Вконтакте Facebook Twitter Лента RSS

Электронное строение атома углерода. гибридизация и гибридные орбитали

Органическая химия – химия атома углерода. Число органических соединений в десятки раз больше, чем неорганических, что может быть объяснено только особенностями атома углерода :

а) он находится в середине шкалы электроотрицательности и второго периода, поэтому ему невыгодно отдавать свои и принимать чужие электроны и приобретать положительный или отрицательный заряд;

б) особенное строение электронной оболочки – нет электронных пар и свободных орбиталей (есть еще только один атом с подобным строением – водород, вероятно, поэтому углерод с водородом образует столь много соединений - углеводородов).

Электронное строение атома углерода

С – 1s 2 2s 2 2p 2 или 1s 2 2s 2 2p x 1 2p y 1 2p z 0

В графическом виде:

Атом углерода в возбужденном состоянии имеет следующую электронную формулу:

*С – 1s 2 2s 1 2p 3 или 1s 2 2s 1 2p x 1 2p y 1 2p z 1

В виде ячеек:

Форма s- и p – орбиталей


Атомная орбиталь - область пространства, где с наибольшей вероятностью можно обнаружить электрон, с соответствующими квантовыми числами.

Она представляет собой трехмерную электронную «контурную карту», в которой волновая функция определяет относительную вероятность нахождения электрона в данной конкретной точке орбитали.

Относительные размеры атомных орбиталей увеличиваются по мере возрастания их энергий (главное квантовое число - n), а их форма и ориентация в пространстве определяется – квантовыми числами l и m. Электроны на орбиталях характеризуются спиновым квантовым числом. На каждой орбитали могут находиться не более 2 электронов с противоположными спинами.

При образовании связей с другими атомами атом углерода преобразует свою электронную оболочку так, чтобы образовались наиболее прочные связи, а, следовательно, выделилось как можно больше энергии, и система приобрела наибольшую устойчивость.

Для изменения электронной оболочки атома требуется энергия, которая затем компенсируется за счет образования более прочных связей.

Преобразование электронной оболочки (гибридизация) может быть, в основном, 3 типов, в зависимости от числа атомов, с которыми атом углерода образует связи.

Виды гибридизации:

sp 3 – атом образует связи с 4 соседними атомами (тетраэдрическая гибридизация):

Электронная формула sp 3 – гибридного атома углерода:

*С –1s 2 2(sp 3) 4 в виде ячеек

Валентный угол между гибридными орбиталями ~109°.

Стереохимическая формула атома углерода:

sp 2 – Гибридизация (валентное состояние) – атом образует связи с 3 соседними атомами (тригональная гибридизация):

Электронная формула sp 2 – гибридного атома углерода:

*С –1s 2 2(sp 2) 3 2p 1 в виде ячеек

Валентный угол между гибридными орбиталями ~120°.

Стереохимическая формула sp 2 – гибридного атома углерода:

sp – Гибридизация (валентное состояние ) – атом образует связи с 2 соседними атомами (линейная гибридизация):

Электронная формула sp – гибридного атома углерода:

*С –1s 2 2(sp) 2 2p 2 в виде ячеек

Валентный угол между гибридными орбиталями ~180°.

Стереохимическая формула:

Во всех видах гибридизации участвует s-орбиталь, т.к. она имеет минимум энергии.

Перестройка электронного облака позволяет образовывать максимально прочные связи и минимальное взаимодействие атомов в образующейся молекуле. При этом гибридные орбитали могут быть не идентичные, а валентные углы – разные, например СН 2 Cl 2 и СCl 4

2. Ковалентные связи в соединениях углерода

Ковалентные связи, свойства, способы и причины образования – школьная программа.

Напомню, лишь что:

1. Образование связи между атомами можно рассматривать как результат перекрывания их атомных орбиталей, при этом, чем оно эффективнее (больше интеграл перекрывания), тем прочнее связь.

Согласно расчетным данным, относительные эффективности перекрывания атомных орбиталей S отн возрастают следующим образом:

Следовательно, использование гибридных орбиталей, например, sp 3 -орбиталей углерода в образовании связей с четырьмя атомами водорода, приводит к возникновению более прочных связей.

2. Ковалентные связи в соединениях углерода образуются двумя способами:

А) Если две атомные орбитали перекрываются вдоль их глав­ных осей, то образующуюся связь называют - σ-связью .

Геометрия. Так, при обра­зовании связей с атомами водорода в метане четыре гибридные sр 3 ~орбитали атома углерода перекрываются с s-орбиталями четырех атомов водорода, образуя четыре идентичные прочные σ-связи, располагающиеся под углом 109°28" друг к другу (стандартный тетраэдрический угол). Сходная строго симмет­ричная тетраэдрическая структура возникает также, например, при образовании ССl 4 ; если же атомы, образующие связи с уг­леродом, неодинаковы, например в случае СН 2 С1 2 , пространст­венная структура будет несколько отличаться от полностью симметричной, хотя по существу она остается тетраэдрической.

Длина σ-связи между атомами углерода зависит от гибридизации атомов и уменьшается при переходе от sр 3 – гибридизации к sр. Это объясняется тем, что s – орбиталь находится ближе к ядру, чем р-орбиталь, поэтому, чем больше её доля в гибридной орбитале, тем она короче, а следовательно, короче и образующаяся связь

Б) Если две атомные p -орбитали, расположенные параллельно друг другу, осуществляют боковое перекрывание над и под плоскостью, где расположены атомы, то образующуюся связь называют - π (пи) -связью

Боковое перекрывание атомных орбиталей менее эффективно, чем перекры­вание вдоль главной оси, поэтому π -связи менее прочны, чем σ -связи. Это проявляется, в частности, в том, что энергия двойной углерод-углеродной связи превышает энергию одинарной связи менее чем в два раза. Так, энергия связи С-С в этане равна 347 кДж/моль, тогда как энергия связи С = С в этене составляет только 598 кДж/моль, а не ~ 700 кДж/моль.

Степень бокового перекрывания двух атомных 2р-орбиталей , а следовательно, и прочность π -связи максимальна, если два атома углерода и четыре связанные с ними атомы расположены строго в одной плоскости , т. е. если они копланарны , поскольку только в этом случае атомные 2р-орбитали точно параллельны одна другой и поэтому способны к максимальному перекрыванию. Любое отклонение от копланарного состояния вследствие пово­рота вокруг σ -связи, соединяющей два атома углерода, приве­дет к уменьшению степени перекрывания и соответственно к снижению прочности π -связи, которая, таким образом, способ­ствует сохранению плоскостности молекулы.

Вращение вокруг двойной углерод-углеродной связи невозможно.

Распределение π -электронов над и под плоскостью молекулы означает су­ществование области отрицательного заряда , готовой к взаимо­действию с любыми электронодефицитными реагентами.

Атомы кислорода, азота и др. также имеют разные валентные состояния (гибридизации), при этом их электронные пары могут находиться как на гибридных, так и p-орбиталях.

ГЛАВА 2. ХИМИЧЕСКАЯ СВЯЗЬ И ВЗАИМНОЕ ВЛИЯНИЕ АТОМОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ

ГЛАВА 2. ХИМИЧЕСКАЯ СВЯЗЬ И ВЗАИМНОЕ ВЛИЯНИЕ АТОМОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ

Химические свойства органических соединений обусловлены типом химических связей, природой связываемых атомов и их вза- имным влиянием в молекуле. Эти факторы, в свою очередь, определяются электронным строением атомов и взаимодействием их атомных орбиталей.

2.1. Электронное строение атома углерода

Часть атомного пространства, в котором вероятность нахождения электрона максимальна, называют атомной орбиталью (АО).

В химии широко используется представление о гибридных орбиталях атома углерода и других элементов. Понятие о гибридизации как способе описания перестройки орбиталей необходимо тогда, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых связей. Примером служит атом углерода, который во всех соединениях проявляет себя как четырехвалентный элемент, но в соответствии с правилами заполнения орбиталей на его внешнем электронном уровне в основном состоянии 1s 2 2s 2 2p 2 находятся только два неспаренных электрона (рис. 2.1, а и Приложение 2-1). В этих случаях постулируется, что различные атомные орбитали, близкие по энергии, могут смешиваться между собой, образуя одинаковые по форме и энергии гибридные орбитали.

Гибридные орбитали из-за большего перекрывания образуют более прочные связи по сравнению с негибридизованными орбиталями.

В зависимости от числа вступивших в гибридизацию орбиталей атом углерода может находиться в одном из трех состояний

Рис. 2.1. Распределение электронов по орбиталям у атома углерода в основном (а), возбужденном (б) и гибридизованных состояниях (в - sp 3 , г - sp 2 , д - sp)

гибридизации (см. рис. 2.1, в-д). Тип гибридизации определяет направленность гибридных АО в пространстве и, следовательно, геометрию молекул, т. е. их пространственное строение.

Пространственное строение молекул - это взаимное расположение атомов и атомных групп в пространстве.

sp 3 -Гибридизация. При смешении четырех внешних АО возбужденного атома углерода (см. рис. 2.1, б) - одной 2s- и трех 2p-орбиталей - возникают четыре равноценные sp 3 -гибридные орбитали. Они имеют форму объемной «восьмерки», одна из лопастей которой значительно больше другой.

Каждая гибридная орбиталь заполняется одним электроном. Атом углерода в состоянии sp 3 -гибридизации имеет электронную конфигурацию 1s 2 2(sp 3) 4 (см. рис. 2.1, в). Такое состояние гибридизации характерно для атомов углерода в насыщенных углеводородах (алканах) и соответственно в алкильных радикалах.

Вследствие взаимного отталкивания sp 3 -гибридные АО направлены в пространстве к вершинам тетраэдра, и углы между ними равны 109,5? (наиболее выгодное расположение; рис. 2.2, а).

Пространственное строение изображается с помощью стереохимических формул. В этих формулах sp 3 -гибридизованный атом углерода и две его связи располагают в плоскости чертежа и графически обозначают обычной чертой. Жирной чертой или жирным клином обозначают связь, выходящую вперед из плоскости чертежа и направленную к наблюдателю; пунктирной линией или заштрихованным клином (..........) - связь, уходящую от наблюдателя за плоскость черте-

Рис. 2.2. Виды гибридизации атома углерода. Точка в центре - ядро атома (малые доли гибридных орбиталей для упрощения рисунка опущены; цветом показаны негибридизованные р-АО)

жа (рис. 2.3, а). Атом углерода в состоянии sp 3 -гибридизации имеет тетраэдрическую конфигурацию.

sp 2 -Гибридизация. При смешении одной 2s- и двух 2р-АО возбужденного атома углерода образуются три равноценные sp 2 -гибридные орбитали и остается негибридизованной 2р-АО. Атом углерода в состоянии sp 2 -гибридизации имеет электронную конфигурацию 1s 2 2(sp 2) 3 2p 1 (см. рис. 2.1, г). Такое состояние гибридизации атома углерода характерно для ненасыщенных углеводородов (алкенов), а также для некоторых функциональных групп, например карбонильной и карбоксильной.

sp 2 -Гибридные орбитали располагаются в одной плоскости под углом 120?, а негибридизованная АО находится в перпендикулярной плоскости (см. рис. 2.2, б). Атом углерода в состоянииsp 2 -гибридизации имеет тригональную конфигурацию. Атомы углерода, связанные двойной связью, находятся в плоскости чертежа, а их одинарные связи, направленные к наблюдателю и от него, обозначают, как описано выше (см. рис. 2.3, б).

sp-Гибридизация. При смешении одной 2s- и одной 2р-орбиталей возбужденного атома углерода образуются две равноценные sp-гиб- ридные АО, а две p-АО остаются негибридизованными. Атом углерода в состоянии sp-гибридизации имеет электронную конфигурацию

Рис. 2.3. Стереохимические формулы метана (а), этана (б) и ацетилена (в)

1s 2 2(sp 2) 2 2p 2 (см. рис. 2.1, д). Такое состояние гибридизации атома углерода встречается в соединениях, имеющих тройную связь, например, в алкинах, нитрилах.

sp-Гибридные орбитали располагаются под углом 180?, а две негибридизованные АО - во взаимно перпендикулярных плоскостях (см. рис. 2.2, в). Атом углерода в состоянии sp-гибридизации имеет линейную конфигурацию, например в молекуле ацетилена все четыре атома находятся на одной прямой (см. рис. 2.3, в).

В гибридизованном состоянии могут находиться и атомы других элементов-органогенов.

2.2. Химические связи атома углерода

Химические связи в органических соединениях представлены в основном ковалентными связями.

Ковалентной называют химическую связь, образованную в результате обобществления электронов связываемых атомов.

Эти обобществленные электроны занимают молекулярные орбитали (МО). Как правило, МО является многоцентровой орбиталью и заполняющие ее электроны делокализованы (рассредоточены). Таким образом, МО, как и АО, может быть вакантной, заполненной одним электроном или двумя электронами с противоположными спинами*.

2.2.1. σ- и π -Связи

Существуют два типа ковалентной связи: σ (сигма)- и π (пи)-связи.

σ-Связью называют ковалентную связь, образованную при перекрывании АО по прямой (оси), соединяющей ядра двух связывае- мых атомов с максимумом перекрывания на этой прямой.

σ-Связь возникает при перекрывании любых АО, в том числе и гибридных. На рисунке 2.4 показано образование σ-связи между атомами углерода в результате осевого перекрывания их гибридных sp 3 -АО и σ-связей C-H путем перекрывания гибридной sp 3 -АО углерода и s-АО водорода.

* Подробнее см.: Попков В.А., Пузаков С.А. Общая химия. - М.: ГЭОТАР-Медиа, 2007. - Глава 1.

Рис. 2.4. Образование σ-связей в этане путем осевого перекрывания АО (малые доли гибридных орбиталей опущены, цветом показаны sp 3 -АО углерода, черным - s-АО водорода)

Кроме осевого возможен еще один вид перекрывания - боковое перекрывание p-АО, приводящее к образованию π-связи (рис. 2.5).

р-атомные орбитали

Рис. 2.5. Образование π-связи в этилене путем бокового перекрывания р-АО

π-Связью называют связь, образованную при боковом перекрывании негибридизованных p-АО с максимумом перекрывания по обе стороны от прямой, соединяющей ядра атомов.

Встречающиеся в органических соединениях кратные связи являются сочетанием σ- и π-связей: двойная - одной σ- и одной π-, тройная - одной σ- и двух π-связей.

Свойства ковалентной связи выражаются через такие характеристики, как энергия, длина, полярность и поляризуемость.

Энергия связи - это энергия, выделяющаяся при образовании связи или необходимая для разъединения двух связанных атомов. Она служит мерой прочности связи: чем больше энергия, тем прочнее связь (табл. 2.1).

Длина связи - это расстояние между центрами связанных атомов. Двойная связь короче одинарной, а тройная короче двойной (см. табл. 2.1). Связи между атомами углерода, находящихся в разном состоянии гибридизации, имеют общую закономерность -

Таблица 2.1. Основные характеристики ковалентных связей

с увеличением доли s-орбитали в гибридной орбитали уменьшается длина связи. Например, в ряду соединений пропан CH 3 CH 2 CH 3, пропен CH 3 CH=CH 2, пропин CH 3 C=CH длина связи CH 3 -C соответственно равна 0,154; 0,150 и 0,146 нм.

Полярность связи обусловлена неравномерным распределением (поляризацией) электронной плотности. Полярность молекулы количественно оценивают величиной ее дипольного момента. Из дипольных моментов молекулы можно вычислить дипольные моменты отдельных связей (см. табл. 2.1). Чем больше дипольный момент, тем полярнее связь. Причиной полярности связи служит различие в электроотрицательности связанных атомов.

Электроотрицательность характеризует способность атома в молекуле удерживать валентные электроны. С увеличением электроотрицательности атома возрастает степень смещения в его сторону электронов связи.

Основываясь на значениях энергии связей, американский химик Л. Полинг (1901-1994) предложил количественную характеристику относительной электроотрицательности атомов (шкала Полинга). В этой шкале (ряду) типичные элементы-органогены располагаются по относительной электроотрицательности (для сравнения приведены два металла) следующим образом:

Электроотрицательность не является абсолютной константой элемента. Она зависит от эффективного заряда ядра, вида гибридизации АО и влияния заместителей. Например, электроотрицательность атома углерода, находящегося в состоянии sp 2 - или sp-гибридизации, выше, чем в состоянии sp 3 -гибридизации, что связано с увеличением доли s-орбитали в гибридной орбитали. При переходе атомов из sp 3 - в sp 2 - и далее в sp -гибридизованное состояние постепенно уменьшается протяженность гибридной орбитали (особенно в направлении, обеспечивающем наибольшее перекрывание при образовании σ-связи), а это означает, что в такой же последовательности максимум электронной плотности располагается все ближе к ядру соответствующего атома.

В случае неполярной или практически неполярной ковалентной связи разность в электроотрицательности связанных атомов равна нулю или близка к нулю. С увеличением разности в электроотрицательности возрастает полярность связи. При разности до 0,4 говорят о слабо полярной, более 0,5 - о сильно полярной ковалентной связи и более 2,0 - об ионной связи. Полярные ковалентные связи предрасположены к гетеролитическому разрыву

(см. 3.1.1).

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Электроны тем подвижнее, чем дальше они находятся от ядер атомов. По поляризуемости π-связь значительно превосходит σ-связь, так как максимум электронной плотности π-связи располагается дальше от связываемых ядер. Поляризуемость в значительной мере определяет реакционную способность молекул по отношению к полярным реагентам.

2.2.2. Донорно-акцепторные связи

Перекрывание двух одноэлектронных АО - не единственный путь образования ковалентной связи. Ковалентная связь может образовываться при взаимодействии двухэлектронной орбитали одного атома (донора) с вакантной орбиталью другого атома (акцептора). Донорами служат соединения, содержащие либо орбитали с неподеленной парой электронов, либо π-МО. Носителями неподеленных пар электронов (n-электронов, от англ. non-bonding) являются атомы азота, кислорода, галогенов.

Неподеленные пары электронов играют важную роль в проявлении химических свойств соединений. В частности, они ответственны за способность соединений вступать в донорно-акцепторное взаимо- действие.

Ковалентая связь, образующаяся за счет пары электронов одного из партнеров по связи, называется донорно-акцепторной.

Образовавшаяся донорно-акцепторная связь отличается только способом образования; по свойствам она одинакова с остальными ковалентными связями. Атом-донор при этом приобретает положительный заряд.

Донорно-акцепторные связи характерны для комплексных соединений.

2.2.3. Водородные связи

Атом водорода, связанный с сильно электроотрицательным элементом (азотом, кислородом, фтором и др.), способен взаимодействовать с неподеленной парой электронов другого достаточно электроотрицательного атома этой же или другой молекулы. В результате возникает водородная связь, являющаяся разновидностью донорно-

акцепторной связи. Графически водородную связь обычно обозначают тремя точками.

Энергия водородной связи невелика (10-40 кДж/моль) и в основном определяется электростатическим взаимодействием.

Межмолекулярные водородные связи обусловливают ассоциацию органических соединений, например спиртов.

Водородные связи влияют на физические (температуры кипения и плавления, вязкость, спектральные характеристики) и химические (кислотно-основные) свойства соединений. Так, температура кипения этанола C 2 H 5 OH (78,3 ?С) значительно выше, чем имеющего одинаковую с ним молекулярную массу диметилового эфира CH 3 OCH 3 (-24 ?C), не ассоциированного за счет водородных связей.

Водородные связи могут быть и внутримолекулярными. Такая связь в анионе салициловой кислоты приводит к повышению ее кислотности.

Водородные связи играют важную роль в формировании пространственной структуры высокомолекулярных соединений - бел- ков, полисахаридов, нуклеиновых кислот.

2.3. Сопряженные системы

Ковалентная связь может быть локализованной и делокализованной. Локализованной называют связь, электроны которой фактически поделены между двумя ядрами связываемых атомов. Если электроны связи поделены более чем между двумя ядрами, то говорят о делокализованной связи.

Делокализованная связь - это ковалентная связь, молекулярная орбиталь которой охватывает более двух атомов.

Делокализованные связи в большинстве случаев являются π-связями. Они характерны для сопряженных систем. В этих систе- мах осуществляется особый вид взаимного влияния атомов - сопряжение.

Сопряжение (мезомерия, от греч. mesos - средний) - это выравнивание связей и зарядов в реальной молекуле (частице) по сравнению с идеальной, но не существующей структурой.

Участвующие в сопряжении делокализованные р-орбитали могут принадлежать либо двум π-связям и более, либо π-связи и одному атому с р-орбиталью. В соответствии с этим различают π,π-сопряжение и ρ,π-сопряжение. Система сопряжения может быть открытой или замкнутой и содержать не только атомы углерода, но и гетероатомы.

2.3.1. Системы с открытой цепью сопряжения

π,π-Сопряжение. Простейшим представителем π,π-сопряженных систем с углеродной цепью служит бутадиен-1,3 (рис. 2.6, а). Атомы углерода и водорода и, следовательно, все σ-связи в его молекуле лежат в одной плоскости, образуя плоский σ-скелет. Атомы углерода находятся в состоянии sр 2 -гибридизации. Негибридизованные р-АО каждого атома углерода расположены перпендикулярно плоскости σ-скелета и параллельно друг другу, что является необходимым условием для их перекрывания. Перекрывание происходит не только между р-АО атомов С-1 и С-2, С-3 и С-4, но и между р-АО атомов С-2 и С-3, в результате чего образуется охватывающая четыре атома углерода единая π-система, т. е. возникает делокализованная ковалентная связь (см. рис. 2.6, б).

Рис. 2.6. Атомно-орбитальная модель молекулы бутадиена-1,3

Это отражается в изменении длин связей в молекуле. Длина связи С-1-С-2, а также С-3-С-4 в бутадиене-1,3 несколько увеличена, а расстояние между С-2 и С-3 укорочено по сравнению с обычными двойными и одинарными связями. Другими словами, процесс делокализации электронов приводит к выравниванию длин связей.

Углеводороды с большим числом сопряженных двойных связей распространены в растительном мире. К ним относятся, например, каротины, обусловливающие окраску моркови, томатов и т. п.

Открытая система сопряжения может включать и гетероатомы. Примером открытых π,π-сопряженных систем с гетероатомом в цепи могут служить α,β-ненасыщенные карбонильные соединения. Например, альдегидная группа в акролеине CH 2 =CH-CH=O явля- ется участником цепи сопряжения трех sр 2 -гибридизованных атомов углерода и атома кислорода. Каждый из этих атомов вносит в единую π-систему по одному р-электрону.

pn-Сопряжение. Этот вид сопряжения чаще всего проявляется в соединениях, содержащих структурный фрагмент -CH=CH-X, где X - гетероатом, имеющий неподеленную пару электронов (прежде всего O или N). К ним относятся, например, виниловые эфиры, в молекулах которых осуществляется сопряжение двойной связи с р -орбиталью атома кислорода. Делокализованная трехцен- тровая связь образуется путем перекрывания двух р-АО sр 2 -гиб- ридизованных атомов углерода и одной р -АО гетероатома с парой и-электронов.

Образование аналогичной делокализованной трехцентровой связи имеется в карбоксильной группе. Здесь в сопряжении участвуют π-электроны связи С=О и n-электроны атома кислорода группы ОН. К сопряженным системам с полностью выровненными связями и зарядами относятся отрицательно заряженные частицы, например ацетат-ион.

Направление смещения электронной плотности обозначается изогнутой стрелкой.

Существуют и другие графические способы отображения результатов сопряжения. Так, структура ацетат-иона (I) предполагает, что заряд равномерно распределен по обоим атомам кислорода (как показано на рис. 2.7, что соответствует действительности).

Структуры (II) и (III) применяются в теории резонанса. Согласно этой теории реальная молекула или частица описывается набором определенных так называемых резонансных структур, которые отличаются друг от друга только распределением электронов. В сопряженных системах основной вклад в резонансный гибрид вносят структуры с различным распределением π-электронной плотности (двусторонняя стрелка, связывающая эти структуры, является специальным символом теории резонанса).

Предельные (граничные) структуры в действительности не существуют. Однако они в той или иной степени «вносят вклад» в реальное распределение электронной плотности в молекуле (частице), которую представляют в виде резонансного гибрида, получающегося путем наложения (суперпозиции) предельных структур.

В ρ,π-сопряженных системах с уг- леродной цепью сопряжение может осуществляться при наличии рядом с π-связью атома углерода с негибридизованной р-орбиталью. Такими системами могут быть промежуточные частицы - карбанионы, карбокатионы, свободные радикалы, например, аллильной структуры. Свободнорадикальные аллильные фрагменты играют важную роль в процессах пероксидого окисления липидов.

В аллил-анионе CH 2 =CH-CH 2 sр 2 -гибридизованный атом углерода С-3 поставляет в общую сопряженную

Рис. 2.7. Карта электронной плотности группы COONa в пе- нициллине

систему два электрона, в аллильном радикале CH 2 =CH-CH 2+ - один, а в аллильном карбокатионе CH 2 =CH-CH 2+ не поставляет ни одного. В результате при перекрывании p-АО трех sp 2 -гибридизованных атомов углерода образуется делокализованная трехцентровая связь, содержащая четыре (в карбанионе), три (в свободном радикале) и два (в карбокатионе) электрона соответственно.

Формально атом С-3 в аллил-катионе несет положительный заряд, в аллильном радикале - неспаренный электрон, а в аллил-анионе - отрицательный заряд. В действительности в таких сопряженных системах имеется делокализация (рассредоточение) электронной плотности, что приводит к выравниванию связей и зарядов. Атомы С-1 и С-3 в этих системах равноценны. Например, в аллил-катионе каждый из них несет положительный заряд +1/2 и связан «полуторной» связью с атомом С-2.

Таким образом, сопряжение приводит к существенному различию в распределении электронной плотности в реальных структурах по сравнению со структурами, изображаемыми обычными формулами строения.

2.3.2. Системы с замкнутой цепью сопряжения

Циклические сопряженные системы представляют большой интерес как группа соединений с повышенной термодинамической устой- чивостью по сравнению с сопряженными открытыми системами. Эти соединения обладают и другими особыми свойствами, совокупность которых объединяют общим понятием ароматичность. К ним относятся способность таких формально ненасыщенных соединений

вступать в реакции замещения, а не присоединения, устойчивость к действию окислителей и температуры.

Типичными представителями ароматических систем являются арены и их производные. Особенности электронного строения арома- тических углеводородов наглядно проявляются в атомно-орбитальной модели молекулы бензола. Каркас бензола образуют шесть sp 2 -гибри- дизованных атомов углерода. Все σ-связи (C-C и C-H) лежат в одной плоскости. Шесть негибридизованных р-АО расположены перпендикулярно плоскости молекулы и параллельно друг другу (рис. 2.8, а). Каждая р -АО в равной степени может перекрываться с двумя соседними р -АО. В результате такого перекрывания возникает единая делокализованная π-система, наибольшая электронная плотность в которой находится над и под плоскостью σ-скелета и охватывает все атомы углерода цикла (см. рис. 2.8, б). π-Электронная плотность равномерно распределена по всей циклической системе, что обозначается кружком или пунктиром внутри цикла (см. рис. 2.8, в). Все связи между атомами углерода в бензольном кольце имеют одинаковую длину (0,139 нм), промежуточную между длинами одинарной и двойной связей.

На основании квантовомеханических расчетов установлено, что для образования таких стабильных молекул плоская циклическая система должна содержать (4n + 2) π-электронов, где n = 1, 2, 3 и т. д. (правило Хюккеля, 1931). С учетом этих данных можно конкретизировать понятие «ароматичность».

Соединение ароматично, если оно имеет плоский цикл и сопряженную π -электронную систему, охватывающую все атомы цикла и содержащую (4n + 2) π -электронов.

Правило Хюккеля применимо к любым плоским конденсированным системам, в которых нет атомов, являющихся общими более чем для

Рис. 2.8. Атомно-орбитальная модель молекулы бензола (атомы водорода опущены; объяснение в тексте)

двух циклов. Такие соединения с конденсированными бензольными ядрами, как нафталин и другие, отвечают критериям ароматичности.

Устойчивость сопряженных систем. Образование сопряженной и особенно ароматической системы - энергетически выгодный процесс, так как при этом увеличивается степень перекрывания орбиталей и происходит делокализация (рассредоточение) р -электронов. В связи с этим сопряженные и ароматические системы обладают повышенной термодинамической устойчивостью. Они содержат меньший запас внутренней энергии и в основном состоянии занимают более низкий энергетический уровень по сравнению с несопряженными системами. По разнице этих уровней можно количественно оценить термодинамическую устойчивость сопряженного соединения, т. е. его энергию сопряжения (энергию делокализации). Для бутадиена-1,3 она невелика и составляет около 15 кДж/моль. С увеличением длины сопряженной цепи энергия сопряжения и соответственно термодинамическая устойчивость соединений возрастают. Энергия сопряжения для бензола гораздо больше и составляет 150 кДж/моль.

2.4. Электронные эффекты заместителей 2.4.1. Индуктивный эффект

Полярная σ-связь в молекуле вызывает поляризацию ближайших σ-связей и ведет к возникновению частичных зарядов на соседних атомах*.

Заместители вызывают поляризацию не только «своей», но и соседних σ-связей. Этот вид передачи влияния атомов называют индуктивным эффектом (/-эффект).

Индуктивный эффект - передача электронного влияния заместителей в результате смещения электронов σ-связей.

Из-за слабой поляризуемости σ-связи индуктивный эффект затухает через три-четыре связи в цепи. Его действие наиболее сильно проявляется по отношению к атому углерода, соседнему с тем, у которого находится заместитель. Направление индуктивного эффекта заместителя качественно оценивается путем его сравнения с атомом водорода, индуктивный эффект которого принят за нуль. Графически результат /-эффекта изображают стрелкой, совпадающей с положением валентной черточки и направленной острием в сторону более электроотрицательного атома.

/в\ сильнее, чем атом водорода, проявляет отрицательный индуктив- ный эффект (-/-эффект).

Такие заместители в целом понижают электронную плотность системы, их называют электроноакцепторными. К ним относится большинство функциональных групп: OH, NH 2, COOH, NO 2 и катионных групп, например -NH 3+.

Заместитель, смещающий по сравнению с атомом водорода электронную плотность σ -связи в сторону атома углерода цепи, проявляет положительный индуктивный эффект (+/-эффект).

Такие заместители повышают электронную плотность в цепи (или кольце) и называются электронодонорными. К их числу относятся алкильные группы, находящиеся у sр 2 -гибридизованного атома углерода, и анионные центры в заряженных частицах, например -О - .

2.4.2. Мезомерный эффект

В сопряженных системах в передаче электронного влияния основную роль играют π-электроны делокализованных ковалентных связей. Эффект, проявляющийся в смещении электронной плотности делокализованной (сопряженной) π-системы, называют мезомерным (M-эффект), или эффектом сопряжения.

Мезомерный эффект - передача электронного влияния заместителей по сопряженной системе.

При этом заместитель сам является участником сопряженной системы. Он может вносить в систему сопряжения либо π-связь (карбонильная, карбоксильная группы и др.), либо неподеленную пару электронов гетероатома (амино- и гидроксигруппы), либо вакантную или заполненную одним электроном р-АО.

Заместитель, повышающий электронную плотность в сопряженной системе, проявляет положительный мезомерный эффект (+М- эффект).

М-Эффектом обладают заместители, включаю- щие атомы с неподеленной парой электронов (например, аминогруппа в молекуле анилина) или целым отрицательным зарядом. Эти заместители способны

к передаче пары электронов в общую сопряженную систему, т. е. являются электронодонорными.

Заместитель, понижающий электронную плотность в сопряженной системе, проявляет отрицательный мезомерный эффект (-М- эффект).

М-Эффектом в сопряженной системе обладают атомы кислорода или азота, связанные двойной связью с атомом углерода, как показано на примере акриловой кислоты и бензальдегида. Такие группировки являются электроноакцепторными.


Смещение электронной плотности обозначается изогнутой стрелкой, начало которой показывает, какие р- или π-электроны смещаются, а конец - связь или атом, к которым они смещаются. Мезомерный эффект, в отличие от индуктивного, передается по системе сопряженных связей на значительно большее расстояние.

При оценке влияния заместителей на распределение электронной плотности в молекуле необходимо учитывать результирующее действие индуктивного и мезомерного эффектов (табл. 2.2).

Таблица 2.2. Электронные эффекты некоторых заместителей

Электронные эффекты заместителей позволяют дать качественную оценку распределения электронной плотности в нереагирующей молекуле и прогнозировать ее свойства.

Электронное строение атомов углерода. Виды гибридизации.

Основы строения органических соединений

Классификация органических соединений. Функциональная группа и строение углеродного скелета как классификационные признаки органических соединений, Главные классы органических соединений.

В основу современной классификации органических соединений положе­ны два важнейших признака:

Строение углеродного скелета молекулы;

Наличие в молекуле функциональных групп.

По строению углеродного скелета органические соединения делятся на группы. Ациклические (алифатические) соединения, в которых цепь атомов углеро­да может быть неразветвленной или разветвленной. Карбоциклические соединения, в которых цепь, состоящая только из атомов углерода, замкнута в цикл (кольцо). Гетероциклические соединения, имеющие в составе циклического скелета, кроме атомов углерода, один или несколько гетероатомов - как правило, ато­мы азота, кислорода или серы:

Родоначальными соединениями в органической химии считаются угле­водороды, состоящие только из атомов углерода и водорода. В большинстве своем органические молекулы содержат функциональные группы, т. е. атомы или группы атомов, определяющие химические свойства соединения и прина­длежность его к определенному классу. В состав функциональной группы обя­зательно входит гетероатом, хотя иногда к функциональным группам причис­ляют и углерод-углеродные кратные связи (С=С и С≡С). Многие такие груп­пы вообще не содержат атом углерода. В зависимости от наличия в молекуле тех или иных функциональных групп органические соединения делятся на классы.

Соединения, имеющие в молекуле одну функциональную группу, называ­ются монофункциональными; несколько одинаковых функцио­нальных групп – полифункциональными (глицерин). Гетерофункционалъные соединения содержат в молекулах различные функциональные группы. Их можно одновременно от­нести к нескольким классам.

Переход от одного класса к другому осуществляется чаще всего с участием функциональных групп без изменения углеродного скелета. Кроме того, классификационные признаки положены в основу номенклатуры органиче­ских соединений.

Номенклатура органических соединений. Тривиальная номенклатура. Основные принципы номенклатуры IUPAC (IUPAC-Международный союз теоретической и прикладной химии): заместительная и радикало -функциональная номенклатуры.

Номенклатура должна быть систематической и международ­ной, чтобы могли отобразить в названии структуру соединения и по названию однозначно представить струк­туру. Кроме того, номенклатура должна быть пригодной для компьютерной обработки.

Исторически первыми были тривиальные названия веществ, которые ука­зывали либо на источник выделения (кофеин, мочевина), либо свойства веществ (глицерин, глюкоза). Широко рас­пространены торговые названия, причем для лекарственных веществ часто в основу такого названия берется фармакологический эффект или отдельные элементы структуры. Эти на­звания удобны своей лаконичностью, но они не дают представления о стро­ении вещества и не могут быть объединены в систему. К тому же некоторые из тривиальных названий со временем выходят из употребления, хотя многие из них прочно вошли в обиход и даже легли в основу систематических названий.

Использование систематической номенклатуры применительно к ле­карственным веществам играет важную роль в фармации, поскольку многие лекарства выпускаются под разнообразными торговыми названиями. При пе­реводе же их в систематические можно зачастую убедиться, что действующим началом этих лекарственных средств может оказаться одно и то же вещество (парацетамола, панадола, тайленола – n-гидроксиацетанилид). В ходе развития органической химии возникали различные номенклатур­ные системы (Женевская, 1892; Льежская, 1930), которые после многократных усовершенствований стали основой современной систематической номенкла­туры ИЮПАК (IUPAC - Международный союз теоретической и прикладной химии).

Номенклатура органических соединений - это система терминов, обозна­чающих строение веществ и пространственное расположение атомов в их молекулах.

Систематическое название - полностью составленное из специ­ально созданных или выбранных слогов, (пентан, тиазол). Тривиальное название - в котором ни один из слогов не исполь­зуется в систематическом смысле (мочевина, фуран). Родоначальное название - та часть названия, от которой по определенным правилам строится название целиком. Например, «этан» – «этанол». Может быть как систематическим, так и тривиальным.

Заместитель - любой атом или группа атомов, замещающие в исходном соединении атом водорода.

Характеристическая группа - в ИЮПАК прак­тически эквивалентен понятию «функциональная группа», например: амино­группа, галогены, гидроксильная группа, карбоксильная группа, карбонильная группа, оксогруппа, нитрогруппа, цианогруппа. Старшая (главная) группа - характеристическая группа, название которой отражается суффиксом. Никаких других преимуществ не имеет.

Умножающие префиксы - приставки ди-, три-, тетра- и т. д., применяе­мые для обозначения числа одинаковых заместителей или кратных связей. Локант - цифра или буква, указывающая положение заместителя или кратной связи в родоначальном названии.

Из восьми типов номенклатур в ИЮПАК наиболее универсаль­ной и распространенной является заместительная номенклатура. Реже используется радикально-функциональная номенклатура.

Заместительная номенклатура. Название строится как сложное слово, состоящее из корня (родоначальное название), префиксов и суффикса, характеризующих число и характер заместителей, степень ненасыщенности; указываются локанты. Характеристические группы делятся на два типа. Одни из них обознача­ются только в виде префиксов, другие могут быть суффиксами или префиксами в зависимости от стар­шинства. За старшую принимают ту группу, которая находится выше других в табл. Все другие обозначаются пре­фиксами.

Радикально-функциональная номенклатура. Для названий в ос­новном используются те же принципы, но для отражения старшей группы никогда не применяются суффиксы. Вместо этого одним словом отражают название функционального класса, а остальную часть на­звания - соответствующим радикалом. Для двухвалентных характеристиче­ских групп указывают оба радикала, связанные с этой группой. Если соедине­ние включает более одного типа характеристических групп, то за название функционального класса принимают такое, которое расположено выше дру­гих в табл. Остальные группы префиксами.

Принципы построения систематических названий. Включает следующие:

1. Определяют тип номенклатуры, который целесообразно применить к данному конкретному соединению.

2. Определяют старшую характеристическую группу. Именно она обуслов­ливает в дальнейшем выбор родоначальной структуры и ее нумерацию.

3. Определяют родоначальную структуру - главную углеродную цепь или основную циклическую систему, которая должна включать максимальное чис­ло старших групп. Главная углеродная цепь для ациклических соединений вы­бирается по критериям, при этом каждый последующий критерий вступает в действие лишь тогда, когда предыдущий не приводит к выбору:

а) максимальное число старших групп;

б) максимальное число кратных (двойных и тройных) связей;

в) максимальная длина цепи;

г) максимальное число заместителей.

4. Называют родоначальную структуру и старшую характеристическую группу.

5. Определяют и называют заместители.

6. Проводят нумерацию так, чтобы стар­шая группа получила наименьший номер. Если выбор неоднозначен, то применяют правило наименьших локантов - нумеруют так, чтобы заместители получили наименьшие номера. Наименьшая последовательность та, в которой первой встретится цифра меньшая, чем в другой последовательнос­ти (1,2,7- < 1,3,4 -).

7. Объединяют отдельные части названия в общее, придерживаясь алфавитного порядка префиксов (умножающие при­ставки не включаются). Цифры-локанты ставят перед префиксами и после суффиксов.

8. Радикально-функциональная номенклату­ра лишь там, где она традиционно используется до настоящего времени.

Допускаются несистематические названия для следующих незамещенных углеводородов изостроения: изобутан (СН 3) 2 СНСН 3 , изопентан (СН 3) 2 СНСН 2 СН 3 , неопентан (СН 3) 4 С, изогексан (СН 3) 2 СНСН 2 СН 2 СН 3 . Для ненасыщенных со­единений: этилен СН 2 =СН 2 , ацетилен СН≡СН, аллен СН 2 =С=СН 2 , изо­прен СН 2 =С(СН 3)СН=СН 2 .

В ряду ароматических углеводородов - аренов, сохраняются следующие несистематиче­ские названия:

Из родоначальных структур конденсированных аренов наиболее часто встречаются четыре. В ряде случаев сохраняется исторически сложившаяся нумерация (например, антрацен и фенантрен).

Несложные по структуре галогенопроизводные часто называют по ра­дикально-функциональной номенклатуре, например, изопропилбромид (СН 3) 2 СНВг, бензилхлорид С 6 Н 5 СН 2 С1.

Тривиальные названия сохраняются для ряда многоатомных спиртов и фенолов:

Менее употребительны радикально-функциональные названия солей спир­тов, образуемые заменой части названия -иловый спирт на суффикс -илат, на­пример, этилат натрия C 2 H 5 ONa, триизопропилат алюминия [(СН 3) 2 СНО] 3 А1.

Для простых эфиров, чаще чем для других классов соединений, приме­няется радикально-функциональная номенклатура. В этом случае названия образуют из названий радикалов R и R" в алфавитном порядке, предшест­вующих слову эфир, например, метилэтиловый эфир СН 3 -О-СН 2 СН 3 , диизо- пропиловый эфир (СН 3) 2 СН-О-СН(СН 3) 2 , винилфениловый эфир С 6 Н 5 -О-СН=СН 2 .

Некоторые амины сохраняют тривиальные названия:

Если соответствующая альдегиду карбоновая кислота имеет тривиальное название (1.3.10), то из него может быть образовано и тривиальное название альдегида:

Сохраняются следующие тривиальные названия:

Сохраняется тривиальное название «ацетон» для СН 3 СОСН 3 . Для многих алифатических и карбоциклических карбоновых кислот сохранены тривиальные названия, обычно предпочтительнее систематических.

Электронное строение атомов углерода. Виды гибридизации.

Строгое рассмотрение понятия химической связи базируется на принципах квантовой механики. Фундаментальный принцип квантовой механики гласит, что электроны ведут себя как волны и движение электрона можно описать с помощью волновой функции. Мате­матическая модель электронов в атоме известна как уравнение Шрёдингера. Решение дифференциального уравнения Шрёдингера позволяет получить характеристику энергетических уровней и соответствующие волновые функ­ции, описывающие движение электронов в атоме. Квадрат модуля волно­вой функции всегда положительный. Он соответствует плотности электронно­го облака в данном объеме. Графические трехмерные изображения электрон­ной плотности называются орбиталями.

Атомной орбиталью (АО) называется область пространства, в котором ве­роятность нахождения электрона максимальна.

Состояние электрона в атоме оценивается с помощью квантовых чисел , которые характеризуют энергетический уровень, форму и пространственную направленность орбитали. Для объяснения строения электронных оболочек атомов привлекаются три основных положения: принцип Паули, правило Гунда и принцип минимума энергии. Атомы и молекулы являются типичными примерами квантово-механиче­ских систем. При сближении атомов происходит перекрывание их АО. Моле­кула описывается распределением электронов между наборами молекулярных орбиталей (МО). Существуют три безразмерных квантовых числа, которые обозначают символами n, l и m. Появление квантового числа n вызвано тем, что электрон может менять свое расстояние от ядра. Квантовые числа l и m связаны с угловым моментом количества движения электрона, который может вращаться вокруг ядра в трех измерениях. Число l характеризует величину углового момента, а число m - ориентацию углового момента в пространстве, так как угловой момент - векторная величина. Число n называется главным квантовым числом. Допустимыми значениями квантовых чисел, которые вытекают из граничных условий, являются n = 1, 2, 3 ...; l = 0, 1, 2 ... (n-1); m = l, (l-1), (l-2), ..., -l.

Все орбитали с нулевым угловым моментом называются s-орбиталями. s-Орбиталь низшей энергии (n=1, l=0, m=0) называется 1s-орбиталью. Если n=2 и l=0, то это 2s-орбиталь. Если n=0, единственным значением, разрешенным для l, является нуль, но если n=2, квантовое число орбитального углового момента может принимать значения 0 (2s-орбиталь) или 1. Если l=1, атомные орбитали носят название р-орбиталей. При n=2 и l=1 мы имеем 2р-орбиталь. Поскольку для р-орбиталей l=0, квантовое число m может принимать значения +1, 0 и -1. Разные значения m соответствуют орбиталям с различными ориентациями орбитального углового момента. р-Орбиталь с m=0 имеет нулевую проекцию углового момента на ось z, и по этой причине ее называют p z -орбиталью. Две другие р-орбитали можно представить аналогичными картинами с ориентацией «лопастей» вдоль осей x и y, поэтому они называются p x - и p y -орбиталями. Если n=3, то l может принимать значения 0, 1 и 2. Это приводит к одной 3s-орбитали, трем 3р-орбиталям и пяти 3d-орбиталям. 3d-Орбиталей пять, поскольку при l =2 m может принимать значения 2, 1, 0, -1 и -2.

Чтобы отличить друг от друга два электрона на s-орбитали, необходимо еще одно квантовое число, которое называется спином. Спин связан с угловым моментом электрона, вращающегося вокруг собственной оси. Для электрона возможно лишь одно значение s=1/2. Единственное различие между двумя электронами на s-орбитали заключается в различной ориентации спинового углового момента. Таким образом, из двух электронов на 1s-орбитали один имеет α-спин, а другой - β-спин, т.е. спины этих электронов антипараллельны или, по-другому, спарены.

Существует еще один важный принцип квантовой теории, который запрещает занимать какую-либо орбиталь более чем двум электронам. Этот принцип называется запретом Паули : любая орбиталь может быть занята не более чем двумя электронами, и если ее занимают два электрона, направление их спинов должно быть противоположным. Запрет Паули относится как к атомным, так и к молекулярным орбиталям. Принцип Паули запрещает, чтобы третий электрон находился на уже заполненной двумя электронами s-орбитали, и поэтому третий электрон занимает следующую орбиталь низшей энергии.

Чтобы построить электронную конфигурацию любого атома с номером Z, нужно представить себе атомные орбитали с последовательностью энергий 1s<2s<2p<3s<3p<3d<... и затем разместить Z электронов, начиная с орбитали низшей энергии, в соответствии с принципом Паули. Необходимо лишь помнить, что имеется только одна 1s-орбиталь, одна 2s-орбиталь и т.д., но орбиталей типа 2р, 3р и т.д. по три, орбиталей типа 3d, 4d и т.д. - по пять, а орбиталей типа 4f, 5f и т.д. - по семь.

Согласно понятию гибридизации , четыре валентные орбитали атома углерода 2s, 2р х, 2p z ,2р z , могут быть заменены набором из определенного числа эквивалентных гибридных орбиталей. Следует помнить, что гибридизация - это не физическое явление, а чисто математический прием. В зависимости от комбинации гибридных и негибридизованных орбиталей атом углерода может находиться в состоянии sp 3 -, sp 2 - или sp-гибридизации. Представление об sp 3 -гибридизации атома углерода можно описать следующим образом.

Для перехода электрона с 2s- на 2р-орбиталь требуется небольшое количество энергии, которое легко компенсируется энергией, высвобождаемой при образовании двух дополнительных связей.

Оперируя понятием гибридизации, можно объяснить равноценность всех четырех химических связей в метане. Кроме того, гибридные орбитали способны к лучшему перекрыванию. Если принять относительную эффективность перекрывания s-AO за единицу, то, согласно расчетным данным, эффективность перекрывания других орбиталей возрастает в последовательности:

Таким образом, концепция гибридизации позволяет определить, где в пространстве локализованы молекулярные орбитали, т.е. связывает классические и квантовомеханические представления о структуре соединений.

4. Типы химических связей в органических соединениях. Ковалентные s– и p–связи. Строение двойных (С=С, С=О, С=N) и тройных (СºС, CºN) связей, их основные характеристики (длина, энергия, полярность, поляризуемость).

Молекулы органических соединений представляют собой совокупность атомов, связанных в определенной последовательности химическими связя­ми. Реакционная способность соединений обусловлена типом химических связей, природой связываемых атомов и их взаимным влиянием в молекуле.

Химическая связь - совокупность взаимодействий между электронами и ядрами, приводящих к соединению атомов в молекулу.

Локализованная связь - это химическая связь, электроны которой поделены между ядрами двух атомов. Для органических соединений характерны ковалентные s - и p -связи. Ковалентная связь - это химическая связь, образованная за счет обобществления электронов связываемых атомов.

Ковалентная связь образуется в результате перекрывания двух АО с образованием молекулярной орбитали, занимаемой двумя электронами. Л. Полинг ввел полезные для понимания ковалентной связи понятия направленной валентности и гибридизации орбиталей . Согласно понятию направленной валентности, связь атомов осуществля­ется в том направлении, при котором обеспечивается максимальное перекры­вание орбиталей. Чем лучше перекрывание, тем прочнее должна быть связь, и только при максимальном перекрывании достигается минимум энергии сис­темы.

При образовании ковалентных связей посредством перекрывания р-орби­талей доли р-орбиталей помечают «+» и «-», (не соотносить с зарядами). Обе доли р -электронного облака несут отрицательный заряд, но волновая функция всегда имеет противоположные знаки по обе стороны узла орбитали. Перекрываются орбитальные доли одинакового знака. Типы перекрывания орби­талей могут характеризоваться цилиндрической симметрией относительно межъядерной оси, что отвечает понятию s -связи.

s-Связь - это одинарная ковалентная связь, образованная при перекры­вании АО по прямой (оси), соединяющей ядра 2х связываемых атомов с максимальным перекрыванием на этой прямой.

Использование sp 3 -гибридных орбиталей в связывании атома 12 С с четырьмя атомами 1 Н при образовании молекулы СН 4 приводит к возникновению более прочных s -связей С-Н. Метан с четырьмя идентичны­ми заместителями у атома углерода представляет собой идеальный тетраэдр с углом Н-С-Н, равным 109°28". Такая геометрия обеспечивает ми­нимальное отталкивание между 4-мя связывающими парами электронов. Атомы 16 О, 14 N и др., подобно 12 С, могут использовать sp 3 -гибридные орбитали для образования прочных s -свя­зей.

В этилене каждый из атомов углерода связан не с 4мя, а только с 3мя другими. В данном случае электронное строение молекулы описы­вается с привлечением представлений об sp 2 -гибридизации. Три sp 2 -АО, обра­зовавшиеся из одной 2s- и двух 2р-орбиталей, лежат в одной плоскости под уг­лом 120°. В этилене s -связь С-С образуется путем перекрывания гибридных орбиталей вдоль их осей. Две оставшиеся sp 2 -орбитали каждого из атомов углерода перекрываются с s-AO водорода, образуя s -связи С-Н. Экспериментально установлено, что углы между связями Н-С-Н и Н-С-С составляют соответственно 116,7° и 121,6°, т. е. наблюдается некото­рое отклонение от идеального угла 120°. Негибридизованная 2р-АО располагается под прямым углом к плоскости каркаса σ-связей. Параллельные друг другу 2р-АО двух атомов углерода перекрываются над и под плоскостью σ-скелета с образованием МО π-связи (рис. 2.4, в).

π-Связь - это связь, образованная при боковом перекрывании негибридизованных р-АО с максимальным перекрыванием над и под плоскостью σ-связей. Электронная плотность π-связи концентрируется выше и ниже плоскости σ-связей. Плоскость, проходящая через ядра, представляет собой узловую плоскость. Вероятность нахождения в этой плоскости π-электронов равна нулю.

Представление об sp 2 -гибридизации можно применить и для 16 О, 14 N, Hal. При образовании двойной C=N 14 N использует 1 гибридную орбиталь для перекрывания с sp 2 -АО 12 С с образованием σ-связи, другую - для σ-связи др. атомом, а 3-я занята неподеленной парой электронов. При этом и у 12 С и у 14 N остаются негибридизованные р-орбитали, которые посредством бокового перекрывания образуют π-связь. Аналогично образуется связь С=O с той разницей, что на 2-х гибридных орбиталях 16 О располагаются две пары электронов.

Для описания связи С=О в карбонильной группе можно применить и представление об sp-гибридизации 16 О. В этом случае две неподеленные пары электронов 16 О располагаются на неэквивалентных орбиталях: одна на sp-гибридной АО, другая - на р y -АО, перпендикулярной p-орбиталям π-связи С=O.

В алкинах каждый 12 С тройной связи С≡С может быть связан только с 2-мя др.. В ацетилене оба 12 С находятся в состоянии sp-гибридизации. Гибридные орбитали расположены на одной прямой под углом 180°. При образовании С≡С гибридные орбитали 12 С участвуют в построении σ-связи. Две негибридизованные р-орбитали каждого из двух 12 С параллельны друг другу и могут попарно перекрываться. При этом образу­ются две π-связи в перпендикулярных плоскостях. Представление об sp-гибридизации используется и при описании тройной связи 12 С с 14 N. Неподеленная пара электронов 14 N рас­полагается на sp-АО.

Атомы 14 N, 16 О, серы и фосфора при образовании обычных кова­лентных связей используют не все внешние валентные электроны. На гибрид­ных или негибридизованных орбиталях у них имеются одна или более неподеленных пар электронов. При взаимодействии заполненной двухэлектронной АО такого гетероатома (донора) с вакантной орбиталью атома, имеющего недостаток электронов (акцептора), образует­ся новая ковалентная связь.

Донорно-акцепторная , или координационная, связь - это ковалентная связь, образованная за счет пары электронов одного атома. Например, донорно-акцепторная связь образуется в результате взаимо­действия аминов с протонами кислот, при этом два электрона донора в одинаковой степени принадлежат двум связанным атомам. Атом-донор в ре­зультате приобретает положительный заряд. Образовавшаяся ковалентная связь, например, в ионе алкиламмония, отличается от других толь­ко способом образования, по свойствам идентична другим N-Н.

Разновидностью донорно-акцепторной связи является семиполярная связь. Семиполярная связь является сочетанием ковалентной и ионной связей. В этом случае атом-донор образует связь с нейтральным атомом, у которого для завершения внешней валентной оболочки недостает пары электронов. На­пример, такая связь образуется в N-окcидах при взаимодействии аминов с H 2 O 2 . 14 N предоставляет пару электронов для обра­зования связи с атомом 16 О. В результате ковалентного связывания происходит перераспределение электронной плотности, и на связанных ато­мах возникают противоположные по знаку заряды. Характерным признаком семиполярной связи служит наличие противоположных зарядов на ковалентно-связанных атомах.

К донорно-акцепторному типу связей относятся также связи в комплекс­ных соединениях. Донором пары электронов могут быть гетероатом с неподеленной парой электронов (n-доноры) или π-электроны изолированной π-связи или системы π-связей (π-доноры). Акцепторами могут служить ионы Me (имеющие вакантные орбитали), молекулярные иод, бром (за счет расши­рения внешней валентной оболочки), электронодефицитные π-системы (соединения, в которых π-связь или π-система обеднена электронной плотно­стью из-за акцепторного влияния заместителей). Например, диоксан-триоксид серы.

Особым слу­чаем являются металлоцены - π-комплексы ароматического циклопентадиенид-иона с ионами переходных металлов (Fe 2+ , Со 2+ , Ni 2+). В ферроцене взаимодействие двух колец циклопентадиенидионов с ионом Fe 2 осу­ществляется за счет перекрывания связывающих π-МО богатых электронной плотностью колец с вакантными 3d-АО иона Fe 2+ .

Свойства ковалентной связи выражаются через ее количественные характеристики - длину, энергию, полярность, поляризуемость.

Длина связи - это расстояние между центрами связанных атомов. Основ­ными методами определения длин связей и углов между ними служат рентге­ноструктурный анализ (для твердых) и электронография (для газообразных). Атомы в молекуле колеблются относительно некоторого оптимального расстояния - равновесной длины связи, соответствующей минимуму энергии системы из двух ядер. Поэтому расстояния - это средние значения. Длины связей зависят от природы связи, но одинаковые по типу между одними и теми же атомами связи в разных соединениях имеют приблизительно постоянное значение (свойства отдельных связей в приближении не зависят от остальной части молекулы).

Длины связей с участием атома углерода зависят от его состояния гибри­дизации. Одинарные связи С-С имеют тенденцию к уменьшению длины с увеличением доли s-характера гибридной орбитали. Так, длины связей C sp 3 -C sp 2 , C sp 2 -C sp 2 , C sp 3 -C sp равны 0,154, 0,150 и 0,146 нм. Ту же тенденцию можно отметить и для связей С-Н: C sp 3 -Н > C sp 2 -Н > C sp - Н (0,110; 0,107 и 0,106 нм). При увеличении кратности связей между атомами их длина всегда уменьшается. Двойные связи С=С, С=O, C=N короче соответствующих одинарных, а тройные связи С≡С, C≡N коро­че соответствующих двойных.

Половина длины ковалентной связи между одинаковыми атомами в молекуле называется ковалентным радиусом . В случае, когда ковалентно связаны раз­ные атомы и радиус одного атома известен, то, определив длину связи, можно вычислить ковалентный радиус другого атома: длина ковалентной связи равна сумме ковалентных радиусов связанных атомов. Исключение составляют сильно полярные связи: их длина меньше, чем сумма ковалентных радиусов.

Еще одной характеристикой расстояний между атомами служит ван-дер-ваальсов радиус , являющийся мерой того, насколько могут сблизить­ся друг с другом два атома, не связанные ковалентно. Он всегда больше, чем ковалентный.

Валентные углы - это углы между двумя связями, имеющими общий атом. Углы межъядерных связей X-С-Y в органических соединениях должны со­ответствовать состоянию гибридизации атома углерода и быть равными 109,5, 120 и 180° для sp 3 -, sp 2 -, sp-гибридного состояния соответственно. Когда атом углерода в состоянии sp 3 -гибридизации связан с 4-мя одинаковыми ато­мами или группами, валентные углы соответствуют углам правильного тетраэдра. Но в боль­шинстве они отличаются от идеальных. Для атомов углерода в состоянии sp 2 - и sp -гибридизации, связан­ных с неодинаковыми заместителями, также наблюдаются отклонения от уг­лов 120 и 180° соответственно. Особенно это касается атомов или групп ато­мов, имеющих разную электроотрицательность. Пространственные затрудне­ния также влияют на изменение валентных углов.

Энергия связи - это та энергия, которую необходимо затратить для разры­ва связи между двумя атомами, и соответственно эта же энергия выделяется при образовании связи. Энергию связи можно определить с помощью спект­ральных и термохимических методов. Энергия служит мерой прочности связи: чем больше энергия, тем связь прочнее.

Энергия, необходимая для гомолитического расщепления свя­зи на атомы, называется энергией диссоциации. Для двухатомных молекул она равна энергии связи. Энергию диссоциации можно измерить, но в случае сложных молекул часто бывает невозможно оп­ределить энергию диссоциации, необходимую для разрыва отдельной связи. Обычно энергию, необходимую для превращения молекул в атомы, рассчиты­вают по теплоте сгорания, исходя из предположения аддитивности вкладов каждого элемента.

Имеется корреляция между длиной связи и ее энергией: чем длиннее связь, тем меньше энергия и наоборот. Двойные связи прочнее и короче, чем соответствующие одинарные связи, но прочность их не вдвое больше. Это означает, что σ-связь прочнее π-связи. Энергия связи может заметно изменяться в зависимости от ряда факторов, связанных со структурными особенностями. Так, энергия связи С-Н для пер­вичного, вторичного и третичного атома углерода не одинакова. Связь с учас­тием третичного атома углерода наименее прочная, с участием первичного - наиболее прочная.

Полярность связи обусловлена неравномерным распределением электрон­ной плотности. Если атомы, образующие ковалентную связь, равноценны, то пара электронов связи в равной степени принадлежит обоим. Большинство же ковалентных связей образовано неодинаковыми или неравноценными атома­ми. В этом случае электронная плотность может быть смещена. Склонность атомов притягивать электроны харак­теризуется эмпирическим критерием - электроотрицательностью - это способность атома в молекуле притягивать валентные электроны, участвующие в химической связи.

Были предприняты попытки дать количественную оценку электроотрицательности, которая указывала бы направление и степень смещения электронного облака между любыми двумя атомами. Наи­более известна шкала Л. Полинга (1939) на основе энергий связи двухатомных молекул. В некоторых подходах рассчитывалась электроотрицательность для раз­личных состояний гибридизации атома. Известно, что увеличение доли s-орбитали в гибридной АО приводит к увеличению электроотрицательности. Кроме того, рассчитаны электроотрицательности не только для атомов, но и для групп атомов.

Связь, образованная разными по электроотрицательности атомами, будет полярной . Атомы, связанные ей, несут частичные заряды, обо­значаемые δ (дельта). При разности в электроотрицатель­ности атомов связи от 0,5 до 2,0 говорят о сильнополярной связи; если эта раз­ность больше 2,0, то велика степень ионности связи. Смещение электронной плотности полярной σ-связи обозначают прямой стрелкой, совпадающей с ва­лентной чертой, смещение полярной кратной связи - изогнутой стрелкой.

Неравномерное распределение электронной плотности ковалентной связи создает разделение зарядов, характеризуемое дипольным моментом μ. Суммарный дипольный момент молекулы определяют экспериментально. Дипольный момент отдельной связи можно непосредственно измерить только для двухатомных молекул. Молекула более сложного состава рассматривается как система нескольких диполей. Суммар­ный дипольный момент молекулы является векторной суммой моментов свя­зей. В симметрично построенных молекулах (СС1 4 или СО 2) μ = 0, хотя связи характеризуются значитель­ным дипольным моментом. Однако они компенсируют друг друга. Поляр­ность связей в значительной степени определяет реакционную способность и механизм реакций органических соединений.

Поляризуемость связи выражается в смещении электронного облака по отно­шению к ядрам под влиянием внешнего электромагнитного поля. Возникаю­щий при этом индуцированный диполь складывается с постоянным диполем (если он есть). Поляризуемость определяется легкостью смещения электронов связи. Легче поляризуются те связи, максимум электронной плотности которых располагается дальше от связываемых ядер. По поляризуемос­ти π-связь значительно превосходит σ-связь. Поляризуемость в значительной мере определяет реакционную способность молекул, так как смещение электронов тех или иных связей может происхо­дить не только под влиянием электрического поля, но и под влиянием при­ближающейся реагирующей частицы, а также под влиянием растворителей.

Атом водорода, связанный с сильно электроотрицательным атомом (фто­ра, кислорода, азота, хлора), способен взаимодействовать с неподеленной па­рой электронов другого сильно электроотрицательного атома этой же или дру­гой молекулы с образованием дополнительной слабой связи, называемой во­дородной связью.

Электронное облако связи 1 Н с электроотрицательным атомом сильно смещается в сторону этого атома, ос­тавляя ядро 1 Н слабо экранированным. Большой положительный заряд ядра атома 1 Н притягивается отрицательным зарядом другого электро­отрицательного атома. Энергия такого взаимодействия соизмерима с энергией прежней связи, и 1 Н связывается сразу с двумя, при­чем связывание со вторым атомом может быть даже более прочным. В результате протон может переходить от одного электроотри­цательного атома к другому. Энергетический барьер такого перехода невелик. Природа водородной связи имеет электростатический и донорно-акцепторный характер. Водородная связь слабая, лежит в пределах 10-40 кДж/моль, что значительно меньше энергии ковалентной или ионной связи.

Водородная связь играет значительную роль в проявлении многих физи­ческих и химических свойств молекул. Межмолекулярные водородные связи обусловливают ассоциацию многих соединений, например, спиртов, карбоно­вых кислот, что приводит к аномально высоким температурам их кипения. Сольватация ве­ществ посредством образования водородных связей с растворителем резко по­вышает их растворимость. Водородные связи также вносят вклад в стабилиза­цию ионизированных частиц в растворе. Внутримолекулярные водородные связи образуются в том случае, когда возможно замыкание шестичленного и реже пятичленного цикла. Водородные связи играют важнейшую роль в формировании пространст­венной структуры белков, нуклеиновых кислот, полисахаридов, а также в про­текании ряда биохимических процессов (репликация ДНК, синтез мРНК) и во многих случаях обеспечив

В этой статье мы рассмотрим элемент, входящий в состав периодической таблицы Д.И. Менделеева, а именно углерод. В современной номенклатуре он обозначается символом С, входит в четырнадцатую группу и является «участником» второго периода, имеет шестой порядковый номер, а его а.е.м. = 12.0107.

Атомные орбитали и их гибридизация

Начнем рассмотрение углерода с его орбиталей и их гибридизации - его главных особенностей, благодаря которым он и по сей день заставляет удивляться ученых всего мира. Каково же их строение?

Гибридизации атома углерода устроена таким образом, что валентные электроны занимают позиции на трех орбиталях, а именно: один находится на орбитали 2s, а два - на 2p-орбиталях. Последние две из трех орбиталей образуют угол, равный 90 градусам по отношению друг к другу, а 2s-орбиталь обладает сферической симметрией. Однако данная форма устройства рассматриваемых орбиталей не позволяет нам понять, почему же углерод, входя в органические соединения, образует углы в 120, 180 и 109.5 градусов. Формула электронного строения атома углерода выражает себя в следующем виде: (He) 2s 2 2p 2 .

Разрешение возникшего противоречия было сделано при помощи введения в оборот понятия гибридизации атомных орбиталей. Чтобы понять трехгранную, вариантную природу С, потребовалось создать три формы представления о его гибридизации. Главный вклад в появление и развитие данной концепции был сделан Лайнусом Полингом.

Свойства физического характера

Строение атома углерода обуславливает наличие ряда некоторых особенностей физического характера. Атомы этого элемента образуют простое вещество - углерод, который имеет модификации. Вариации изменений его строения могут придавать образовавшемуся веществу различные качественные характеристики. Причина наличия большого количества модификаций углерода заключается в его способности устанавливать и образовывать разнотипные связи химической природы.

Строение атома углерода может варьироваться, что позволяет ему иметь определенное количество изотопных форм. Углерод, находимый в природе, образуется при помощи двух изотопов в стабильном состоянии - 12 C и 13 C - и изотопа с радиоактивными свойствами - 14 С. Последний изотоп сосредотачивается в верхних слоях коры Земли и в атмосфере. Вследствие влияния космического излучения, а именно его нейтронов, на ядро атомов азота, образуется радиоактивный изотоп 14 С. После середины пятидесятых годов двадцатого века он стал попадать в окружающую среду в качестве техногенного продукта, образованного при работе АЭС, и вследствие использования водородной бомбы. Именно на процессе распада 14 С основывается методика радиоуглеродного датирования, нашедшая свое широкое применение в археологии и геологии.

Модификация углерода в аллотропной форме

В природе существует множество веществ, в состав которых входит углерод. Человек использует строение атома углерода в собственных целях при создании различных веществ, среди которых:

  1. Кристаллические углероды (алмазы, углеродные нанотрубки, волокна и проволоки, фуллерены и т.д.).
  2. Аморфные углероды (активированный и древесный уголь, различные виды кокса, техуглерод, сажа, нанопена и антрацит).
  3. Кластерные формы углерода (диуглероды, наноконусы и астраленовые соединения).

Структурные особенности атомного строения

Электронное строение атома углерода может обладать различной геометрией, которая зависит от уровня гибридизации орбиталей, которыми он обладает. Существует 3 главных вида геометрии:

  1. Тетраэдрическая - создается вследствие смещения четырех электронов, один из которых s-, а три принадлежат к p-электронам. Атом С занимается центральное положение в тетраэдре, связывается четырьмя равносильным сигма-связями с другими атомами, занимающими вершину данного тетраэдра. При таком геометрическом расположении углерода могут образоваться его аллотропные формы, например алмаз и лонсдейлит.
  2. Тригональная - обязана своим появлением смещению трех орбиталей, из которых одна s- и две p-. Здесь имеются три сигма-связи, которые находятся между собой в равносильной положении; они залегают в общей плоскости и придерживаются угла в 120 градусов по отношению друг к другу. Свободная р-орбиталь располагается перпендикулярно по отношению к плоскости сигма-связей. Подобной геометрией строения обладает графит.
  3. Диагональная - появляется благодаря смешиванию s- и p-электронов (гибридизация sp). Электронные облака вытягиваются вдоль общего направления и принимают форму несимметричной гантели. Свободные электроны создают π-связи. Данное строение геометрии в углероде дает начало появлению карбина, особой формы модификации.

Атомы углерода в природе

Строение и свойства атома углерода издавна рассматриваются человеком и используются с целью получения большого количества разнообразных веществ. Атомы этого элемента, благодаря своей уникальной способности образовывать разные химические связи и наличию гибридизации орбиталей, создают множество различных аллотропных модификаций при участии всего лишь одного элемента, из атомов одного типа, - углерода.

В природе углерод содержится в земной коре; принимает формы алмазов, графитов, различных горючих природных богатств, например, нефти, антрацита, бурого угля, сланцев, торфа и т.д. Входит в состав газов, используемых человеком в энергетической промышленности. Углерод в составе его диоксида заполняет гидросферу и атмосферу Земли, причем в воздухе доходит до 0.046%, а в воде - до шестидесяти раз больше.

В организме человека С содержится в количестве, приблизительно равном 21%, а выводиться преимущественно с мочой и выдыхаемым воздухом. Этот же элемент участвует в биологическом цикле, он поглощается растениями и расходуется в ходе процессов фотосинтеза.

Атомы углерода благодаря своей способности устанавливать разнообразные ковалентные связи и строить из них цепи, и даже циклы, могут создавать огромнейшее количество веществ органической природы. Помимо этого, данный элемент входит в состав солнечной атмосферы, пребывая в соединениях с водородом и азотом.

Свойства химической природы

Теперь рассмотрим строение и свойства атома углерода с химической точки зрения.

Важно знать, что углерод проявляет инертные свойства в условиях обычной температуры, но может показывать нам свойства восстановительного характера под влиянием высоких температур. Основные степени окисления: + - 4, иногда +2, а также +3.

Участвует в реакции с большим количеством элементов. Может вступать в реакции с водой, водородом, галогенами, щелочными металлами, кислотами, фтором, серой и т.д.

Строение атома углерода порождает невероятно огромное количество веществ, отделенных в отдельный класс. Такие соединения называются органическими и основываются на С. Это является возможным благодаря свойству атомов данного элемента образовывать полимерные цепи. Среди самых известных и обширных групп находятся протеины (белки), жиры, углеводы и углеводородные соединения.

Способы эксплуатации

Благодаря уникальному строения атома углерода и сопутствующим этому свойствам, элемент широко применяется человеком, например, при создании карандашей, выплавке металлических тиглей - здесь используют графит. Алмазы используются в качестве абразивных материалов, украшений, насадок для бормашин и т.д.

Фармакология и медицина также занимаются использованием углерода в разнообразных соединениях. Этот элемент входит в состав стали, служит основой для каждого органического вещества, участвует в процессе фотосинтеза и т.д.

Токсичность элемента

Строение атома элемента углерода заключает в себе наличие опасного воздействия на живую материю. Углерод попадает в мир вокруг нас в результате угольного сгорания на ТЭС, входит в состав газов, вырабатываемых автомобилями, в случае получения угольного концентрата и т.д.

Высок процент содержания углерода в аэрозолях, что влечет за собой увеличение процента заболеваемости людей. Чаще всего страдают верхние дыхательные пути и легкие. Некоторые заболевания можно относить к профессиональным, например, пылевой бронхит и болезни группы пневмокониоза.

14 С - токсичен, а силу его влияния определяет радиационное взаимодействие с β-частицами. Этот атом входит в составы биологических молекул, в том числе содержится в дезокси- и рибонуклеиновых кислотах. Допустимым количеством 14 С в воздухе рабочей зоны считается отметка в 1.3Бк/л. Максимальное количество поступающего в организм углерода во время дыхания равно соответствует 3.2*10 8 Бк/год.

Содержание статьи

УГЛЕРОД, С (carboneum), неметаллический химический элемент IVA группы (C, Si, Ge, Sn, Pb) периодической системы элементов. Встречается в природе в виде кристаллов алмаза (рис. 1), графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.).

Углерод широко распространен, но содержание его в земной коре всего 0,19%.


Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы – для изготовления шлифовального и режущего инструмента.

Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Карбиды, соединения углерода с металлами, а также с бором и кремнием (например, Al 4 C 3 , SiC, B 4 C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов. Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость. См. также СПЛАВЫ .

В природе существует множество различных форм графита; некоторые получены искусственно; имеются аморфные формы (например, кокс и древесный уголь). Сажа, костяной уголь, ламповая сажа, ацетиленовая сажа образуются при сжигании углеводородов при недостатке кислорода. Так называемый белый углерод получается сублимацией пиролитического графита при пониженном давлении – это мельчайшие прозрачные кристаллики графитовых листочков с заостренными кромками.

Историческая справка.

Графит, алмаз и аморфный углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название «графит», происходящее от греческого слова, означающего «писать», предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны «черный свинец», «карбидное железо», «серебристый свинец». В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа.

Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867. В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей.

Аллотропия.

Если структурные единицы вещества (атомы для одноатомных элементов или молекулы для полиатомных элементов и соединений) способны соединяться друг с другом в более чем одной кристаллической форме, это явление называется аллотропией. У углерода три аллотропические модификации – алмаз, графит и фуллерен. В алмазе каждый атом углерода имеет 4 тетраэдрически расположенных соседа, образуя кубическую структуру (рис. 1,а ). Такая структура отвечает максимальной ковалентности связи, и все 4 электрона каждого атома углерода образуют высокопрочные связи С–С, т.е. в структуре отсутствуют электроны проводимости. Поэтому алмаз отличается отсутствием проводимости, низкой теплопроводностью, высокой твердостью; он самый твердый из известных веществ (рис. 2). На разрыв связи С–С (длина связи 1,54 Å, отсюда ковалентный радиус 1,54/2 = 0,77 Å) в тетраэдрической структуре требуются большие затраты энергии, поэтому алмаз, наряду с исключительной твердостью, характеризуется высокой температурой плавления (3550° C).

Другой аллотропической формой углерода является графит, сильно отличающийся от алмаза по свойствам. Графит – мягкое черное вещество из легко слоящихся кристалликов, отличающееся хорошей электропроводностью (электрическое сопротивление 0,0014 Ом·см). Поэтому графит применяется в дуговых лампах и печах (рис. 3), в которых необходимо создавать высокие температуры. Графит высокой чистоты применяют в ядерных реакторах в качестве замедлителя нейтронов. Температура плавления его при повышенном давлении равна 3527° C. При обычном давлении графит сублимируется (переходит из твердого состояния в газ) при 3780° C.

Структура графита (рис. 1,б ) представляет собой систему конденсированных гексагональных колец с длиной связи 1,42 Å (значительно короче, чем в алмазе), но при этом каждый атом углерода имеет три (а не четыре, как в алмазе) ковалентные связи с тремя соседями, а четвертая связь (3,4 Å) слишком длинна для ковалентной связи и слабо связывает параллельно уложенные слои графита между собой. Именно четвертый электрон углерода определяет тепло- и электропроводность графита – эта более длинная и менее прочная связь формирует меньшую компактность графита, что отражается в меньшей твердости его в сравнении с алмазом (плотность графита 2,26 г/см 3 , алмаза – 3,51 г/см 3). По той же причине графит скользкий на ощупь и легко отделяет чешуйки вещества, что и используется для изготовления смазки и грифелей карандашей. Свинцовый блеск грифеля объясняется в основном наличием графита.

Волокна углерода имеют высокую прочность и могут использоваться для изготовления искусственного шелка или другой пряжи с высоким содержанием углерода.

При высоких давлении и температуре в присутствии катализатора, например железа, графит может превращаться в алмаз. Этот процесс реализован для промышленного получения искусственных алмазов. Кристаллы алмаза растут на поверхности катализатора. Равновесие графит алмаз существует при 15 000 атм и 300 K или при 4000 атм и 1500 K. Искусственные алмазы можно получать и из углеводородов.

К аморфным формам углерода, не образующим кристаллов, относят древесный уголь, получаемый нагревом дерева без доступа воздуха, ламповую и газовую сажу, образующуюся при низкотемпературном сжигании углеводородов при недостатке воздуха и конденсируемую на холодной поверхности, костяной уголь – примесь к фосфату кальция в процессе деструкции костной ткани, а также каменный уголь (природное вещество с примесями) и кокс, сухой остаток, получаемый при коксовании топлив методом сухой перегонки каменного угля или нефтяных остатков (битуминозных углей), т.е. нагреванием без доступа воздуха. Кокс применяется для выплавки чугуна, в черной и цветной металлургии. При коксовании образуются также газообразные продукты – коксовый газ (H 2 , CH 4 , CO и др.) и химические продукты, являющиеся сырьем для получения бензина, красок, удобрений, лекарственных препаратов, пластмасс и т.д. Схема основного аппарата для производства кокса – коксовой печи – приведена на рис. 3.

Различные виды угля и сажи отличаются развитой поверхностью и поэтому используются как адсорбенты для очистки газа, жидкостей, а также как катализаторы. Для получения различных форм углерода применяют специальные методы химической технологии. Искусственный графит получают прокаливанием антрацита или нефтяного кокса между углеродными электродами при 2260° С (процесс Ачесона) и используют в производстве смазочных материалов и электродов, в частности для электролитического получения металлов.

Строение атома углерода.

Ядро наиболее стабильного изотопа углерода массой 12 (распространенность 98,9%) имеет 6 протонов и 6 нейтронов (12 нуклонов), расположенных тремя квартетами, каждый содержит 2 протона и два нейтрона аналогично ядру гелия. Другой стабильный изотоп углерода – 13 C (ок. 1,1%), а в следовых количествах существует в природе нестабильный изотоп 14 C с периодом полураспада 5730 лет, обладающий b -излучением. В нормальном углеродном цикле живой материи участвуют все три изотопа в виде СO 2 . После смерти живого организма расход углерода прекращается и можно датировать С-содержащие объекты, измеряя уровень радиоактивности 14 С. Снижение b -излучения 14 CO 2 пропорционально времени, прошедшему с момента смерти. В 1960 У.Либби за исследования с радиоактивным углеродом был удостоен Нобелевской премии.

В основном состоянии 6 электронов углерода образуют электронную конфигурацию 1s 2 2s 2 2p x 1 2p y 1 2p z 0 . Четыре электрона второго уровня являются валентными, что соответствует положению углерода в IVA группе периодической системы (см . ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ) . Поскольку для отрыва электрона от атома в газовой фазе требуется большая энергия (ок. 1070 кДж/моль), углерод не образует ионные связи с другими элементами, так как для этого необходим был бы отрыв электрона с образованием положительного иона. Имея электроотрицательность, равную 2,5, углерод не проявляет и сильного сродства к электрону, соответственно не являясь активным акцептором электронов. Поэтому он не склонен к образованию частицы с отрицательным зарядом. Но с частично ионным характером связи некоторые соединения углерода существуют, например, карбиды. В соединениях углерод проявляет степень окисления 4. Чтобы четыре электрона смогли участвовать в образовании связей, необходимо распаривание 2s -электронов и перескок одного из этих электронов на 2p z -орбиталь; при этом образуются 4 тетраэдрические связи с углом между ними 109°. В соединениях валентные электроны углерода лишь частично оттянуты от него, поэтому углерод образует прочные ковалентные связи между соседними атомами типа С–С с помощью общей электронной пары. Энергия разрыва такой связи равна 335 кДж/моль, тогда как для связи Si–Si она составляет всего 210 кДж/моль, поэтому длинные цепочки –Si–Si– неустойчивы. Ковалентный характер связи сохраняется даже в соединениях высокореакционноспособных галогенов с углеродом, CF 4 и CCl 4 . Углеродные атомы способны предоставлять на образование связи более одного электрона от каждого атома углерода; так образуются двойная С=С и тройная СєС связи. Другие элементы также образуют связи между своими атомами, но только углерод способен образовывать длинные цепи. Поэтому для углерода известны тысячи соединений, называемых углеводородами, в которых углерод связан с водородом и другими углеродными атомами, образуя длинные цепи или кольцевые структуры. См . ХИМИЯ ОРГАНИЧЕСКАЯ.

В этих соединениях возможно замещение водорода на другие атомы, наиболее часто на кислород, азот и галогены с образованием множества органических соединений. Важное значение среди них занимают фторуглеводороды – углеводороды, в которых водород замещен на фтор. Такие соединения чрезвычайно инертны, и их используют как пластичные и смазочные материалы (фторуглероды, т.е. углеводороды, в которых все атомы водорода замещены на атомы фтора) и как низкотемпературные хладагенты (хладоны, или фреоны, – фторхлоруглеводороды).

В 1980-х годах физиками США был обнаружены очень интересные соединения углерода, в которых атомы углерода соединены в 5- или 6-угольники, образующие молекулу С 60 по форме полого шара, имеющего совершенную симметрию футбольного мяча. Поскольку такая конструкция лежит в основе «геодезического купола», изобретенного американским архитектором и инженером Бакминстером Фуллером, новый класс соединений был назван «бакминстерфуллеренами» или «фуллеренами» (а также более коротко – «фазиболами» или «бакиболами»). Фуллерены – третья модификация чистого углерода (кроме алмаза и графита), состоящая из 60 или 70 (и даже более) атомов, – была получена действием лазерного излучения на мельчайшие частички углерода. Фуллерены более сложной формы состоят из нескольких сотен атомов углерода. Диаметр молекулы С 60 ~ 1нм. В центре такой молекулы достаточно пространства для помещения большого атома урана.

Стандартная атомная масса.

В 1961 Международные союзы теоретической и прикладной химии (ИЮПАК) и по физике приняли за единицу атомной массы массу изотопа углерода 12 C, упразднив существовавшую до того кислородную шкалу атомных масс. Атомная масса углерода в этой системе равна 12,011, так как она является средней для трех природных изотопов углерода с учетом их распространенности в природе. См . АТОМНАЯ МАССА.

Химические свойства углерода и некоторых его соединений.

Некоторые физические и химические свойства углерода приведены в статье ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ. Реакционная способность углерода зависит от его модификации, температуры и дисперсности. При низких температурах все формы углерода достаточно инертны, но при нагревании окисляются кислородом воздуха, образуя оксиды:

Мелкодисперсный углерод в избытке кислорода способен взрываться при нагревании или от искры. Кроме прямого окисления существуют более современные методы получения оксидов.

Субоксид углерода

C 3 O 2 образуется при дегидратации малоновой кислоты над P 4 O 10:

C 3 O 2 имеет неприятный запах, легко гидролизуется, вновь образуя малоновую кислоту.

Монооксид углерода(II) СО образуется при окислении любой модификации углерода в условиях недостатка кислорода. Реакция экзотермична, выделяется 111,6 кДж/моль. Кокс при температуре белого каления реагирует с водой: C + H 2 O = CO + H 2 ; образующаяся газовая смесь называется «водяной газ» и является газообразным топливом. СO образуется также при неполном сгорании нефтепродуктов, в заметных количествах содержится в автомобильных выхлопах, получается при термической диссоциации муравьиной кислоты:

Степень окисления углерода в СО равна +2, а поскольку углерод более устойчив в степени окисления +4, то СО легко окисляется кислородом до CO 2: CO + O 2 → CO 2 , эта реакция сильно экзотермична (283 кДж/моль). СО применяют в промышленности в смеси с H 2 и другими горючими газами в качестве топлива или газообразного восстановителя. При нагревании до 500° C CO в заметной степени образует С и CO 2 , но при 1000° C равновесие устанавливается при малых концентрациях СO 2 . CO реагирует с хлором, образуя фосген – COCl 2 , аналогично протекают реакции с другими галогенами, в реакции с серой получается сульфид карбонила COS, с металлами (M) СO образует карбонилы различного состава M(CO) x , являющиеся комплексными соединениями. Карбонил железа образуется при взаимодействии гемоглобина крови с CO, препятствуя реакции гемоглобина с кислородом, так как карбонил железа – более прочное соединение. В результате блокируется функция гемоглобина как переносчика кислорода к клеткам, которые при этом погибают (и в первую очередь поражаются клетки мозга). (Отсюда еще одно название СО – «угарный газ»). Уже 1% (об.) СO в воздухе опасен для человека, если он находится в такой атмосфере более 10 мин. Некоторые физические свойства СО приведены в таблице.

Диоксид углерода, или оксид углерода(IV) CO 2 образуется при сгорании элементного углерода в избытке кислорода c выделением тепла (395 кДж/моль). CO 2 (тривиальное название – «углекислый газ») образуется также при полном окислении СО, нефтепродуктов, бензина, масел и др. органических соединений. При растворении карбонатов в воде в результате гидролиза также выделяется СО 2:

Такой реакцией часто пользуются в лабораторной практике для получения CO 2 . Этот газ можно получить и при прокаливании бикарбонатов металлов:

при газофазном взаимодействии перегретого пара с СО:

при сжигании углеводородов и их кислородпроизводных, например:

Аналогично окисляются пищевые продукты в живом организме с выделением тепловой и других видов энергии. При этом окисление протекает в мягких условиях через промежуточные стадии, но конечные продукты те же – СO 2 и H 2 O, как, например, при разложении сахаров под действием ферментов, в частности при ферментации глюкозы:

Многотоннажное производство углекислого газа и оксидов металлов осуществляется в промышленности термическим разложением карбонатов:

CaO в больших количествах используется в технологии производства цемента. Термическая стабильность карбонатов и затраты теплоты на их разложение по этой схеме возрастают в ряду CaCO 3 (см. также ПОЖАРНАЯ ПРОФИЛАКТИКА И ПРОТИВОПОЖАРНАЯ ЗАЩИТА).

Электронное строение оксидов углерода.

Электронное строение любого оксида углерода можно описать тремя равновероятными схемами с различным расположением электронных пар – тремя резонансными формами:

Все оксиды углерода имеют линейное строение.

Угольная кислота.

При взаимодействии СO 2 с водой образуется угольная кислота H 2 CO 3 . В насыщенном растворе CO 2 (0,034 моль/л) только часть молекул образует H 2 CO 3 , а бóльшая часть CO 2 находится в гидратированном состоянии CO 2 ЧH 2 O.

Карбонаты.

Карбонаты образуются при взаимодействии оксидов металлов с CO 2 , например, Na 2 O + CO 2 Na 2 CO 3 .

За исключением карбонатов щелочных металлов, остальные практически нерастворимы в воде, а карбонат кальция частично растворим в угольной кислоте или растворе CO 2 в воде под давлением:

Эти процессы происходят в подземных водах, протекающих через пласт известняка. В условиях низкого давления и испарения из грунтовых вод, содержащих Ca(HCO 3) 2 , осаждается CaCO 3 . Так происходит рост сталактитов и сталагмитов в пещерах. Окраска этих интересных геологических образований объясняется присутствием в водах примесей ионов железа, меди, марганца и хрома. Углекислый газ реагирует с гидроксидами металлов и их растворами с образованием гидрокарбонатов, например:

CS 2 + 2Cl 2 ® CCl 4 + 2S

Тетрахлорид CCl 4 – негорючее вещество, используется в качестве растворителя в процессах сухой чистки, но не рекомендуется применять его как пламегаситель, так как при высокой температуре происходит образование ядовитого фосгена (газообразное отравляющее вещество). Сам ССl 4 также ядовит и при вдыхании в заметных количествах может вызвать отравление печени. СCl 4 образуется и по фотохимической реакции между метаном СH 4 и Сl 2 ; при этом возможно образование продуктов неполного хлорирования метана – CHCl 3 , CH 2 Cl 2 и CH 3 Cl. Аналогично протекают реакции и с другими галогенами.

Реакции графита.

Графит как модификация углерода, отличающаяся большими расстояниями между слоями гексагональных колец, вступает в необычные реакции, например, щелочные металлы, галогены и некоторые соли (FeCl 3) проникают между слоями, образуя соединения типа KC 8 , KC 16 (называемые соединениями внедрения, включения или клатратами). Сильные окислители типа KClO 3 в кислой среде (серной или азотной кислоты) образуют вещества с большим объемом кристаллической решетки (до 6 Å между слоями), что объясняется внедрением кислородных атомов и образованием соединений, на поверхности которых в результате окисления образуются карбоксильные группы (–СООН) – соединения типа оксидированного графита или меллитовой (бензолгексакарбоновой) кислоты С 6 (COOH) 6 . В этих соединениях отношение С:O может изменяться от 6:1 до 6:2,5.

Карбиды.

Углерод образует с металлами, бором и кремнием разнообразные соединения, называемые карбидами. Наиболее активные металлы (IA–IIIA подгрупп) образуют солеподобные карбиды, например Na 2 C 2 , CaC 2 , Mg 4 C 3 , Al 4 C 3 . В промышленности карбид кальция получают из кокса и известняка по следующим реакциям:

Карбиды неэлектропроводны, почти бесцветны, гидролизуются с образованием углеводородов, например

CaC 2 + 2H 2 O = C 2 H 2 + Ca(OH) 2

Образующийся по реакции ацетилен C 2 H 2 служит исходным сырьем в производстве многих органических веществ. Этот процесс интересен, так как он представляет переход от сырья неорганической природы к синтезу органических соединений. Карбиды, образующие при гидролизе ацетилен, называются ацетиленидами. В карбидах кремния и бора (SiC и B 4 C) связь между атомами ковалентная. Переходные металлы (элементы B-подгрупп) при нагревании с углеродом тоже образуют карбиды переменного состава в трещинах на поверхности металла; связь в них близка к металлической. Некоторые карбиды такого типа, например WC, W 2 C, TiC и SiC, отличаются высокой твердостью и тугоплавкостью, обладают хорошей электропроводностью. Например, NbC, TaC и HfC – наиболее тугоплавкие вещества (т.пл. = 4000–4200° С), карбид диниобия Nb 2 C – сверхпроводник при 9,18 К, TiC и W 2 C по твердости близки алмазу, а твердость B 4 C (структурного аналога алмаза) составляет 9,5 по шкале Мооса (см . рис. 2). Инертные карбиды образуются, если радиус переходного металла

Азотпроизводные углерода.

К этой группе относится мочевина NH 2 CONH 2 – азотное удобрение, применяемое в виде раствора. Мочевину получают из NH 3 и CO 2 при нагревании под давлением:

Дициан (CN) 2 по многим свойствам подобен галогенам и его часто называют псевдогалоген. Дициан получают мягким окислением цианид-иона кислородом, пероксидом водорода или ионом Cu 2+ : 2CN – ® (CN) 2 + 2e.

Цианид-ион, являясь донором электронов, легко образует комплексные соединения с ионами переходных металлов. Подобно СО, цианид-ион является ядом, связывая жизненно важные соединения железа в живом организме. Цианидные комплексные ионы имеют общую формулу –0,5x , где х – координационное число металла (комплексообразователя), эмпирически равно удвоенному значению степени окисления иона металла. Примерами таких комплексных ионов являются (строение некоторых ионов приведено ниже) тетрацианоникелат(II)-ион 2– , гексацианоферрат(III) 3– , дицианоаргентат – :

Карбонилы.

Монооксид углерода способен непосредственно реагировать со многими металлами или ионами металлов, образуя комплексные соединения, называемые карбонилами, например Ni(CO) 4 , Fe(CO) 5 , Fe 2 (CO) 9 , 3 , Mo(CO) 6 , 2 . Связь в этих соединениях аналогична связи в описанных выше цианокомплексах. Ni(CO) 4 – летучее вещество, используется для отделения никеля от других металлов. Ухудшение структуры чугуна и стали в конструкциях часто связано с образованием карбонилов. Водород может входить в состав карбонилов, образуя карбонилгидриды, такие, как H 2 Fe(CO) 4 и HCo(CO) 4 , проявляющие кислотные свойства и реагирующие со щелочью:

H 2 Fe(CO) 4 + NaOH → NaHFe(CO) 4 + H 2 O

Известны также карбонилгалогениды, например Fe(CO)X 2 , Fe(CO) 2 X 2 , Co(CO)I 2 , Pt(CO)Cl 2 , где Х – любой галоген .

Углеводороды.

Известно огромное количество соединений углерода с водородом

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода