Вконтакте Facebook Twitter Лента RSS

Урезанная пирамида. Пирамида и усеченная пирамида

Данный урок поможет получить представление о теме «Пирамида. Правильная и усеченная пирамида». На этом занятии мы познакомимся с понятием правильной пирамиды, дадим ей определение. Затем докажем теорему о боковой поверхности правильной пирамиды и теорему о боковой поверхности правильной усеченной пирамиды.

Тема: Пирамида

Урок: Правильная и усечённая пирамиды

Определение: правильной n-угольной пирамидой называется такая пирамида, у которой в основании лежит правильный n-угольник, и высота проецируется в центр этого n-угольника (рис. 1).

Рис. 1

Правильная треугольная пирамида

Для начала рассмотрим ∆ABC (рис. 2), в котором AB=BC=CA (то есть в основании пирамиды лежит правильный треугольник). У правильного треугольника центр вписанной и описанной окружности совпадают и являются центром самого треугольника. В данном случае центр находится следующим образом: находим середину АВ - С 1 , проводим отрезок СС 1 , который является медианой, биссектрисой и высотой; аналогично находим середину AC - B 1 и проводим отрезок BB 1 . Пересечением BB 1 и СС 1 будет точка О, которая является центром ∆АВС.

Если соединить центр треугольника O с вершиной пирамиды S, то получим высоту пирамиды SO ⊥ ABC, SO = h.

Соединив точку S с точками А, В и С получим боковые ребра пирамиды.

Мы получили правильную треугольную пирамиду SABC (рис. 2).

Пирамида - это многогранник, в основании которого лежит многоугольник. Все грани в свою очередь образуют треугольники, которые сходятся в одной вершине. Пирамиды бывают треугольными, четырехугольными и так далее. Для того чтобы определить, какая пирамида перед вами, достаточно посчитать количество углов в ее основании. Определение "высота пирамиды" очень часто встречается в задачах по геометрии в школьной программе. В статье попробуем рассмотреть разные способы ее нахождения.

Части пирамиды

Каждая пирамида состоит из следующих элементов:

  • боковые грани, которые имеют по три угла и сходятся в вершине;
  • апофема представляет собой высоту, которая опускается из ее вершины;
  • вершина пирамиды - это точка, которая соединяет боковые ребра, но при этом не лежит в плоскости основания;
  • основание - это многоугольник, на котором не лежит вершина;
  • высота пирамиды представляет собой отрезок, который пересекает вершину пирамиды и образует с ее основанием прямой угол.

Как найти высоту пирамиды, если известен ее объем

Через формулу V = (S*h)/3 (в формуле V - объем, S - площадь основания, h - высота пирамиды) находим, что h = (3*V)/S. Для закрепления материала давайте сразу же решим задачу. В треугольной основания равна 50 см 2 , тогда как ее объем составляет 125 см 3 . Неизвестна высота треугольной пирамиды, которую нам и необходимо найти. Здесь все просто: вставляем данные в нашу формулу. Получаем h = (3*125)/50 = 7,5 см.

Как найти высоту пирамиды, если известна длина диагонали и ее ребра

Как мы помним, высота пирамиды образует с ее основанием прямой угол. А это значит что высота, ребро и половина диагонали вместе образуют Многие, конечно же, помнят теорему Пифагора. Зная два измерения, третью величину найти будет несложно. Вспомним известную теорему a² = b² + c², где а - гипотенуза, а в нашем случае ребро пирамиды; b - первый катет или половина диагонали и с - соответственно, второй катет, или высота пирамиды. Из этой формулы c² = a² - b².

Теперь задачка: в правильной пирамиде диагональ равна 20 см, когда как длина ребра - 30 см. Необходимо найти высоту. Решаем: c² = 30² - 20² = 900-400 = 500. Отсюда с = √ 500 = около 22,4.

Как найти высоту усеченной пирамиды

Она представляет собой многоугольник, который имеет сечение параллельно ее основанию. Высота усеченной пирамиды - это отрезок, который соединяет два ее основания. Высоту можно найти у правильной пирамиды, если будут известны длины диагоналей обоих оснований, а также ребро пирамиды. Пусть диагональ большего основания равна d1, в то время как диагональ меньшего основания - d2, а ребро имеет длину - l. Чтобы найти высоту, можно с двух верхних противоположных точек диаграммы опустить высоты на ее основание. Мы видим, что у нас получились два прямоугольных треугольника, остается найти длины их катетов. Для этого из большей диагонали вычитаем меньшую и делим на 2. Так мы найдем один катет: а = (d1-d2)/2. После чего по теореме Пифагора нам остается лишь найти второй катет, который и является высотой пирамиды.

Теперь рассмотрим все это дело на практике. Перед нами задача. Усеченная пирамида имеет в основании квадрат, длина диагонали большего основания равняется 10 см, в то время как меньшего - 6 см, а ребро равняется 4 см. Требуется найти высоту. Для начала находим один катет: а = (10-6)/2 = 2 см. Один катет равен 2 см, а гипотенуза - 4 см. Получается, что второй катет или высота будет равна 16-4 = 12, то есть h = √12 = около 3,5 см.

На данном уроке мы рассмотрим усеченную пирамиду, познакомимся с правильной усеченной пирамидой, изучим их свойства.

Вспомним понятие n-угольной пирамиды на примере треугольной пирамиды. Задан треугольник АВС. Вне плоскости треугольника взята точка Р, соединенная с вершинами треугольника. Полученная многогранная поверхность и называется пирамидой (рис. 1).

Рис. 1. Треугольная пирамида

Рассечем пирамиду плоскостью , параллельной плоскости основания пирамиды . Полученная между этими плоскостями фигура и называется усеченной пирамидой (рис. 2).

Рис. 2. Усеченная пирамида

Основные элементы:

Верхнее основание ;

Нижнее основание АВС;

Боковая грань ;

Если РН - высота исходной пирамиды, то - высота усеченной пирамиды.

Свойства усеченной пирамиды вытекают из способа ее построения, а именно из параллельности плоскостей оснований:

Все боковые грани усеченной пирамиды являются трапециями. Рассмотрим, например, грань . У нее по свойству параллельных плоскостей (поскольку плоскости параллельны, то боковую грань исходной пирамиды АВР они рассекают по параллельным прямым), в то же время и не параллельны. Очевидно, что четырехугольник является трапецией, как и все боковые грани усеченной пирамиды.

Отношение оснований одинаково для всех трапеций:

Имеем несколько пар подобных треугольников с одинаковым коэффициентом подобия. Например, треугольники и РАВ подобны в силу параллельности плоскостей и , коэффициент подобия:

В то же время подобны треугольники и РВС с коэффициентом подобия:

Очевидно, что коэффициенты подобия для всех трех пар подобных треугольников равны, поэтому отношение оснований одинаково для всех трапеций.

Правильной усеченной пирамидой называется усеченная пирамида, полученная сечением правильной пирамиды плоскостью, параллельной основанию (рис. 3).

Рис. 3. Правильная усеченная пирамида

Определение.

Правильной называется пирамида, в основании которой лежит правильный n-угольник, а вершина проектируется в центр этого n-угольника (центр вписанной и описанной окружности).

В данном случае в основании пирамиды лежит квадрат, и вершина проектируется в точку пересечения его диагоналей. У полученной правильной четырехугольной усеченной пирамиды ABCD - нижнее основание, - верхнее основание. Высота исходной пирамиды - РО, усеченной пирамиды - (рис. 4).

Рис. 4. Правильная четырехугольная усеченная пирамида

Определение.

Высота усеченной пирамиды - это перпендикуляр, проведенный из любой точки одного основания к плоскости второго основания.

Апофема исходной пирамиды - РМ (М - середина АВ), апофема усеченной пирамиды - (рис. 4).

Определение.

Апофема усеченной пирамиды - высота любой боковой грани.

Ясно, что все боковые ребра усеченной пирамиды равны между собой, то есть боковые грани - равные равнобедренные трапеции.

Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.

Доказательство (для правильной четырехугольной усеченной пирамиды - рис. 4):

Итак, необходимо доказать:

Площадь боковой поверхности здесь будет состоять из суммы площадей боковых граней - трапеций. Поскольку трапеции одинаковы, имеем:

Площадь равнобедренной трапеции - это произведение полусуммы оснований и высоты, апофема является высотой трапеции. Имеем:

Что и требовалось доказать.

Для n-угольной пирамиды:

Где n - количество боковых граней пирамиды, a и b - основания трапеции, - апофема.

Стороны основания правильной усеченной четырехугольной пирамиды равны 3 см и 9 см, высота - 4 см. Найти площадь боковой поверхности.

Рис. 5. Иллюстрация к задаче 1

Решение. Проиллюстрируем условие:

Задано: , ,

Через точку О проведем прямую MN параллельно двум сторонам нижнего основания, аналогично через точку проведем прямую (рис. 6). Поскольку в основаниях усеченной пирамиды квадраты и построения параллельны, получим трапецию, равную боковым граням. Причем ее боковая сторона будет проходить через середины верхнего и нижнего ребра боковых граней и являться апофемой усеченной пирамиды.

Рис. 6. Дополнительные построения

Рассмотрим полученную трапецию (рис. 6). В этой трапеции известно верхнее основание, нижнее основание и высота. Требуется найти боковую сторону, которая является апофемой заданной усеченной пирамиды. Проведем перпендикулярно MN. Из точки опустим перпендикуляр NQ. Получим, что большее основание разбивается на отрезки по три сантиметра (). Рассмотрим прямоугольный треугольник , катеты в нем известны, это египетский треугольник, по теореме Пифагора определяем длину гипотенузы: 5 см.

Теперь есть все элементы для определения площади боковой поверхности пирамиды:

Пирамида пересечена плоскостью, параллельной основанию. Докажите на примере треугольной пирамиды, что боковые ребра и высота пирамиды делятся этой плоскостью на пропорциональные части.

Доказательство. Проиллюстрируем:

Рис. 7. Иллюстрация к задаче 2

Задана пирамида РАВС. РО - высота пирамиды. Пирамида рассечена плоскостью , получена усеченная пирамида , причем . Точка - точка пересечения высоты РО с плоскостью основания усеченной пирамиды . Необходимо доказать:

Ключом к решению является свойство параллельных плоскостей. Две параллельные плоскости рассекают любую третью плоскость так, что линии пересечения параллельны. Отсюда: . Из параллельности соответствующих прямых вытекает наличие четырех пар подобных треугольников:

Из подобия треугольников вытекает пропорциональность соответствующих сторон. Важная особенность заключается в том, что коэффициенты подобия у этих треугольников одинаковы:

Что и требовалось доказать.

Правильная треугольная пирамида РАВС с высотой и стороной основания рассечена плоскостью , проходящей через середину высоты РН параллельно основанию АВС. Найти площадь боковой поверхности полученной усеченной пирамиды.

Решение. Проиллюстрируем:

Рис. 8. Иллюстрация к задаче 3

АСВ - правильный треугольник, Н - центр данного треугольника (центр вписанной и описанной окружностей). РМ - апофема заданной пирамиды. - апофема усеченной пирамиды. Согласно свойству параллельных плоскостей (две параллельные плоскости рассекают любую третью плоскость так, что линии пересечения параллельны), имеем несколько пар подобных треугольников с равным коэффициентом подобия. В частности нас интересует отношение:

Найдем НМ. Это радиус окружности, вписанной в основание, соответствующая формула нам известна:

Теперь из прямоугольного треугольника РНМ по теореме Пифагора найдем РМ - апофему исходной пирамиды:

Из начального соотношения:

Теперь нам известны все элементы для нахождения площади боковой поверхности усеченной пирамиды:

Итак, мы ознакомились с понятиями усеченной пирамиды и правильной усеченной пирамиды, дали основные определения, рассмотрели свойства, доказали теорему о площади боковой поверхности. Следующий урок будет посвящен решению задач.

Список литературы

  1. И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 2008. - 233 с.: ил.
  1. Uztest.ru ().
  2. Fmclass.ru ().
  3. Webmath.exponenta.ru ().

Домашнее задание

Пирамида. Усеченная пирамида

Пирамидой называется многогранник, одна из граней которого многоугольник (основание ), а все остальные грани – треугольники с общей вершиной (боковые грани ) (рис. 15). Пирамида называется правильной , если ее основанием является правильный многоугольник и вершина пирамиды проектируется в центр основания (рис. 16). Треугольная пирамида, у которой все ребра равны, называется тетраэдром .



Боковым ребром пирамиды называется сторона боковой грани, не принадлежащая основанию Высотой пирамиды называется расстояние от ее вершины до плоскости основания. Все боковые ребра правильной пирамиды равны между собой, все боковые грани – равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из вершины, называется апофемой . Диагональным сечением называется сечение пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Площадью боковой поверхности пирамиды называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех боковых граней и основания.

Теоремы

1. Если в пирамиде все боковые ребра равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности описанной около основания.

2. Если в пирамиде все боковые ребра имеют равные длины, то вершина пирамиды проектируется в центр окружности описанной около основания.

3. Если в пирамиде все грани равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности вписанной в основание.

Для вычисления объема произвольной пирамиды верна формула:

где V – объем;

S осн – площадь основания;

H – высота пирамиды.

Для правильной пирамиды верны формулы:

где p – периметр основания;

h а – апофема;

H – высота;

S полн

S бок

S осн – площадь основания;

V – объем правильной пирамиды.

Усеченной пирамидой называется часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды (рис. 17). Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды.

Основания усеченной пирамиды – подобные многоугольники. Боковые грани – трапеции. Высотой усеченной пирамиды называется расстояние между ее основаниями. Диагональю усеченной пирамиды называется отрезок, соединяющий ее вершины, не лежащие в одной грани. Диагональным сечением называется сечение усеченной пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.


Для усеченной пирамиды справедливы формулы:

(4)

где S 1 , S 2 – площади верхнего и нижнего оснований;

S полн – площадь полной поверхности;

S бок – площадь боковой поверхности;

H – высота;

V – объем усеченной пирамиды.

Для правильной усеченной пирамиды верна формула:

где p 1 , p 2 – периметры оснований;

h а – апофема правильной усеченной пирамиды.

Пример 1. В правильной треугольной пирамиде двугранный угол при основании равен 60º. Найти тангенс угла наклона бокового ребра к плоскости основания.

Решение. Сделаем рисунок (рис. 18).


Пирамида правильная, значит в основании равносторонний треугольник и все боковые грани равные равнобедренные треугольники. Двугранный угол при основании – это угол наклона боковой грани пирамиды к плоскости основания. Линейным углом будет угол a между двумя перпендикулярами: и т.е. Вершина пирамиды проектируется в центре треугольника (центр описанной окружности и вписанной окружности в треугольник АВС ). Угол наклона бокового ребра (например SB ) – это угол между самим ребром и его проекцией на плоскость основания. Для ребра SB этим углом будет угол SBD . Чтобы найти тангенс необходимо знать катеты SO и OB . Пусть длина отрезка BD равна 3а . Точкой О отрезок BD делится на части: и Из находим SO : Из находим:

Ответ:

Пример 2. Найти объем правильной усеченной четырехугольной пирамиды, если диагонали ее оснований равны см и см, а высота 4 см.

Решение. Для нахождения объема усеченной пирамиды воспользуемся формулой (4). Чтобы найти площади оснований необходимо найти стороны квадратов-оснований, зная их диагонали. Стороны оснований равны соответственно 2 см и 8 см. Значит площади оснований и Подставив все данные в формулу, вычислим объем усеченной пирамиды:

Ответ: 112 см 3 .

Пример 3. Найти площадь боковой грани правильной треугольной усеченной пирамиды, стороны оснований которой равны 10 см и 4 см, а высота пирамиды 2 см.

Решение. Сделаем рисунок (рис. 19).


Боковая грань данной пирамиды является равнобокая трапеция. Для вычисления площади трапеции необходимо знать основания и высоту. Основания даны по условию, остается неизвестной только высота. Ее найдем из где А 1 Е перпендикуляр из точки А 1 на плоскость нижнего основания, A 1 D – перпендикуляр из А 1 на АС . А 1 Е = 2 см, так как это высота пирамиды. Для нахождения DE сделаем дополнительно рисунок, на котором изобразим вид сверху (рис. 20). Точка О – проекция центров верхнего и нижнего оснований. так как (см. рис. 20) и С другой стороны ОК – радиус вписанной в окружности и ОМ – радиус вписанной в окружности:

MK = DE .

По теореме Пифагора из

Площадь боковой грани:


Ответ:

Пример 4. В основании пирамиды лежит равнобокая трапеция, основания которой а и b (a > b ). Каждая боковая грань образует с плоскостью основания пирамиды угол равный j . Найти площадь полной поверхности пирамиды.

Решение. Сделаем рисунок (рис. 21). Площадь полной поверхности пирамиды SABCD равна сумме площадей и площади трапеции ABCD .

Воспользуемся утверждением, что если все грани пирамиды равнонаклонены к плоскости основания, то вершина проектируется в центр вписанной в основание окружности. Точка О – проекция вершины S на основание пирамиды. Треугольник SOD является ортогональной проекцией треугольника CSD на плоскость основания. По теореме о площади ортогональной проекции плоской фигуры получим:


Аналогично и значит Таким образом задача свелась к нахождению площади трапеции АВСD . Изобразим трапецию ABCD отдельно (рис.22). Точка О – центр вписанной в трапецию окружности.


Так как в трапецию можно вписать окружность, то или Из по теореме Пифагора имеем

Как можно построить пирамиду? На плоскости р построим какой-либо многоугольник, например пятиугольник ABCDE. Вне плоскости р возьмем точку S. Соединив точку S отрезками со всеми точками многоугольника, получим пирамиду SABCDE (рис.).

Точка S называется вершиной , а многоугольник ABCDE - основанием этой пирамиды. Таким образом, пирамида с вершиной S и основанием ABCDE - это объединение всех отрезков , где М ∈ ABCDE.

Треугольники SAB, SBC, SCD, SDE, SEA называются боковыми гранями пирамиды, общие стороны боковых граней SA, SB, SC, SD, SE - боковыми ребрами .

Пирамиды называются треугольными, четырехугольными, п-угольными в зависимости от числа сторон основания. На рис. даны изображения треугольной, четырехугольной и шестиугольной пирамид.

Плоскость, проходящая через вершину пирамиды и диагональ основания, называется диагональной , а полученное сечение - диагональным. На рис. 186 одно из диагональных сечений шестиугольной пирамиды заштриховано.

Отрезок перпендикуляра, проведенного через вершину пирамиды к плоскости ее основания, называется высотой пирамиды (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Пирамида называется правильной , если основание пирамиды-правильный многоугольник и вершина пирамиды проектируется в его центр.

Все боковые грани правильной пирамиды - конгруэнтные равнобедренные треугольники. У правильной пирамиды все боковые ребра конгруэнтны.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой пирамиды. Все апофемы правильной пирамиды конгруэнтны.

Если обозначить сторону основания через а , а апофему через h , то площадь одной боковой грани пирамиды равна 1 / 2 ah .

Сумма площадей всех боковых граней пирамиды называется площадью боковой поверхности пирамиды и обозначается через S бок.

Так как боковая поверхность правильной пирамиды состоит из n конгруэнтных граней, то

S бок. = 1 / 2 ahn = Ph / 2 ,

где Р - периметр основания пирамиды. Следовательно,

S бок. = Ph / 2

т. е. площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Площадь полной поверхности пирамиды вычисляется по формуле

S = S ocн. + S бок. .

Объем пирамиды равен одной трети произведения площади ее основания S ocн. на высоту Н:

V = 1 / 3 S ocн. Н.

Вывод этой и некоторых других формул будет дан в одной из последующих глав.

Построим теперь пирамиду другим способом. Пусть дан многогранный угол, например, пятигранный, с вершиной S (рис.).

Проведем плоскость р так, чтобы она пересекала все ребра данного многогранного угла в разных точках А, В, С, D, Е (рис.). Тогда пирамиду SABCDE можно рассматривать как пересечение многогранного угла и полупространства с границей р , в котором лежит вершина S.

Очевидно, что число всех граней пирамиды может быть произвольным, но не меньшим четырех. При пересечении трехгранного угла плоскостью получается треугольная пирамида, у которой четыре грани. Любую треугольную пирамиду иногда называют тетраэдром , что означает четырехгранник.

Усеченную пирамиду можно получить, если пирамиду пересечь плоскостью, параллельной плоскости основания.

На рис. дано изображение четырехугольной усеченной пирамиды.

Усеченные пирамиды также называются треугольными, четырехугольными, n-угольными в зависимости от числа сторон основания. Из построения усеченной пирамиды следует, что она имеет два основания: верхнее и нижнее. Основания усеченной пирамиды - два многоугольника, стороны которых попарно параллельны. Боковые грани усеченной пирамиды - трапеции.

Высотой усеченной пирамиды называется отрезок перпендикуляра, проведенного из любой точки верхнего основания к плоскости нижнего.

Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и плоскостью сечения, параллельной основанию. Высота боковой грани правильной усеченной пирамиды (трапеции) называется апофемой .

Можно доказать, что у правильной усеченной пирамиды боковые ребра конгруэнтны, все боковые грани конгруэнтны, все апофемы конгруэнтны.

Если в правильной усеченной n -угольной пирамиде через а и b n обозначить длины сторон верхнего и нижнего оснований, а через h - длину апофемы, то площадь каждой боковой грани пирамиды равна

1 / 2 (а + b n ) h

Сумма площадей всех боковых граней пирамиды называется площадью ее боковой поверхности и обозначается S бок. . Очевидно, что для правильной усеченной n -угольной пирамиды

S бок. = n 1 / 2 (а + b n ) h .

Так как па = Р и nb n = Р 1 - периметры оснований усеченной пирамиды, то

S бок. = 1 / 2 (Р + Р 1) h ,

т. е. площадь боковой поверхности правильной усеченной пирамиды равна половине произведения суммы периметров ее оснований на апофему.

Сечение, параллельное основанию пирамиды

Теорема. Если пирамиду пересечь плоскостью, параллельной основанию, то:

1) боковые ребра и высота разделятся на пропорциональные части;

2) в сечении получится многоугольник, подобный основанию;

3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Теорему достаточно доказать для треугольной пирамиды.

Так как параллельные плоскости пересекаются третьей плоскостью по параллельным прямым, то (АВ) || (А 1 В 1), (BС) ||(В 1 C 1), (AС) || (A 1 С 1) (рис.).

Параллельные прямые рассекают стороны угла на пропорциональные части, и поэтому

$$ \frac{\left|{SA}\right|}{\left|{SA_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|}=\frac{\left|{SC}\right|}{\left|{SC_1}\right|} $$

Следовательно, ΔSAB ~ ΔSA 1 B 1 и

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|} $$

ΔSBC ~ ΔSB 1 C 1 и

$$ \frac{\left|{BC}\right|}{\left|{B_{1}C_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|}=\frac{\left|{SC}\right|}{\left|{SC_1}\right|} $$

Таким образом,

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{BC}\right|}{\left|{B_{1}C_1}\right|}=\frac{\left|{AC}\right|}{\left|{A_{1}C_1}\right|} $$

Соответственные углы треугольников ABC и A 1 B 1 C 1 конгруэнтны, как углы с параллельными и одинаково направленными сторонами. Поэтому

ΔABC ~ ΔA 1 B 1 C 1

Площади подобных треугольников относятся, как квадраты соответствующих сторон:

$$ \frac{S_{ABC}}{S_{A_1 B_1 C_1}}=\frac{\left|{AB}\right|^2}{\left|{A_{1}B_1}\right|^2} $$

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{SH}\right|}{\left|{SH_1}\right|} $$

Следовательно,

$$ \frac{S_{ABC}}{S_{A_1 B_1 C_1}}=\frac{\left|{SH}\right|^2}{\left|{SH_1}\right|^2} $$

Теорема. Если две пирамиды с равными высотами рассечены на одинаковом расстоянии от вершины плоскостями, параллельными основаниям, то площади сечений пропорциональны площадям оснований.

Пусть (черт. 84) В и В 1 - площади оснований двух пирамид, H - высота каждой из них, b и b 1 - площади сечений плоскостями, параллельными основаниям и удалёнными от вершин на одно и то же расстояние h .

Согласно предыдущей теореме мы будем иметь:

$$ \frac{b}{B}=\frac{h^2}{H^2}\: и \: \frac{b_1}{B_1}=\frac{h^2}{H^2} $$
откуда
$$ \frac{b}{B}=\frac{b_1}{B_1}\: или \: \frac{b}{b_1}=\frac{B}{B_1} $$

Следствие. Если В = В 1 , то и b = b 1 , т. е. если у двух пирамид с равными высотами основания равновелики, то равновелики и сечения, равноотстоящие от вершины.

Другие материалы
Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода