшириться, а сжаться. Если такую ленту быстро растянуть, она нагреется и ее тепловая энергия возрастет. При расширении Вселенной поле с отрицательным давлением копит энергию, которая, высвобождаясь, способна породить частицы и кванты света.


Локальная геометрия вселенной определяется безразмерным параметром Ω: если он меньше единицы, вселенная будет гиперболической (открытой), если больше — сферической (закрытой), а если в точности равен единице — плоской. Даже очень небольшие отклонения от единицы со временем могут привести к значительному изменению этого параметра. На иллюстрации синим показан график параметра для нашей Вселенной.

Отрицательное давление может иметь различную величину. Но существует особый случай, когда оно равно плотности космической энергии с обратным знаком. При таком раскладе эта плотность остается постоянной при расширении пространства, поскольку отрицательное давление компенсирует растущее «разрежение» частиц и световых квантов. Из уравнений Фридмана-Леметра следует, что Вселенная в этом случае расширяется экспоненциально.

Гипотеза экспоненциального расширения позволяет разрешить все три проблемы, приведенные выше. Предположим, что Вселенная возникла из крошечного «пузырька» сильно искривленного пространства, который претерпел превращение, наделившее пространство отрицательным давлением и тем заставившее его расширяться по экспоненциальному закону. Естественно, что после исчезновения этого давления Вселенная возвратится к прежнему «нормальному» расширению.


Решение проблем

Будем считать, что радиус Вселенной перед выходом на экспоненту всего на несколько порядков превышал планковскую длину, 10 -35 м. Если в экспоненциальной фазе он вырастет, скажем, в 10 50 раз, то к ее концу достигнет тысяч световых лет. Каким бы ни было отличие параметра кривизны пространства от единицы до начала расширения, к его концу оно уменьшится в 10 -100 раз, то есть пространство станет идеально плоским!

Аналогично решается проблема монополей. Если топологические дефекты, ставшие их предшественниками, возникли до или даже в процессе экспоненциального расширения, то к его концу они должны отдалиться друг от друга на исполинские расстояния. С тех пор Вселенная еще изрядно расширилась, и плотность монополей упала практически до нуля. Вычисления показывают, что даже если исследовать космический кубик с ребром в миллиард световых лет, то там с высочайшей степенью вероятности не найдется ни единого монополя.


Гипотеза экспоненциального расширения подсказывает и простое избавление от проблемы горизонта. Предположим, что размер зародышевого «пузырька», положившего начало нашей Вселенной, не превышал пути, который успел пройти свет после Большого взрыва. В этом случае в нем могло установиться тепловое равновесие, обеспечившее равенство температур по всему объему, которое сохранилось при экспоненциальном расширении. Подобное объяснение присутствует во многих учебниках космологии, однако можно обойтись и без него.

Из одного пузыря

На рубеже 1970−1980-х несколько теоретиков, первым из которых стал советский физик Алексей Старобинский, рассмотрели модели ранней эволюции Вселенной с короткой стадией экспоненциального расширения. В 1981 году американец Алан Гут опубликовал работу, привлекшую к этой идее всеобщее внимание. Он первым понял, что подобное расширение (скорее всего, завершившееся на возрастной отметке в 10 -34 с) снимает проблему монополей, которыми он поначалу и занимался, и указывает путь к разрешению неувязок с плоской геометрией и горизонтом. Гут красиво назвал такое расширение космологической инфляцией, и этот термин стал общепринятым.


Нормальное расширение со скоростями, меньшими скорости света, приводит к тому, что вся Вселенная рано или поздно будет находиться внутри нашего горизонта событий. Инфляционное расширение со скоростями, значительно превышающими скорость света, привело к тому, что нашему наблюдению доступна лишь малая часть Вселенной, образовавшейся при Большом Взрыве. Это позволяет решить проблему горизонта и объяснить одинаковую температуру реликтового излучения, приходящего из различных точек небосвода.

Но модель Гута все же имела серьезный недостаток. Она допускала возникновение множества инфляционных областей, претерпевающих столкновения друг с другом. Это вело к формированию сильно неупорядоченного космоса с неоднородной плотностью вещества и излучения, который совершенно не похож на реальное космическое пространство. Однако вскоре Андрей Линде из Физического института Академии наук (ФИАН), а чуть позже Андреас Альбрехт с Полом Стейнхардтом из Университета Пенсильвании показали, что если изменить уравнение скалярного поля, то все становится на свои места. Отсюда следовал сценарий, по которому вся наша наблюдаемая Вселенная возникла из одного вакуумного пузыря, отделенного от других инфляционных областей непредставимо большими расстояниями.

Хаотическая инфляция

В 1983 году Андрей Линде совершил очередной прорыв, разработав теорию хаотической инфляции, которая позволила объяснить и состав Вселенной, и однородность реликтового излучения. Во время инфляции любые предшествующие неоднородности скалярного поля растягиваются настолько, что практически исчезают. На завершающем этапе инфляции это поле начинает быстро осциллировать вблизи минимума своей потенциальной энергии. При этом в изобилии рождаются частицы и фотоны, которые интенсивно взаимодействуют друг с другом и достигают равновесной температуры. Так что по окончании инфляции мы имеем плоскую горячую Вселенную, которая затем расширяется уже по сценарию Большого взрыва. Этот механизм объясняет, почему сегодня мы наблюдаем реликтовое излучение с мизерными колебаниями температуры, которые можно приписать квантовым флуктуациям в первой фазе существования Вселенной. Таким образом, теория хаотической инфляции разрешила проблему горизонта и без допущения, что до начала экспоненциального расширения зародышевая Вселенная пребывала в состоянии теплового равновесия.


Согласно модели Линде, распределение вещества и излучения в пространстве после инфляции просто обязано быть почти идеально однородным, за исключением следов первичных квантовых флуктуаций. Эти флуктуации породили локальные колебания плотности, которые со временем дали начало галактическим скоплениям и разделяющим их космическим пустотам. Очень важно, что без инфляционного «растяжения» флуктуации оказались бы слишком слабыми и не смогли бы стать зародышами галактик. В общем, инфляционный механизм обладает чрезвычайно мощной и универсальной космологической креативностью — если угодно, предстает в качестве вселенского демиурга. Так что заглавие этой статьи — отнюдь не преувеличение.

В масштабах порядка сотых долей величины Вселенной (сейчас это сотни мегапарсек) ее состав был и остается однородным и изотропным. Однако на шкале всего космоса однородность исчезает. Инфляция прекращается водной области и начинается в другой, и так до бесконечности. Это самовоспроизводящийся бесконечный процесс, порождающий ветвящееся множество миров — Мультивселенную. Одни и те же фундаментальные физические законы могут там реализоваться в различных ипостасях — к примеру, внутриядерные силы и заряд электрона в других вселенных могут оказаться отличными от наших. Эту фантастическую картину в настоящее время на полном серьезе обсуждают и физики, и космологи.


Увеличивающаяся сфера демонстрирует решение проблемы плоской Вселенной в рамках инфляционной космологии. По мере роста радиуса сферы выбранный участок ее поверхности становится все более и более плоским. Точно таким же образом экспоненциальное расширение пространства-времени на этапе инфляции привело к тому, что сейчас наша Вселенная является почти плоской.

Борьба идей

«Основные идеи инфляционного сценария были сформулированы три десятка лет назад, — объясняет «ПМ» один из авторов инфляционной космологии, профессор Стэнфордского университета Андрей Линде. — После этого главной задачей стала разработка реалистических теорий, основанных на этих идеях, но только критерии реалистичности не раз изменялись. В 1980-х доминировало мнение, что инфляцию удастся понять с помощью моделей Великого объединения. Потом надежды растаяли, и инфляцию стали интерпретировать в контексте теории супергравитации, а позднее — теории суперструн. Однако такой путь оказался очень нелегким. Во‑первых, обе эти теории используют чрезвычайно сложную математику, а во-вторых, они так устроены, что реализовать с их помощью инфляционный сценарий весьма и весьма непросто. Поэтому прогресс здесь оказался довольно медленным. В 2000 году трое японских ученых с немалым трудом получили в рамках теории супергравитации модель хаотической инфляции, которую я придумал почти на 20 лет раньше. Спустя три года мы в Стэнфорде сделали работу, которая показала принципиальную возможность конструирования инфляционных моделей с помощью теории суперструн и объясняла на ее основе четырехмерность нашего мира. Конкретно, мы выяснили, что так можно получить вакуумное состояние с положительной космологической постоянной, которое необходимо для запуска инфляции. Наш подход с успехом развили другие ученые, и это весьма способствовало прогрессу космологии. Сейчас понятно, что теория суперструн допускает существование гигантского количества вакуумных состояний, дающих начало экспоненциальному расширению Вселенной.


Теперь следует сделать еще один шаг и понять устройство нашей Вселенной. Эти работы ведутся, но встречают огромные технические трудности, и что получится в результате, пока не ясно. Мои коллеги и я последние два года занимаемся семейством гибридных моделей, которые опираются и на суперструны, и на супергравитацию. Прогресс есть, мы уже способны описать многие реально существующие вещи. Например, мы близки к пониманию того, почему сейчас столь невелика плотность энергии вакуума, которая всего втрое превышает плотность частиц и излучения. Но необходимо двигаться дальше. Мы с нетерпением ожидаем результатов наблюдений космической обсерватории Planck, которая измеряет спектральные характеристики реликтового излучения с очень высоким разрешением. Не исключено, что показания ее приборов пустят под нож целые классы инфляционных моделей и дадут стимул к развитию альтернативных теорий».


Модель космологической инфляции, решающая многие неувязки теории Большого Взрыва, утверждает, что за очень короткое время размер пузырька, из которой образовалась наша Вселенная, увеличился в 10 50 раз. После этого Вселенная продолжила расширяться, но уже значительно медленнее.

Инфляционная космология может похвастаться немалым числом замечательных достижений. Она предсказала плоскую геометрию нашей Вселенной задолго до того, как этот факт подтвердили астрономы и астрофизики. Вплоть до конца 1990-х считалось, что при полном учете всего вещества Вселенной численная величина параметра не превышает 1/3. Понадобилось открыть темную энергию, чтобы удостовериться, что эта величина практически равна единице, как и следует из инфляционного сценария. Были предсказаны колебания температуры реликтового излучения и заранее вычислен их спектр. Подобных примеров немало. Попытки опровергнуть инфляционную теорию предпринимались неоднократно, но это никому не удалось. Кроме того, как считает Андрей Линде, в последние годы сложилась концепция множественности вселенных, формирование которой вполне можно назвать научной революцией: «Несмотря на свою незавершенность, она становится частью культуры нового поколения физиков и космологов».


Наравне с эволюцией

«Инфляционная парадигма реализована сейчас во множестве вариантов, среди которых нет признанного лидера, — говорит директор Института космологии при университете Тафтса Александр Виленкин. — Моделей много, но никто не знает, которая из них правильная. Поэтому говорить о каком-то драматическом прогрессе, достигнутом в последние годы, я бы не стал. Да и сложностей пока хватает. Например, не совсем понятно, как сравнивать вероятности событий, предсказанных той или иной моделью. В вечной вселенной любое событие должно происходить бесчисленное множество раз. Так что для вычисления вероятностей надо сравнивать бесконечности, а это очень непросто. Также существует нерешенная проблема начала инфляции. Скорее всего, без него не обойтись, но еще не понятно, как к нему подобраться. И все же у инфляционной картины мира нет серьезных конкурентов. Я бы сравнил ее с теорией Дарвина, которая поначалу тоже имела множество неувязок. Однако альтернативы у нее так и не появилось, и в конце концов она завоевала признание ученых. Мне кажется, что и концепция космологической инфляции прекрасно справится со всеми трудностями».

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода