Вконтакте Facebook Twitter Лента RSS

Усеченная треугольная пирамида формулы. Высота пирамиды

На данном уроке мы рассмотрим усеченную пирамиду, познакомимся с правильной усеченной пирамидой, изучим их свойства.

Вспомним понятие n-угольной пирамиды на примере треугольной пирамиды. Задан треугольник АВС. Вне плоскости треугольника взята точка Р, соединенная с вершинами треугольника. Полученная многогранная поверхность и называется пирамидой (рис. 1).

Рис. 1. Треугольная пирамида

Рассечем пирамиду плоскостью , параллельной плоскости основания пирамиды . Полученная между этими плоскостями фигура и называется усеченной пирамидой (рис. 2).

Рис. 2. Усеченная пирамида

Основные элементы:

Верхнее основание ;

Нижнее основание АВС;

Боковая грань ;

Если РН - высота исходной пирамиды, то - высота усеченной пирамиды.

Свойства усеченной пирамиды вытекают из способа ее построения, а именно из параллельности плоскостей оснований:

Все боковые грани усеченной пирамиды являются трапециями. Рассмотрим, например, грань . У нее по свойству параллельных плоскостей (поскольку плоскости параллельны, то боковую грань исходной пирамиды АВР они рассекают по параллельным прямым), в то же время и не параллельны. Очевидно, что четырехугольник является трапецией, как и все боковые грани усеченной пирамиды.

Отношение оснований одинаково для всех трапеций:

Имеем несколько пар подобных треугольников с одинаковым коэффициентом подобия. Например, треугольники и РАВ подобны в силу параллельности плоскостей и , коэффициент подобия:

В то же время подобны треугольники и РВС с коэффициентом подобия:

Очевидно, что коэффициенты подобия для всех трех пар подобных треугольников равны, поэтому отношение оснований одинаково для всех трапеций.

Правильной усеченной пирамидой называется усеченная пирамида, полученная сечением правильной пирамиды плоскостью, параллельной основанию (рис. 3).

Рис. 3. Правильная усеченная пирамида

Определение.

Правильной называется пирамида, в основании которой лежит правильный n-угольник, а вершина проектируется в центр этого n-угольника (центр вписанной и описанной окружности).

В данном случае в основании пирамиды лежит квадрат, и вершина проектируется в точку пересечения его диагоналей. У полученной правильной четырехугольной усеченной пирамиды ABCD - нижнее основание, - верхнее основание. Высота исходной пирамиды - РО, усеченной пирамиды - (рис. 4).

Рис. 4. Правильная четырехугольная усеченная пирамида

Определение.

Высота усеченной пирамиды - это перпендикуляр, проведенный из любой точки одного основания к плоскости второго основания.

Апофема исходной пирамиды - РМ (М - середина АВ), апофема усеченной пирамиды - (рис. 4).

Определение.

Апофема усеченной пирамиды - высота любой боковой грани.

Ясно, что все боковые ребра усеченной пирамиды равны между собой, то есть боковые грани - равные равнобедренные трапеции.

Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.

Доказательство (для правильной четырехугольной усеченной пирамиды - рис. 4):

Итак, необходимо доказать:

Площадь боковой поверхности здесь будет состоять из суммы площадей боковых граней - трапеций. Поскольку трапеции одинаковы, имеем:

Площадь равнобедренной трапеции - это произведение полусуммы оснований и высоты, апофема является высотой трапеции. Имеем:

Что и требовалось доказать.

Для n-угольной пирамиды:

Где n - количество боковых граней пирамиды, a и b - основания трапеции, - апофема.

Стороны основания правильной усеченной четырехугольной пирамиды равны 3 см и 9 см, высота - 4 см. Найти площадь боковой поверхности.

Рис. 5. Иллюстрация к задаче 1

Решение. Проиллюстрируем условие:

Задано: , ,

Через точку О проведем прямую MN параллельно двум сторонам нижнего основания, аналогично через точку проведем прямую (рис. 6). Поскольку в основаниях усеченной пирамиды квадраты и построения параллельны, получим трапецию, равную боковым граням. Причем ее боковая сторона будет проходить через середины верхнего и нижнего ребра боковых граней и являться апофемой усеченной пирамиды.

Рис. 6. Дополнительные построения

Рассмотрим полученную трапецию (рис. 6). В этой трапеции известно верхнее основание, нижнее основание и высота. Требуется найти боковую сторону, которая является апофемой заданной усеченной пирамиды. Проведем перпендикулярно MN. Из точки опустим перпендикуляр NQ. Получим, что большее основание разбивается на отрезки по три сантиметра (). Рассмотрим прямоугольный треугольник , катеты в нем известны, это египетский треугольник, по теореме Пифагора определяем длину гипотенузы: 5 см.

Теперь есть все элементы для определения площади боковой поверхности пирамиды:

Пирамида пересечена плоскостью, параллельной основанию. Докажите на примере треугольной пирамиды, что боковые ребра и высота пирамиды делятся этой плоскостью на пропорциональные части.

Доказательство. Проиллюстрируем:

Рис. 7. Иллюстрация к задаче 2

Задана пирамида РАВС. РО - высота пирамиды. Пирамида рассечена плоскостью , получена усеченная пирамида , причем . Точка - точка пересечения высоты РО с плоскостью основания усеченной пирамиды . Необходимо доказать:

Ключом к решению является свойство параллельных плоскостей. Две параллельные плоскости рассекают любую третью плоскость так, что линии пересечения параллельны. Отсюда: . Из параллельности соответствующих прямых вытекает наличие четырех пар подобных треугольников:

Из подобия треугольников вытекает пропорциональность соответствующих сторон. Важная особенность заключается в том, что коэффициенты подобия у этих треугольников одинаковы:

Что и требовалось доказать.

Правильная треугольная пирамида РАВС с высотой и стороной основания рассечена плоскостью , проходящей через середину высоты РН параллельно основанию АВС. Найти площадь боковой поверхности полученной усеченной пирамиды.

Решение. Проиллюстрируем:

Рис. 8. Иллюстрация к задаче 3

АСВ - правильный треугольник, Н - центр данного треугольника (центр вписанной и описанной окружностей). РМ - апофема заданной пирамиды. - апофема усеченной пирамиды. Согласно свойству параллельных плоскостей (две параллельные плоскости рассекают любую третью плоскость так, что линии пересечения параллельны), имеем несколько пар подобных треугольников с равным коэффициентом подобия. В частности нас интересует отношение:

Найдем НМ. Это радиус окружности, вписанной в основание, соответствующая формула нам известна:

Теперь из прямоугольного треугольника РНМ по теореме Пифагора найдем РМ - апофему исходной пирамиды:

Из начального соотношения:

Теперь нам известны все элементы для нахождения площади боковой поверхности усеченной пирамиды:

Итак, мы ознакомились с понятиями усеченной пирамиды и правильной усеченной пирамиды, дали основные определения, рассмотрели свойства, доказали теорему о площади боковой поверхности. Следующий урок будет посвящен решению задач.

Список литературы

  1. И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 2008. - 233 с.: ил.
  1. Uztest.ru ().
  2. Fmclass.ru ().
  3. Webmath.exponenta.ru ().

Домашнее задание

Материал урока.

На прошлых уроках мы работали с пирамидами. Давайте вспомним, какой многогранник называется пирамидой, что такое правильная пирамида, вспомним свойства правильной пирамиды.

Многогранник, составленный из -угольника и треугольников, называется пирамидой .

Пирамида называется правильной , если ее основание – правильный многоугольник.

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Все боковые ребра правильной пирамиды равны, а боковые грани являются равными равнобедренными треугольниками.

Пусть нам дана пирамида PA 1 A 2 …A n . Проведем секущую плоскость β, параллельную плоскости основания пирамиды и пусть эта плоскость пересекает боковые ребра в точках B 1, B 2 ,…, B n .

Плоскость β разбивает пирамиду на две фигуры: пирамиду PB 1 B 2 …B n и многогранник. Многогранник, гранями которого являются n-угольники A 1 A 2 …A n и B 1 B 2 …B n , расположенные в параллельных плоскостях и n четырехугольников A 1 A 2 B 2 B 1 , A 2 A 3 B 3 B 2 ,…, A n A 1 B 1 B n называется усеченной пирамидой .

Вокруг нас много примеров усеченных пирамид. Вытяжка над кухонной плитой имеет форму усеченной пирамиды.клавиши клавиатуры и другие предметы.

N-угольники A 1 A 2 …A n и B 1 B 2 …B n называются соответственно верхним и нижним основанием . Четырехугольники A 1 A 2 B 2 B 1 , A 2 A 3 B 3 B 2 ,…, A n A 1 B 1 B n называются боковыми гранями .

Отрезки A 1 B 1 ,…, A n B n называются боковыми рёбрами усеченной пирамиды .

Усеченную пирамиду обозначают так A 1 A 2 …A n B 1 B 2 …B n . Возьмем на верхнем основании произвольную точку C и из этой точки опустим перпендикуляр на нижнее основание. Этот перпендикуляр называется высотой усеченной пирамиды.


Теперь давайте докажем, что боковые грани усеченной пирамиды – это трапеции.

Для доказательства рассмотрим грань A 1 A 2 B 2 B 1 . Понятно, что для других боковых граней доказательство будет проводится аналогично.

Поскольку секущая плоскость проводилась параллельно плоскости основания, то можно записать, что A 1 A 2 параллельно B 1 B 2 . Очевидно, что две другие стороны четырехугольника A 1 A 2 B 2 B 1 не параллельны (они пересекаются в точке P). Получаем, что этот четырехугольник – трапеция. Очевидно, что все остальные боковые грани тоже будут трапециями.

Как и в случае с пирамидой, усеченная пирамида тоже может быть правильной.

Усеченная пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию.

Основаниями усеченной пирамиды являются правильные многоугольники, а боковые грани – равнобедренные трапеции.

Высоты этих трапеций называются апофемами .

Объединение боковых граней называется боковой поверхностью усеченной пирамиды, а объединение всех граней называется полной поверхностью усеченной пирамиды. Тогда площадью боковой поверхности пирамиды называется сумма площадей ее боковых граней.

А площадью полной поверхности пирамиды называется сумма площадей всех ее граней.

Теперь давайте сформулируем и докажем теорему о площади боковой поверхности правильной усеченной пирамиды.

Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров основания на апофему.

Доказательство.

Запишем формулу для нахождения площади боковой поверхности усеченной пирамиды.

Поскольку усеченная пирамида правильная, значит, ее гранями будут равнобедренные трапеции.

Площадь равнобедренной трапеции равна произведению полусуммы оснований на высоту. Высота боковой грани есть ничто иное как апофема усеченной пирамиды.

Подставим все в исходную формулу, вынесем половину апофемы за скобки, а в скобках сгруппируем стороны по основаниям. Тогда получим, что площадь боковой поверхности будет равна произведению полусуммы периметров оснований усеченной пирамиды на апофему.

Что и требовалось доказать .

Решим несколько задач.

Задача. Стороны оснований правильной усеченной четырехугольной пирамиды равны и . Высота пирамиды равна . Найти площадь боковой поверхности.

Решение.

Пирамида - это многогранник, в основании которого лежит многоугольник. Все грани в свою очередь образуют треугольники, которые сходятся в одной вершине. Пирамиды бывают треугольными, четырехугольными и так далее. Для того чтобы определить, какая пирамида перед вами, достаточно посчитать количество углов в ее основании. Определение "высота пирамиды" очень часто встречается в задачах по геометрии в школьной программе. В статье попробуем рассмотреть разные способы ее нахождения.

Части пирамиды

Каждая пирамида состоит из следующих элементов:

  • боковые грани, которые имеют по три угла и сходятся в вершине;
  • апофема представляет собой высоту, которая опускается из ее вершины;
  • вершина пирамиды - это точка, которая соединяет боковые ребра, но при этом не лежит в плоскости основания;
  • основание - это многоугольник, на котором не лежит вершина;
  • высота пирамиды представляет собой отрезок, который пересекает вершину пирамиды и образует с ее основанием прямой угол.

Как найти высоту пирамиды, если известен ее объем

Через формулу V = (S*h)/3 (в формуле V - объем, S - площадь основания, h - высота пирамиды) находим, что h = (3*V)/S. Для закрепления материала давайте сразу же решим задачу. В треугольной основания равна 50 см 2 , тогда как ее объем составляет 125 см 3 . Неизвестна высота треугольной пирамиды, которую нам и необходимо найти. Здесь все просто: вставляем данные в нашу формулу. Получаем h = (3*125)/50 = 7,5 см.

Как найти высоту пирамиды, если известна длина диагонали и ее ребра

Как мы помним, высота пирамиды образует с ее основанием прямой угол. А это значит что высота, ребро и половина диагонали вместе образуют Многие, конечно же, помнят теорему Пифагора. Зная два измерения, третью величину найти будет несложно. Вспомним известную теорему a² = b² + c², где а - гипотенуза, а в нашем случае ребро пирамиды; b - первый катет или половина диагонали и с - соответственно, второй катет, или высота пирамиды. Из этой формулы c² = a² - b².

Теперь задачка: в правильной пирамиде диагональ равна 20 см, когда как длина ребра - 30 см. Необходимо найти высоту. Решаем: c² = 30² - 20² = 900-400 = 500. Отсюда с = √ 500 = около 22,4.

Как найти высоту усеченной пирамиды

Она представляет собой многоугольник, который имеет сечение параллельно ее основанию. Высота усеченной пирамиды - это отрезок, который соединяет два ее основания. Высоту можно найти у правильной пирамиды, если будут известны длины диагоналей обоих оснований, а также ребро пирамиды. Пусть диагональ большего основания равна d1, в то время как диагональ меньшего основания - d2, а ребро имеет длину - l. Чтобы найти высоту, можно с двух верхних противоположных точек диаграммы опустить высоты на ее основание. Мы видим, что у нас получились два прямоугольных треугольника, остается найти длины их катетов. Для этого из большей диагонали вычитаем меньшую и делим на 2. Так мы найдем один катет: а = (d1-d2)/2. После чего по теореме Пифагора нам остается лишь найти второй катет, который и является высотой пирамиды.

Теперь рассмотрим все это дело на практике. Перед нами задача. Усеченная пирамида имеет в основании квадрат, длина диагонали большего основания равняется 10 см, в то время как меньшего - 6 см, а ребро равняется 4 см. Требуется найти высоту. Для начала находим один катет: а = (10-6)/2 = 2 см. Один катет равен 2 см, а гипотенуза - 4 см. Получается, что второй катет или высота будет равна 16-4 = 12, то есть h = √12 = около 3,5 см.

Как можно построить пирамиду? На плоскости р построим какой-либо многоугольник, например пятиугольник ABCDE. Вне плоскости р возьмем точку S. Соединив точку S отрезками со всеми точками многоугольника, получим пирамиду SABCDE (рис.).

Точка S называется вершиной , а многоугольник ABCDE - основанием этой пирамиды. Таким образом, пирамида с вершиной S и основанием ABCDE - это объединение всех отрезков , где М ∈ ABCDE.

Треугольники SAB, SBC, SCD, SDE, SEA называются боковыми гранями пирамиды, общие стороны боковых граней SA, SB, SC, SD, SE - боковыми ребрами .

Пирамиды называются треугольными, четырехугольными, п-угольными в зависимости от числа сторон основания. На рис. даны изображения треугольной, четырехугольной и шестиугольной пирамид.

Плоскость, проходящая через вершину пирамиды и диагональ основания, называется диагональной , а полученное сечение - диагональным. На рис. 186 одно из диагональных сечений шестиугольной пирамиды заштриховано.

Отрезок перпендикуляра, проведенного через вершину пирамиды к плоскости ее основания, называется высотой пирамиды (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Пирамида называется правильной , если основание пирамиды-правильный многоугольник и вершина пирамиды проектируется в его центр.

Все боковые грани правильной пирамиды - конгруэнтные равнобедренные треугольники. У правильной пирамиды все боковые ребра конгруэнтны.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой пирамиды. Все апофемы правильной пирамиды конгруэнтны.

Если обозначить сторону основания через а , а апофему через h , то площадь одной боковой грани пирамиды равна 1 / 2 ah .

Сумма площадей всех боковых граней пирамиды называется площадью боковой поверхности пирамиды и обозначается через S бок.

Так как боковая поверхность правильной пирамиды состоит из n конгруэнтных граней, то

S бок. = 1 / 2 ahn = Ph / 2 ,

где Р - периметр основания пирамиды. Следовательно,

S бок. = Ph / 2

т. е. площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Площадь полной поверхности пирамиды вычисляется по формуле

S = S ocн. + S бок. .

Объем пирамиды равен одной трети произведения площади ее основания S ocн. на высоту Н:

V = 1 / 3 S ocн. Н.

Вывод этой и некоторых других формул будет дан в одной из последующих глав.

Построим теперь пирамиду другим способом. Пусть дан многогранный угол, например, пятигранный, с вершиной S (рис.).

Проведем плоскость р так, чтобы она пересекала все ребра данного многогранного угла в разных точках А, В, С, D, Е (рис.). Тогда пирамиду SABCDE можно рассматривать как пересечение многогранного угла и полупространства с границей р , в котором лежит вершина S.

Очевидно, что число всех граней пирамиды может быть произвольным, но не меньшим четырех. При пересечении трехгранного угла плоскостью получается треугольная пирамида, у которой четыре грани. Любую треугольную пирамиду иногда называют тетраэдром , что означает четырехгранник.

Усеченную пирамиду можно получить, если пирамиду пересечь плоскостью, параллельной плоскости основания.

На рис. дано изображение четырехугольной усеченной пирамиды.

Усеченные пирамиды также называются треугольными, четырехугольными, n-угольными в зависимости от числа сторон основания. Из построения усеченной пирамиды следует, что она имеет два основания: верхнее и нижнее. Основания усеченной пирамиды - два многоугольника, стороны которых попарно параллельны. Боковые грани усеченной пирамиды - трапеции.

Высотой усеченной пирамиды называется отрезок перпендикуляра, проведенного из любой точки верхнего основания к плоскости нижнего.

Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и плоскостью сечения, параллельной основанию. Высота боковой грани правильной усеченной пирамиды (трапеции) называется апофемой .

Можно доказать, что у правильной усеченной пирамиды боковые ребра конгруэнтны, все боковые грани конгруэнтны, все апофемы конгруэнтны.

Если в правильной усеченной n -угольной пирамиде через а и b n обозначить длины сторон верхнего и нижнего оснований, а через h - длину апофемы, то площадь каждой боковой грани пирамиды равна

1 / 2 (а + b n ) h

Сумма площадей всех боковых граней пирамиды называется площадью ее боковой поверхности и обозначается S бок. . Очевидно, что для правильной усеченной n -угольной пирамиды

S бок. = n 1 / 2 (а + b n ) h .

Так как па = Р и nb n = Р 1 - периметры оснований усеченной пирамиды, то

S бок. = 1 / 2 (Р + Р 1) h ,

т. е. площадь боковой поверхности правильной усеченной пирамиды равна половине произведения суммы периметров ее оснований на апофему.

Сечение, параллельное основанию пирамиды

Теорема. Если пирамиду пересечь плоскостью, параллельной основанию, то:

1) боковые ребра и высота разделятся на пропорциональные части;

2) в сечении получится многоугольник, подобный основанию;

3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Теорему достаточно доказать для треугольной пирамиды.

Так как параллельные плоскости пересекаются третьей плоскостью по параллельным прямым, то (АВ) || (А 1 В 1), (BС) ||(В 1 C 1), (AС) || (A 1 С 1) (рис.).

Параллельные прямые рассекают стороны угла на пропорциональные части, и поэтому

$$ \frac{\left|{SA}\right|}{\left|{SA_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|}=\frac{\left|{SC}\right|}{\left|{SC_1}\right|} $$

Следовательно, ΔSAB ~ ΔSA 1 B 1 и

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|} $$

ΔSBC ~ ΔSB 1 C 1 и

$$ \frac{\left|{BC}\right|}{\left|{B_{1}C_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|}=\frac{\left|{SC}\right|}{\left|{SC_1}\right|} $$

Таким образом,

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{BC}\right|}{\left|{B_{1}C_1}\right|}=\frac{\left|{AC}\right|}{\left|{A_{1}C_1}\right|} $$

Соответственные углы треугольников ABC и A 1 B 1 C 1 конгруэнтны, как углы с параллельными и одинаково направленными сторонами. Поэтому

ΔABC ~ ΔA 1 B 1 C 1

Площади подобных треугольников относятся, как квадраты соответствующих сторон:

$$ \frac{S_{ABC}}{S_{A_1 B_1 C_1}}=\frac{\left|{AB}\right|^2}{\left|{A_{1}B_1}\right|^2} $$

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{SH}\right|}{\left|{SH_1}\right|} $$

Следовательно,

$$ \frac{S_{ABC}}{S_{A_1 B_1 C_1}}=\frac{\left|{SH}\right|^2}{\left|{SH_1}\right|^2} $$

Теорема. Если две пирамиды с равными высотами рассечены на одинаковом расстоянии от вершины плоскостями, параллельными основаниям, то площади сечений пропорциональны площадям оснований.

Пусть (черт. 84) В и В 1 - площади оснований двух пирамид, H - высота каждой из них, b и b 1 - площади сечений плоскостями, параллельными основаниям и удалёнными от вершин на одно и то же расстояние h .

Согласно предыдущей теореме мы будем иметь:

$$ \frac{b}{B}=\frac{h^2}{H^2}\: и \: \frac{b_1}{B_1}=\frac{h^2}{H^2} $$
откуда
$$ \frac{b}{B}=\frac{b_1}{B_1}\: или \: \frac{b}{b_1}=\frac{B}{B_1} $$

Следствие. Если В = В 1 , то и b = b 1 , т. е. если у двух пирамид с равными высотами основания равновелики, то равновелики и сечения, равноотстоящие от вершины.

Другие материалы

На данном уроке мы рассмотрим усеченную пирамиду, познакомимся с правильной усеченной пирамидой, изучим их свойства.

Вспомним понятие n-угольной пирамиды на примере треугольной пирамиды. Задан треугольник АВС. Вне плоскости треугольника взята точка Р, соединенная с вершинами треугольника. Полученная многогранная поверхность и называется пирамидой (рис. 1).

Рис. 1. Треугольная пирамида

Рассечем пирамиду плоскостью , параллельной плоскости основания пирамиды . Полученная между этими плоскостями фигура и называется усеченной пирамидой (рис. 2).

Рис. 2. Усеченная пирамида

Основные элементы:

Верхнее основание ;

Нижнее основание АВС;

Боковая грань ;

Если РН - высота исходной пирамиды, то - высота усеченной пирамиды.

Свойства усеченной пирамиды вытекают из способа ее построения, а именно из параллельности плоскостей оснований:

Все боковые грани усеченной пирамиды являются трапециями. Рассмотрим, например, грань . У нее по свойству параллельных плоскостей (поскольку плоскости параллельны, то боковую грань исходной пирамиды АВР они рассекают по параллельным прямым), в то же время и не параллельны. Очевидно, что четырехугольник является трапецией, как и все боковые грани усеченной пирамиды.

Отношение оснований одинаково для всех трапеций:

Имеем несколько пар подобных треугольников с одинаковым коэффициентом подобия. Например, треугольники и РАВ подобны в силу параллельности плоскостей и , коэффициент подобия:

В то же время подобны треугольники и РВС с коэффициентом подобия:

Очевидно, что коэффициенты подобия для всех трех пар подобных треугольников равны, поэтому отношение оснований одинаково для всех трапеций.

Правильной усеченной пирамидой называется усеченная пирамида, полученная сечением правильной пирамиды плоскостью, параллельной основанию (рис. 3).

Рис. 3. Правильная усеченная пирамида

Определение.

Правильной называется пирамида, в основании которой лежит правильный n-угольник, а вершина проектируется в центр этого n-угольника (центр вписанной и описанной окружности).

В данном случае в основании пирамиды лежит квадрат, и вершина проектируется в точку пересечения его диагоналей. У полученной правильной четырехугольной усеченной пирамиды ABCD - нижнее основание, - верхнее основание. Высота исходной пирамиды - РО, усеченной пирамиды - (рис. 4).

Рис. 4. Правильная четырехугольная усеченная пирамида

Определение.

Высота усеченной пирамиды - это перпендикуляр, проведенный из любой точки одного основания к плоскости второго основания.

Апофема исходной пирамиды - РМ (М - середина АВ), апофема усеченной пирамиды - (рис. 4).

Определение.

Апофема усеченной пирамиды - высота любой боковой грани.

Ясно, что все боковые ребра усеченной пирамиды равны между собой, то есть боковые грани - равные равнобедренные трапеции.

Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.

Доказательство (для правильной четырехугольной усеченной пирамиды - рис. 4):

Итак, необходимо доказать:

Площадь боковой поверхности здесь будет состоять из суммы площадей боковых граней - трапеций. Поскольку трапеции одинаковы, имеем:

Площадь равнобедренной трапеции - это произведение полусуммы оснований и высоты, апофема является высотой трапеции. Имеем:

Что и требовалось доказать.

Для n-угольной пирамиды:

Где n - количество боковых граней пирамиды, a и b - основания трапеции, - апофема.

Стороны основания правильной усеченной четырехугольной пирамиды равны 3 см и 9 см, высота - 4 см. Найти площадь боковой поверхности.

Рис. 5. Иллюстрация к задаче 1

Решение. Проиллюстрируем условие:

Задано: , ,

Через точку О проведем прямую MN параллельно двум сторонам нижнего основания, аналогично через точку проведем прямую (рис. 6). Поскольку в основаниях усеченной пирамиды квадраты и построения параллельны, получим трапецию, равную боковым граням. Причем ее боковая сторона будет проходить через середины верхнего и нижнего ребра боковых граней и являться апофемой усеченной пирамиды.

Рис. 6. Дополнительные построения

Рассмотрим полученную трапецию (рис. 6). В этой трапеции известно верхнее основание, нижнее основание и высота. Требуется найти боковую сторону, которая является апофемой заданной усеченной пирамиды. Проведем перпендикулярно MN. Из точки опустим перпендикуляр NQ. Получим, что большее основание разбивается на отрезки по три сантиметра (). Рассмотрим прямоугольный треугольник , катеты в нем известны, это египетский треугольник, по теореме Пифагора определяем длину гипотенузы: 5 см.

Теперь есть все элементы для определения площади боковой поверхности пирамиды:

Пирамида пересечена плоскостью, параллельной основанию. Докажите на примере треугольной пирамиды, что боковые ребра и высота пирамиды делятся этой плоскостью на пропорциональные части.

Доказательство. Проиллюстрируем:

Рис. 7. Иллюстрация к задаче 2

Задана пирамида РАВС. РО - высота пирамиды. Пирамида рассечена плоскостью , получена усеченная пирамида , причем . Точка - точка пересечения высоты РО с плоскостью основания усеченной пирамиды . Необходимо доказать:

Ключом к решению является свойство параллельных плоскостей. Две параллельные плоскости рассекают любую третью плоскость так, что линии пересечения параллельны. Отсюда: . Из параллельности соответствующих прямых вытекает наличие четырех пар подобных треугольников:

Из подобия треугольников вытекает пропорциональность соответствующих сторон. Важная особенность заключается в том, что коэффициенты подобия у этих треугольников одинаковы:

Что и требовалось доказать.

Правильная треугольная пирамида РАВС с высотой и стороной основания рассечена плоскостью , проходящей через середину высоты РН параллельно основанию АВС. Найти площадь боковой поверхности полученной усеченной пирамиды.

Решение. Проиллюстрируем:

Рис. 8. Иллюстрация к задаче 3

АСВ - правильный треугольник, Н - центр данного треугольника (центр вписанной и описанной окружностей). РМ - апофема заданной пирамиды. - апофема усеченной пирамиды. Согласно свойству параллельных плоскостей (две параллельные плоскости рассекают любую третью плоскость так, что линии пересечения параллельны), имеем несколько пар подобных треугольников с равным коэффициентом подобия. В частности нас интересует отношение:

Найдем НМ. Это радиус окружности, вписанной в основание, соответствующая формула нам известна:

Теперь из прямоугольного треугольника РНМ по теореме Пифагора найдем РМ - апофему исходной пирамиды:

Из начального соотношения:

Теперь нам известны все элементы для нахождения площади боковой поверхности усеченной пирамиды:

Итак, мы ознакомились с понятиями усеченной пирамиды и правильной усеченной пирамиды, дали основные определения, рассмотрели свойства, доказали теорему о площади боковой поверхности. Следующий урок будет посвящен решению задач.

Список литературы

  1. И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 2008. - 233 с.: ил.
  1. Uztest.ru ().
  2. Fmclass.ru ().
  3. Webmath.exponenta.ru ().

Домашнее задание

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода