Вконтакте Facebook Twitter Лента RSS

Найти импульс системы тела. Импульс

3.2. Импульс

3.2.2. Изменение импульса тела

Для применения законов изменения и сохранения импульса необходимо уметь рассчитывать изменение импульса.

Изменение импульса Δ P → тела определяется формулой

Δ P → = P → 2 − P → 1 ,

где P → 1 = m v → 1 - начальный импульс тела; P → 2 = m v → 2 - его конечный импульс; m - масса тела; v → 1 - начальная скорость тела; v → 2 - его конечная скорость.

Для вычисления изменения импульса тела целесообразно применять следующий алгоритм :

1) выбрать систему координат и найти проекции начального P → 1 и конечного P → 2 импульсов тела на координатные оси:

P 1 x , P 2 x ;

P 1 y , P 2 y ;

∆P x = P 2 x − P 1 x ;

∆P y = P 2 y − P 1 y ;

3) вычислить модуль вектора изменения импульса Δ P → как

Δ P = Δ P x 2 + Δ P y 2 .

Пример 4. Тело падает под углом 30° к вертикали на горизонтальную плоскость. Определить модуль изменения импульса тела за время удара, если к моменту соприкосновения с плоскостью модуль импульса тела равен 15 кг · м/с. Удар тела о плоскость считать абсолютно упругим.

Решение. Тело, падающее на горизонтальную поверхность под некоторым углом α к вертикали и соударяющееся с данной поверхностью абсолютно упруго,

  • во-первых, сохраняет неизменным модуль своей скорости, а значит, и величину импульса:

P 1 = P 2 = P ;

  • во-вторых, отражается от поверхности под тем же углом, под каким падает на нее:

α 1 = α 2 = α,

где P 1 = mv 1 - модуль импульса тела до удара; P 2 = mv 2 - модуль импульса тела после удара; m - масса тела; v 1 - величина скорости тела до удара; v 2 - величина скорости тела после удара; α 1 - угол падения; α 2 - угол отражения.

Указанные импульсы тела, углы и система координат показаны на рисунке.

Для расчета модуля изменения импульса тела воспользуемся алгоритмом :

1) запишем проекции импульсов до удара и после удара тела о поверхность на координатные оси:

P 1 x = mv  sin α, P 2 x = mv  sin α;

P 1 y = −mv  cos α, P 2 y = mv  cos α;

2) найдем проекции изменения импульса на координатные оси по фор­мулам

Δ P x = P 2 x − P 1 x = m v sin α − m v sin α = 0 ;

Δ P y = P 2 y − P 1 y = m v cos α − (− m v cos α) = 2 m v cos α ;

Δ P = (Δ P x) 2 + (Δ P y) 2 = (Δ P y) 2 = | Δ P y | = 2 m v cos α .

Величина P = mv задана в условии задачи; следовательно, вычисление модуля изменения импульса произведем по формуле

Δ P = 2 P cos 30 ° = 2 ⋅ 15 ⋅ 0,5 3 ≈ 26 кг ⋅ м/с.

Пример 5. Камень массой 50 г брошен под углом 45° к горизонту со скоростью 20 м/с. Найти модуль изменения импульса камня за время полета. Сопротивлением воздуха пренебречь.

Решение. Если сопротивление воздуха отсутствует, то тело движется по симметричной параболе; при этом

  • во-первых, вектор скорости в точке падения тела составляет с горизонтом угол β, равный углу α (α - угол между вектором скорости тела в точке бросания и горизонтом):
  • во-вторых, модули скоростей в точке бросания v 0 и в точке падения тела v также одинаковы:

v 0 = v ,

где v 0 - величина скорости тела в точке бросания; v - величина скорости тела в точке падения; α - угол, который составляет вектор скорости с горизонтом в точке бросания тела; β - угол, который составляет с горизонтом вектор скорости в точке падения тела.

Векторы скорости тела (векторы импульса) и углы показаны на рисунке.

Для расчета модуля изменения импульса тела во время полета воспользуемся алгоритмом :

1) запишем проекции импульсов для точки бросания и для точки падения на координатные оси:

P 1 x = mv 0  cos α, P 2 x = mv 0  cos α;

P 1 y = mv 0  sin α, P 2 y = −mv 0  sin α;

2) найдем проекции изменения импульса на координатные оси по формулам

Δ P x = P 2 x − P 1 x = m v 0 cos α − m v 0 cos α = 0 ;

Δ P y = P 2 y − P 1 y = − m v 0 sin α − m v 0 sin α = − 2 m v 0 sin α ;

3) вычислим модуль изменения импульса как

Δ P = (Δ P x) 2 + (Δ P y) 2 = (Δ P y) 2 = | Δ P y | = 2 m v 0 sin α ,

где m - масса тела; v 0 - модуль начальной скорости тела.

Следовательно, вычисление модуля изменения импульса произведем по формуле

Δ P = 2 m v 0 sin 45 ° = 2 ⋅ 50 ⋅ 10 − 3 ⋅ 20 ⋅ 0,5 2 ≈ 1,4 кг ⋅ м/с.

Векторная физическая величина, равная произведению массы тела на его скорость, называется импульсом тела: р - mv. Под импульсом системы тел понимают сумму импульсов всех тел этой системы: ?p=p 1 +p 2 +... .
Закон сохранения импульса: в замкнутой системе тел при любых процессах ее импульс остается неизменным, т.е.
?p = const.
Справедливость этого закона легко доказать, для простоты рассмотрев систему из двух тел. При взаимодействии двух тел изменяется импульс каждого из них, причем эти изменения равны соответственно?p = F 1 ?t и?р 2 = F 2 ?t. При этом изменение полного импульса системы равно: ?р = ?р 1 + ?р 2 =F 1 ?t + F 2 ?t = (F 1 + F 2) ?t.
Однако, согласно третьему закону Ньютона, F 1 = -F 2 . Таким образом, ?р = 0.
Одним из важнейших следствий закона сохранения импульса является существование реактивного движения. Реактивное движение возникает в случае, когда от тела с некоторой скоростью отделяется какая-либо его часть.
Например, реактивное движение совершает ракета. Перед стартом импульс ракеты равен нулю, таким он должен остаться и после старта. Применяя закон сохранения импульса (действие силы тяжести не учитываем), можно рассчитать, какую скорость разовьет ракета после сгорания в ней всего топлива: m r v r + mv = 0, где V r - скорость газов, выбрасываемых в виде реактивной струи, тг - масса сгоревшего топлива, v - скорость ракеты, a m - ее масса. Отсюда рассчитываем скорость ракеты:

Схемы различных ракет были разработаны К. Э. Циолковским, который считается основоположником теории космических полетов. На практике идеи К. Э. Циолковского стали осуществляться учеными, инженерами и космонавтами под руководством С. П. Королева.
Задача на применение закона сохранения импульса. Мальчик массой тг = 50 кг бежит со скоростью vx = 5 м/с, догоняет тележку массой т2 = 100 кг, движущуюся со скоростью i>2 = 2 м/с, и вскакивает на нее. С какой скоростью v станет двигаться тележка вместе с мальчиком? Трение не учитывать.
Решение. Систему тел мальчик - тележка можно считать замкнутой, так как силы тяжести мальчика и тележки уравновешены силами реакции опор, а трение не учитывается.
Свяжем систему отсчета с Землей и направим ось ОХ по направлению движения мальчика и тележки. В этом случае проекции импульсов и скоростей на ось будут равны их модулям. Поэтому можно записать соотношения в скалярной форме.
Начальный импульс системы складывается из начальных импульсов мальчика и тележки, соотвественно равных m v и m v Когда мальчик едет на тележке, импульс системы равен (т1 + m2)v. По закону сохранения импульса

m 1 v 1 +m 2 v 2 =(m 1 +m 2) v

Если на тело массой m за определенный промежуток времени Δ t действует сила F → , тогда следует изменение скорости тела ∆ v → = v 2 → - v 1 → . Получаем, что за время Δ t тело продолжает движение с ускорением:

a → = ∆ v → ∆ t = v 2 → - v 1 → ∆ t .

Основываясь на основном законе динамики, то есть втором законе Ньютона, имеем:

F → = m a → = m v 2 → - v 1 → ∆ t или F → ∆ t = m v 2 → - m v 1 → = m ∆ v → = ∆ m v → .

Определение 1

Импульс тела , или количество движения – это физическая величина, равная произведению массы тела на скорость его движения.

Импульс тела считается векторной величиной, которая измеряется в килограмм-метр в секунду (к г м / с) .

Определение 2

Импульс силы – это физическая величина, равняющаяся произведению силы на время ее действия.

Импульс относят к векторным величинам. Существует еще одна формулировка определения.

Определение 3

Изменение импульса тела равняется импульсу силы.

При обозначении импульса p → второй закон Ньютона записывается как:

F → ∆ t = ∆ p → .

Данный вид позволяет формулировать второй закон Ньютона. Сила F → является равнодействующей всех сил, действующих на тело. Равенство записывается как проекции на координатные оси вида:

F x Δ t = Δ p x ; F y Δ t = Δ p y ; F z Δ t = Δ p z .

Рисунок 1 . 16 . 1 . Модель импульса тела.

Изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось.

Определение 4

Одномерное движение – это движение тела по одной из координатный осей.

Пример 1

На примере рассмотрим свободное падение тела с начальной скоростью v 0 под действием силы тяжести за промежуток времени t . При направлении оси O Y вертикально вниз импульс силы тяжести F т = mg , действующий за время t , равняется m g t . Такой импульс равняется изменению импульса тела:

F т t = m g t = Δ p = m (v – v 0) , откуда v = v 0 + g t .

Запись совпадает с кинематической формулой определения скорости равноускоренного движения. По модулю сила не изменяется из всего интервала t . Когда она изменяема по величине, тогда формула импульса требует подстановки среднего значения силы F с р из временного промежутка t . Рисунок 1 . 16 . 2 показывает, каким образом определяется импульс силы, которая зависит от времени.

Рисунок 1 . 16 . 2 . Вычисление импульса силы по графику зависимости F (t)

Необходимо выбрать на временной оси интервал Δ t , видно, что сила F (t) практически неизменна. Импульс силы F (t) Δ t за промежуток времени Δ t будет равняться площади заштрихованной фигуры. При разделении временной оси на интервалы на Δ t i на промежутке от от 0 до t , сложить импульсы всех действующих сил из этих промежутков Δ t i , тогда суммарный импульс силы будет равняться площади образования при помощи ступенчатой и временной осей.

Применив предел (Δ t i → 0) , можно найти площадь, которая будет ограничиваться графиком F (t) и осью t . Использование определения импульса силы по графику применимо с любыми законами, где имеются изменяющиеся силы и время. Данное решение ведет к интегрированию функции F (t) из интервала [ 0 ; t ] .

Рисунок 1 . 16 . 2 показывает импульс силы, находящийся на интервале от t 1 = 0 с до t 2 = 10 .

Из формулы получим, что F с р (t 2 - t 1) = 1 2 F m a x (t 2 - t 1) = 100 Н · с = 100 к г · м / с.

То есть, из примера видно F с р = 1 2 F m a x = 10 Н.

Имеются случаи, когда определение средней силы F с р возможно при известных времени и данных о сообщенном импульсе. При сильной ударе по мячу с массой 0 , 415 к г можно сообщить скорость, равную v = 30 м / с. Приблизительным временем удара является значение 8 · 10 – 3 с.

Тогда формула импульса приобретает вид:

p = m v = 12 , 5 к г · м / с.

Чтобы определить среднюю силу F с р во время удара, необходимо F с р = p ∆ t = 1 , 56 · 10 3 Н.

Получили очень большое значение, которое равняется телу массой 160 к г.

Когда движение происходит по криволинейной траектории, то начальное значение p 1 → и конечное
p 2 → могут быть различны по модулю и по направлению. Для определения импульса ∆ p → применяют диаграмму импульсов, где имеются векторы p 1 → и p 2 → , а ∆ p → = p 2 → - p 1 → построен по правилу параллелограмма.

Пример 2

Для примера приводится рисунок 1 . 16 . 2 , где нарисована схема импульсов мяча, отскакивающего от стены. При подаче мяч с массой m со скоростью v 1 → налетает на поверхность под углом α к нормали и отскакивает со скоростью v 2 → с углом β . При ударе в стену мяч подвергался действию силы F → , направленной также, как и вектор ∆ p → .

Рисунок 1 . 16 . 3 . Отскакивание мяча от шероховатой стенки и диаграмма импульсов.

Если происходит нормальное падение мяча с массой m на упругую поверхность со скоростью v 1 → = v → , тогда при отскоке она изменится на v 2 → = - v → . Значит, за определенный промежуток времени импульс изменится и будет равен ∆ p → = - 2 m v → . Используя проекции на О Х, результат запишется как Δ p x = – 2 m v x . Из рисунка 1 . 16 . 3 видно, что ось О Х направлена от стенки, тогда следует v x < 0 и Δ p x > 0 . Из формулы получим, что модуль Δ p связан с модулем скорости, который принимает вид Δ p = 2 m v .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Произведение массы тела на его скорость называют импульсом или мерой движения тела. Он относится к векторным величинам. Его направление сонаправлено вектору скорости тела.

Единица измерения в СИ:

Вспомним второй закон механики:

Для ускорения верно соотношение:

,
Где v0 и v - скорости тела в начале и конце некоторого временного отрезка Δt.
Перепишем второй закон следующим образом:

Можно увидеть, что - импульс тела в начале некоторого отрезка времени, а - импульс тела в конечный момент времени.
- альтернативная математическая запись второго закона Ньютона.
Выполним преобразование:

Величину называют импульсом силы.
А формула, которую получили, показывает, что изменение импульса тела равно по величине импульсу действующей на него силы.
Эта формула особенно интересна тем, что ей можно воспользоваться в случае, когда масса движущегося под действием силы F тела меняется в процессе движения. Примером может служить реактивное движение.

Закон сохранения импульса

В физике часто встречаются ситуации, в которых одновременно рассматривается движение взаимодействующих между собой тел, называемых системой тел.
Системой тел можно назвать солнечную систему, соударяющиеся шары, молекулы тела или система «ружьё и пуля». Те тела, которые не участвуют во взаимодействии с телами системы, называются внешними по отношению к этой системе, а силы, с которыми они действуют на систему - внешними силами.

Изолированная система тел

Если на систему не действуют внешние силы или их действие скомпенсировано, то её называют изолированной или замкнутой.
Если рассматривать движения тел в замкнутой системе, то следует учитывать силы, с которыми эти тела взаимодействуют между собой.
Если рассмотреть простейшую изолированную систему, состоящую из двух тел, массы которых m1 и m2. Тела движутся по одной прямой и их скорости совпадают по направлению, причём v1 > v2. Когда первое тело догонит второе, они начнут взаимодействовать посредством сил упругости, их скорости будут меняться, и тела начнут двигаться со скоростями. Запишем их взаимодействие с помощью третьего закона Ньютона и получим следующее соотношение:

или
.

Векторные суммы импульсов двух тел до и после удара равны между собой.
Полезной аналогией для понимания закона сохранения импульса является денежная сделка между двумя людьми. Предположим, что у двух людей до сделки была определённая сумма. У Ивана было 1000 рублей и Петр тоже обладал 1000 рублей. Общая сумма в их карманах составляет 2000 рублей. Во время сделки Иван платит Петру 500 рублей, осуществляется передача денег. У Петра в кармане теперь 1500 руб., а у Ивана - 500. Но общая сумма в их карманах не изменилась и также составляет 2000 рублей.
Полученное выражение справедливо для любого количества тел, принадлежащих изолированной системе, и является математической формулировкой закона сохранения импульса.
Суммарный импульс N-ного количества тел, образующих изолированную систему, не меняется с течением времени.
Когда система тел подвергается воздействию нескомпенсированных внешних сил (система незамкнутая), то суммарный импульс тел этой системы изменяется с течением времени. Но справедливым остаётся закон сохранения для суммы проекций импульсов этих тел на любое направление, перпендикулярное направлению результирующей внешней силы.

Движение ракеты

Движение, которое возникает при отделении от тела его части определённой массы с некоторой скоростью, называют реактивным.
Примером реактивного движения может служить движение ракеты, находящейся на значительном удалении от Солнца и планет. В этом случае ракета не испытывает гравитационного воздействия и может считаться изолированной системой.
Ракета состоит из оболочки и топлива. Они и являются взаимодействующими телами изолированной системы. В начальный момент времени скорость ракеты равна нулю. В этот момент равен нулю и импульс системы, и оболочки, и топлива. Если включить двигатель, то топливо ракеты сгорает и превращается в высокотемпературный газ, покидающий двигатель под высоким давлением и с большой скоростью.
Обозначим массу образующегося газа mг. Будем считать, что он вылетает из сопла ракеты моментально со скоростью vг. Массу и скорость оболочки обозначим соответственно mоб и vоб.
Закон сохранения импульса даёт право записать соотношение:


.Из этого равенства можем получить скорость движения оболочки:

Знак «минус» указывает на то, что скорость оболочки направлена в противоположную сторону от выбрасываемого газа.
Скорость оболочки пропорциональна скорости выброса газа и массе газа. И обратно пропорциональна массе оболочки.
Принцип реактивного движения позволяет рассчитывать перемещение ракет, самолётов и других тел в условиях, когда на них действуют внешние сила тяжести или сила сопротивления атмосферы. Конечно, в этом случае уравнение даёт завышенное значение скорости оболочки vоб. В реальных условиях и газ вытекает из ракеты не мгновенно, что влияет на итоговое значение vоб.
Действующие формулы, описывающее движение тела с реактивным двигателем получены русскими учёными И.В. Мещерским и К.Э. Циолковским.

Темы кодификатора ЕГЭ: импульс тела, импульс системы тел, закон сохранения импульса.

Импульс тела - это векторная величина, равная произведению массы тела на его скорость:

Специальных единиц измерения импульса нет. Размерность импульса - это просто произведение размерности массы на размерность скорости:

Почему понятие импульса является интересным? Оказывается, с его помощью можно придать второму закону Ньютона несколько иную, также чрезвычайно полезную форму.

Второй закон Ньютона в импульсной форме

Пусть - равнодействующая сил, приложенных к телу массы . Начинаем с обычной записи второго закона Ньютона:

С учётом того, что ускорение тела равно производной вектора скорости, второй закон Ньютона переписывается следующим образом:

Вносим константу под знак производной:

Как видим, в левой части получилась производная импульса:

. ( 1 )

Соотношение ( 1 ) и есть новая форма записи второго закона Ньютона.

Второй закон Ньютона в импульсной форме. Производная импульса тела есть равнодействующая приложенных к телу сил.

Можно сказать и так: результирующая сила, действующая на тело, равна скорости изменения импульса тела.

Производную в формуле ( 1 ) можно заменить на отношение конечных приращений:

. ( 2 )

В этом случае есть средняя сила, действующая на тело в течение интервала времени . Чем меньше величина , тем ближе отношение к производной , и тем ближе средняя сила к своему мгновенному значению в данный момент времени.

В задачах, как правило, интервал времени достаточно мал. Например, это может быть время соударения мяча со стенкой, и тогда - средняя сила, действующая на мяч со стороны стенки во время удара.

Вектор в левой части соотношения ( 2 ) называется изменением импульса за время . Изменение импульса - это разность конечного и начального векторов импульса. А именно, если - импульс тела в некоторый начальный момент времени, - импульс тела спустя промежуток времени , то изменение импульса есть разность:

Подчеркнём ещё раз, что изменение импульса - это разность векторов (рис. 1 ):

Пусть, например, мяч летит перпендикулярно стенке (импульс перед ударом равен ) и отскакивает назад без потери скорости (импульс после удара равен ). Несмотря на то, что импульс по модулю не изменился (), изменение импульса имеется:

Геометрически эта ситуация показана на рис. 2 :

Модуль изменения импульса, как видим, равен удвоенному модулю начального импульса мяча: .

Перепишем формулу ( 2 ) следующим образом:

, ( 3 )

или, расписывая изменение импульса, как и выше:

Величина называется импульсом силы. Специальной единицы измерения для импульса силы нет; размерность импульса силы равна просто произведению размерностей силы и времени:

(Обратите внимание, что оказывается ещё одной возможной единицей измерения импульса тела.)

Словесная формулировка равенства ( 3 ) такова: изменение импульса тела равно импульсу действующей на тело силы за данный промежуток времени. Это, разумеется, снова есть второй закон Ньютона в импульсной форме.

Пример вычисления силы

В качестве примера применения второго закона Ньютона в импульсной форме давайте рассмотрим следующую задачу.

Задача. Шарик массы г, летящий горизонтально со скоростью м/с, ударяется о гладкую вертикальную стену и отскакивает от неё без потери скорости. Угол падения шарика (то есть угол между направлением движения шарика и перпендикуляром к стене) равен . Удар длится с. Найти среднюю силу,
действующую на шарик во время удара.

Решение. Покажем прежде всего, что угол отражения равен углу падения, то есть шарик отскочит от стены под тем же углом (рис. 3 ).

Согласно ( 3 ) имеем: . Отсюда следует, что вектор изменения импульса сонаправлен с вектором , то есть направлен перпендикулярно стене в сторону отскока шарика (рис. 5 ).

Рис. 5. К задаче

Векторы и
равны по модулю
(так как скорость шарика не изменилась). Поэтому треугольник, составленный из векторов , и , является равнобедренным. Значит, угол между векторами и равен , то есть угол отражения действительно равен углу падения.

Теперь заметим вдобавок, что в нашем равнобедренном треугольнике есть угол (это угол падения); стало быть, данный треугольник - равносторонний. Отсюда:

И тогда искомая средняя сила, действующая на шарик:

Импульс системы тел

Начнём с простой ситуации системы двух тел. А именно, пусть имеются тело 1 и тело 2 с импульсами и соответственно. Импульс системы данных тел - это векторная сумма импульсов каждого тела:

Оказывается, для импульса системы тел имеется формула, аналогичная второму закону Ньютона в виде ( 1 ). Давайте выведем эту формулу.

Все остальные объекты, с которыми взаимодействуют рассматриваемые нами тела 1 и 2, мы будем называть внешними телами. Силы, с которыми внешние тела действуют на тела 1 и 2, называем внешними силами. Пусть - результирующая внешняя сила, действующая на тело 1. Аналогично - результирующая внешняя сила, действующая на тело 2 (рис. 6 ).

Кроме того, тела 1 и 2 могут взаимодействовать друг с другом. Пусть тело 2 действует на тело 1 с силой . Тогда тело 1 действует на тело 2 с силой . По третьему закону Ньютона силы и равны по модулю и противоположны по направлению: . Силы и - это внутренние силы, действующие в системе.

Запишем для каждого тела 1 и 2 второй закон Ньютона в форме ( 1 ):

, ( 4 )

. ( 5 )

Сложим равенства ( 4 ) и ( 5 ):

В левой части полученного равенства стоит сумма производных, равная производной суммы векторов и . В правой части имеем в силу третьего закона Ньютона:

Но - это импульс системы тел 1 и 2. Обозначим также - это результирующая внешних сил, действующих на систему. Получаем:

. ( 6 )

Таким образом, скорость изменения импульса системы тел есть равнодействующая внешних сил, приложенных к системе. Равенство ( 6 ), играющее роль второго закона Ньютона для системы тел, мы и хотели получить.

Формула ( 6 ) была выведена для случая двух тел. Теперь обобщим наши рассуждения на случай произвольного количества тел в системе.

Импульсом системы тел тел называется векторная сумма импульсов всех тел, входящих в систему. Если система состоит из тел, то импульс этой системы равен:

Дальше всё делается совершенно так же, как и выше (только технически это выглядит несколько сложнее). Если для каждого тела записать равенства, аналогичные ( 4 ) и ( 5 ), а затем все эти равенства сложить, то в левой части мы снова получим производную импульса системы, а в правой части останется лишь сумма внешних сил (внутренние силы, попарно складываясь, дадут нуль ввиду третьего закона Ньютона). Поэтому равенство ( 6 ) останется справедливым и в общем случае.

Закон сохранения импульса

Система тел называется замкнутой, если действия внешних тел на тела данной системы или пренебрежимо малы, или компенсируют друг друга. Таким образом, в случае замкнутой системы тел существенно лишь взаимодействие этих тел друг с другом, но не с какими-либо другими телами.

Равнодействующая внешних сил, приложенных к замкнутой системе, равна нулю: . В этом случае из ( 6 ) получаем:

Но если производная вектора обращается в нуль (скорость изменения вектора равна нулю), то сам вектор не меняется со временем:

Закон сохранения импульса. Импульс замкнутой системы тел остаётся постоянным с течением времени при любых взаимодействиях тел внутри данной системы.

Простейшие задачи на закон сохранения импульса решаются по стандартной схеме, которую мы сейчас покажем.

Задача. Тело массы г движется со скоростью м/с по гладкой горизонтальной поверхности. Навстречу ему движется тело массы г со скоростью м/с. Происходит абсолютно неупругий удар (тела слипаются). Найти скорость тел после удара.

Решение. Ситуация изображена на рис. 7 . Ось направим в сторону движения первого тела.


Рис. 7. К задаче

Поскольку поверхность гладкая, трения нет. Поскольку поверхность горизонтальная, а движение происходит вдоль неё, сила тяжести и реакция опоры уравновешивают друг друга:

Таким образом, векторная сумма сил, приложенных к системе данных тел, равна нулю. Это значит, что система тел замкнута. Стало быть, для неё выполняется закон сохранения импульса:

. ( 7 )

Импульс системы до удара - это сумма импульсов тел:

После неупругого удара получилось одно тело массы , которое движется с искомой скоростью :

Из закона сохранения импульса ( 7 ) имеем:

Отсюда находим скорость тела, образовавшегося после удара:

Переходим к проекциям на ось :

По условию имеем: м/с, м/с, так что

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси . Искомая скорость: м/с.

Закон сохранения проекции импульса

Часто в задачах встречается следующая ситуация. Система тел не является замкнутой (векторная сумма внешних сил, действующих на систему, не равна нулю), но существует такая ось , сумма проекций внешних сил на ось равна нулю в любой момент времени. Тогда можно сказать, что вдоль данной оси наша система тел ведёт себя как замкнутая, и проекция импульса системы на ось сохраняется.

Покажем это более строго. Спроектируем равенство ( 6 ) на ось :

Если проекция равнодействующей внешних сил обращается в нуль, , то

Следовательно, проекция есть константа:

Закон сохранения проекции импульса. Если проекция на ось суммы внешних сил, действующих на систему, равна нулю, то проекция импульса системы не меняется с течением времени.

Давайте посмотрим на примере конкретной задачи, как работает закон сохранения проекции импульса.

Задача. Мальчик массы , стоящий на коньках на гладком льду, бросает камень массы со скоростью под углом к горизонту. Найти скорость , с которой мальчик откатывается назад после броска.

Решение. Ситуация схематически показана на рис. 8 . Мальчик изображён прямогольником.


Рис. 8. К задаче

Импульс системы «мальчик + камень» не сохраняется. Это видно хотя бы из того, что после броска появляется вертикальная составляющая импульса системы (а именно, вертикальная составляющая импульса камня), которой до броска не было.

Стало быть, система, которую образуют мальчик и камень, не замкнута. Почему? Дело в том, что векторная сумма внешних сил не равна нулю во время броска. Величина больше, чем сумма , и за счёт этого превышения как раз и появляется вертикальная компонента импульса системы.

Однако внешние силы действуют только по вертикали (трения нет). Стало быть, сохраняется проекция импульса на горизонтальную ось . До броска эта проекция была равна нулю. Направляя ось в сторону броска (так что мальчик поехал в направлении отрицательной полуоси), получим.

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода