Вконтакте Facebook Twitter Лента RSS

Твердость. Методы определения твердости

Твердость - это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

Это неразрушающий метод контроля, основной способ оценки качества термической обработки изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля , Виккерса , микротвердости).

Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость. Схемы испытаний представлены на рис. 1.

Рис. 1. Схемы определения твердости: а - по Бринеллю; б - по Роквеллу; в - по Виккерсу

В результате вдавливания с достаточно большой нагрузкой поверхностные слои материала, находящиеся под наконечником и вбли-зи него, пластически 5 деформируются. После снятия нагрузки остается отпечаток. Особенность происходящей при этом деформа-ции заключается в том, что она протекает только в небольшом объеме, окруженном недеформированным материалом.

В таких условиях возникают главным образом касательные напряжения, а доля растягивающих напряжений незначительна по сравнению с получаемыми при других видах механических испытаний (на растяжение, изгиб, кручение, сжатие). Поэтому при измерении твердости вдавливанием пластиче-скую деформацию испытывают не только пластичные, но также металлы (например, чугун), которые при обычных механических испытаниях (на растяжение, сжатие, кручение, изгиб) разрушаются практически без пластической деформа-ции.

Таким образом, твердость характеризует сопротивление пласти-ческой деформации и представляет собой механическое свойство ма-териала, отличающееся от других его механических свойств, способом измерения.

Преимущества измерения твердости следующие:

1. Между твердостью пластичных металлов, определяемой спо-собом вдавливания, и другими механическими свойствами (главным образом пределом прочности), существует количественная зависимость. Так, сосредоточенная пла-стическая деформация металлов (при образовании шейки) аналогична деформации, создавае-мой в поверхностных слоях металла при измерении твердости вдавли-ванием наконечника.

Подобная количественная зависимость не наблюдается для хруп-ких материалов, которые при испытаниях на растяжение (или сжа-тие, изгиб, кручение) разрушаются без заметной пластической дефор-мации, а при измерении твердости получают пластическую деформа-цию. Однако в ряде случаев и для этих металлов (например, серых чугунов) наблюдается качественная зависимость между пределом прочности и твердостью; возрастанию твердости обычно соответствует увеличение предела прочности на сжатие.


По значениям твердости можно определять также и некоторые пластические свойства металлов. Твердость, определенная вдавливанием, характеризует также предел выносливости некоторых металлов, в частности меди, дуралюмина и сталей в отожженном состоянии.

2. Измерение твердости по технике выполнения значительно проще, чем определение прочности, пластичности и вязкости. Испытания твердости не требуют изготовления специальных образцов и выполняются непосредственно на проверяемых деталях после за-чистки на поверхности ровной горизонтальной площадки, а иногда даже и без такой подготовки.

Измерения твердости выполняются быстро.

3. Измерение твердости обычно не влечет за собой разрушения проверяемой детали, и после измерения её можно использовать по своему назначению, в то время как для определения прочности, пластичности и вязкости необходимо изготовление специальных об-разцов.

4. Твердость можно измерять на деталях небольшой толщины, а также в очень тонких слоях, не превышающих (для некоторых спо-собов измерения твердости) десятых долей миллиметра, или в микро-объемах металла; в последнем случае измерения проводят способом микротвердости. Поэтому многие способы измерения твердости пригодны для оценки различных по структуре и свойствам слоев металла, например поверхностного слоя цементованной, азотирован-ной или закаленной стали, имеющей разную твердость по сечению детали. Методом определения микротвердости можно также измерять твердость отдельных составляющих в сплавах.

Следует различать два способа определения твердости вдавлива-нием: измерение макротвёрдости и измерение микротвер-дости.

Измерение макротвердости отличается тем, что в испытуемый материал вдавливается тело, прони-кающее на сравнительно большую глубину, ависящую от величины прилагаемой нагрузки и свойств металла. Кроме того, во многих испытаниях вдавливается тело значительных размеров, например стальной шарик диаметром 10 мм, в результате чего в де-формируемом объёме оказываются представленными все фазы и струк-турные составляющие сплава. Измеренная твердость в этом случае характеризует твердость всего испытуемого материала.

Выбор формы, размеров наконечника и величины нагрузки зави-сит от целей испытания, структуры, ожидаемых свойств, состояния поверхности и размеров испытуемого образца. Если металл имеет гетерогенную структуру с крупными выделе-ниями отдельных структурных составляющих, различных по свой-ствам (например, серый чугун, цветные подшипниковые сплавы), то для испытания твердости следует выбирать шарик большого диа-метра.

Если же металл имеет сравнительно мелкую и однородную структуру, то малые по объёму участки испытуемого металла могут быть достаточно характерными для оценки его твёрдости. В этих случаях испытания можно про-водить вдавливанием тела меньшего размера, например алмазного конуса или пирамиды, и на меньшую глубину, и, следовательно, при небольшой нагрузке.

При испытании металлов с высокой твердостью, например зака-ленной или низкоотпущенной стали, приведенное условие является даже обязательным, поскольку вдавливание стального шарика или алмаза с большой нагрузкой может вызвать деформацию шарика или скалывание алмаза.

Однако значительное снижение нагрузки нежелательно, так как это приведет к резкому уменьшению деформируемого объёма и может дать значения, не характерные для основной массы металла. Поэтому величины нагрузок и размеры получаемых в материалах отпечатков не должны быть меньше некоторых определенных пределов.

Измерение микротвёрдости имеет целью определить твёрдость отдельных зерен, фаз и структурных составляющих сплава (а не «усредненную» твёрдость, как при измерении макротвёрдости). В данном случае объём, деформируемый вдавливанием, должен быть меньше объёма (площади) измеряемого зерна. Поэтому прилагаемая нагрузка выбирается небольшой. Кроме того, микротвёрдость изме-ряют для характеристики свойств очень малых по размерам деталей.

Значительное влияние на результаты испытаний твёрдости оказы-вает состояние поверхности измеряемого материала. Если поверх-ность неровная — криволинейная или с выступами, то отдельные уча-стки в различной степени участвуют в сопротивлении вдавливанию и деформации, что приводит к ошибкам в измерении. Чем меньше нагрузка для вдавливания, тем более тщательно должна быть подго-товлена поверхность. Она должна представлять шлифованную гори-зонтальную площадку, а для измерения микротвердости — полиро-ванную.

Измеряемая поверхность должна быть установлена горизон-тально, т. е. перпендикулярно действию вдавливаемого тела. Проти-воположная сторона образца также должна быть зачищена, и не иметь окалины, так как последняя при нагружении образца сминается, что искажает результаты измерения.

Для приблизительнойердости удобно пользоваться шкалой Мооса - набором из 10 минералов, расположенных по возрастанию твердости:

Тальк - 1 Полевой шпат - 6

Гипс - 2 Кварц - 7

Кальцит - 3 Топаз - 8

Флюорит - 4 Корунд - 9

Апатит - 5 Алмаз - 10

Метод измерения твёрдости вдавливанием шарика (твердость по Бринеллю)

Этот способ универсальный и используется для определения твердости практически всех материалов.

В материал вдавливается стальной шарик, и значения твердости определяют по величине поверхности отпечатка, оставляемого шари-ком. Шарик вдавливают с помощью пресса.

Рис.2. Схема прибора для получе-ния твердости вдавливанием шарика (измерение по Бринеллю): 1 - столик для центровки образца; 2 — маховик; 3 — грузы; 4 — шарик; 5 — электродвигатель.

Испытуемый образец устанавливают на столике 1 в ниж-ней части неподвижной станины пресса (рис. 2), зашлифованной поверхностью кверху. Поворотом вручную маховика 2по часовой стрелке столик поднимают так, чтобы шарик мог вдавиться в испытуемую поверхность. В прессах с электродвигателем вращают маховик 2 до упора и нажатием кнопки включают двигатель 5.

Последний перемещает коромысло и постепенно вдавливает шарик под действием нагрузки, сообщаемой привешенным к коро-мыслу грузом. Эта нагрузка дейст-вует в течение определенного вре-мени, обычно 10-60 с, в зависимо-сти от твердости измеряемого мате-риала, после чего вал двигателя, вращаясь в обратную сторону, соответственно перемещает коромысло и снимает нагрузку. По-сле автоматического выключения двигателя, поворачивая маховик 2против часовой стрелки, опускают столик прибора и затем снимают об-разец.

В образце остается отпечаток со сферической поверхностью (лун-ка). Диаметр отпечатка измеряют лупой, на окуляре которой нанесена шкала с делениями, соответствующими десятым долям миллиметра. Диаметр отпечатка змеряют с точностью до 0,05 мм (при вдавливании шарика диаметром 10 и 5 (мм) в двух взаимно пер-пендикулярных направлениях; для определения твердости следует принимать среднюю из полученных величин.

Число твердости по Бринеллю НВ вычисляют по уравнению:

где Р — нагрузка на шарик, кг · с (1кг · с - 0,1 Мпа); D — диаметр вдавливаемого шарика, мм; d — диаметр отпечатка, мм. Получаемое число твердости при прочих равных условиях тем выше, чем меньше диаметр отпечатка.

Однако получение постоянной и одинаковой зависимости между Р и d, необходимое для точного определения твердости, достигается только при соблюдении определенных условий. При вдавливании шарика на разную глубину, т. е. с разной нагрузкой для одного и того же мате-риала, не соблюдается закон подобия между получаемыми диамет-рами отпечатка.

Наибольшие отклонения наблюдаются, если шарик вдавливается с малой нагрузкой и оставляет отпечаток небольшого диаметра или вдавливается с очень большой нагрузкой и оставляет отпечаток с диаметром близким к диа-метру шарика. Поэтому твердость материалов измеряют при постоянном соотно-шении между величиной нагрузки Ри квадратом диаметра шарика D 2 . Это соотношение должно быть различным для материалов разной твер-дости.

В процессе вдавливания наряду с пластической деформацией измеряемого материала происходит также упругая деформация вдавли-ваемого шарика. Величина этой деформации, искажающей результаты определения, возрастает при измерении твердых материалов. По-этому испытания вдавливанием шарика ограничивают измерением металлов небольшой и средней твердости (для стали с твердостью не более НВ = 450).

Известное влияние оказывает также длительность выдержки металла под нагрузкой. Легкоплавкие металлы (свинец, цинк, баб-биты), имеющие низкую температуру рекристаллизации, испытывают пластическую деформацию не только в момент вдавливания, но и в течение некоторого времени после приложения нагрузки. С увели-чением выдержки под нагрузкой пластическая деформация этих металлов практически стабилизируется.

Для металлов с высокими температурами плавления влияние продолжительности выдержки под нагрузкой незначительно, что позво-ляет применять более короткие выдержки (10-30 с).

При измерении твердости шариком определенного диаметра и с установленными нагрузками на практике пользуются заранее составленными таблицами, указывающими число НВ в зависимости от диа-метра отпечатка и соотношения между нагрузкой Ри поверхностью отпечатка F. При указании твердости НВ иногда отмечают принятые нагрузку и диаметр шарика.

Между пределом прочности и числом твердости НВ различных ме-таллов существует следующая зависимость:

Сталь с твердостью НВ :

120-175 s b » 0,34 HВ

175-450 s b » 0,35 HВ

Медь, латунь, бронза :

Отожженная s b » 0,55 HВ

Наклепанная s b » 0,40 HВ

Алюминий и алюминиевые сплавы с твер-достью НВ :

20 - 45 s b » (0,33 - 0,36) НВ

Дуралюмин :

Отожженный s b » 0,36 HВ

После закалки и старения s b » 0,35 HВ

Твердость характеризует сопротивление материала проникновению в него более твердого тела (например, при вдавливании или царапании). Твердость связана с прочностью материала и в определенной степени характеризует его сопротивление износу.

Твердость обычно характеризуют числом твердости . Для пластичных материалов (металлов и сплавов), тканей зуба число твердости определяется как отношение нагрузки F , действующей на вдавливаемое тело (индентор), к площади S поверхности отпечатка, образовавшегося в материале после снятия нагрузки.

Методы измерения твердости различаются между собой формой индентора и материалом, из которого он сделан. Например, при определении твердости методом Бринелля в образец вдавливается стальной шарик, а методом Виккерса и Кнуппа – алмазная пирамидка.

Обозначения твердости : Н B (или НВ ) – твердость по Бринеллю, Н V (или HV ) – твердость по Виккерсу, Н К (или ) – твердость по Кнуппу.

Метод Бринелля используется в стоматологической практике для определения макротвёрдости металлов и их сплавов. В данном случае в испытуемый образец под действием нагрузки (Р ) в течение определённого времени вдавливается металлический шарик. После снятия нагрузки на поверхности образца остается сферический отпечаток площадью S и диаметром М (рис. 8). Величина отпечатка зависит от твёрдости металла: чем он твёрже, тем меньше величина отпечатка.

Рис. 8 Схематичное представление испытания материала на твердость по методу Бринеля

Число твердости по Бринеллю обозначается НВ и определяется по формуле: или

где D –диаметр шарика; М – диаметр отпечатка;

В случае определения твёрдости НВ шариком с D = 10 мм при нагрузке Р = 3000 кгс и времени выдержки t = 10 с число твёрдости записывают так: НВ 400, НВ 250, НВ 500 и т.д. При использовании других условий испытания индекс НВ дополняют цифрами, указывающими диаметр использованного шарика (мм), нагрузку (кгс) и продолжительность выдержки (с). Например, НВ 5/750/30-350 – это число твёрдости по Бринеллю (350 кгс/мм 2), полученное при вдавливании шарика с D = 5мм нагрузкой Р = 750кгс, в течении t = 30 c.

Основными современными способами определения твёрдости следует считатьметод Виккерса и его усовершенствованный вариант - метод Кнуппа .

При измерении твёрдости по методу Виккерса в поверхность испытуемого образца или изделия вдавливают алмаз в форме пирамиды, в основании которой лежит квадрат с углом между противоположными гранями 136°.

Рис. 9 Схематическое представление испытания на твердость по методу Виккерса

Число твердости по Виккерсу (HV ), вычисляют по формуле:

HV = 1,854 - среднее арифметическое длин обеих диагоналей отпечатка, мм.

При испытаниях применяют нагрузки от 50 до 1000 Н (от 5 до 100 кгс). Обычными условиями испытания считаются: нагрузка 300 Н (30 кгс) и время выдержки 10 – 15с. В этом случае твёрдость по Виккерсу записывается, например HV 400, т.е. она равна 400 кгс/мм 2 . Если условия испытания другие, то это отражается цифрами, причём сначала указывается величина нагрузки, потом – время выдержки. К примеру, запись HV 20/40 – 250 означает, что при нагрузке 200 Н (20 кгс) и времени выдержки 40 с, твёрдость по Виккерсу равна 250 кгс/мм 2 .

Для оценки твёрдости в малых объёмах, например, на зёрнах металла и его структурных составляющих применяют способ измерения микротвердости по Виккерсу , где в качестве индентора используется пирамида Виккерса. Нагрузка на индентор в этом случае невелика 0,05–5Н (0,005 – 0,5кгс), а размер отпечатка 5–30мкм. Ценность данного метода состоит и в том, что при его использовании вследствие малых нагрузок вдавливания удается испытывать очень тонкие и хрупкие образцы, определять твёрдость тонких поверхностных слоев материала и различных фаз, входящих в его состав. Поэтому метод можно использовать также для определения твёрдости структур, форми­рующих зуб. Важно и то, что, в отличие от метода Бринелля, метод Виккерса позволяет определить твёрдость мелких готовых изделий, не разрушая и не портя их вследствие малой величины отпечатка.

При определении твердости по методу Кнуппа используется алмазный индентор в виде ромбической пирамиды. При этом создается отпечаток в виде ромба, в котором одна диагональ в 7 раз длиннее другой.

Число твёрдости, определённое по методу Кнуппа (НК ) определяется по формуле:

HK =12,87 ,

- величина длинной диагонали, мм.

Метод Кнуппа наиболее универсален, так как позволяет измерять твёрдость зубной эмали, дентина, металлических сплавов, золота, фарфора, резины и т.д.

В основе метода Мооса лежит использование шкалы Мооса – десятибалльной шкала твёрдости материалов, предложенной немецким минерологом Ф. Моосом. В этой шкале за эталоны приняты твёрдости следующих 10 материалов, начиная с наиболее мягкого: талька – принята за 1, гипса – 2, кальция – 3, флюорита – 4, апатита – 5, ортоклаза – 6, кварца – 7, топаза – 8, корунда – 9, алмаза – 10. Для определения твёрдости и места в шкале Мооса какого-либо материала его пробуют царапаньем: он будет мягче того минерала, который оставляет на нём царапину и тверже того, на котором он сам оставляет черту.

Твердость измеряется в СИ в H/м 2 = Па или для больших значений в МПа, ГПа (1 Па = 10 –9 ГПа = 10 –6 МПа). Однако на практике часто используют внесистемные единицы, в первую очередь, кгс/мм 2:

1 кгс (килограмм-сила) = 1кг × 9,81 м/с 2 ≈ 10 кг×м/с 2 = 10 Н;

1 кгс/мм 2 ≈ 10 Н/мм 2 = 10 7 Н/м 2 = 10 МПа.

Определение твердости материалов

Твердостью называется способность материала сопротивляться проникновению в него другого, более твердого материала. Высокой твердостью должны обладать металлорежущие инструменты: резцы, сверла, фрезы, ножовочные полотна и др. Детали машин, как правило, должны иметь среднюю твердость, т.к. при большой твердости их будет трудно обрабатывать на станках, а если они будут мягкими, то на их поверхности могут образоваться вмятины и царапины. Кроме того, при средней твердости прочность удачно сочетается с вязкостью. Твердость материала определяется сравнительно просто и быстро. Поэтому определение твердости – это самый распространенный вид механических испытаний материалов.

Твердость материала простейшими способами определяется с помощью напильника, зубила или керна. Чем мягче материал, тем легче срезается металл напильником. Так, у закаленных сталей при работе напильником практически не видно царапин на поверхности, а алюминиевые детали легко повреждаются не только напильником, но и просто острым предметом. Мягкие металлы легко перерубаются зубилом при небольших усилиях, а твердые – при значительных.

Твердость металлов в производственных условиях определяется тремя способами,

Названными по именам их изобретателей: способы Бринелля, Роквелла и Виккерса.

Метод Бринелля основан на том, что в металл под нагрузкой Р вдавливают закаленный стальной шарик (рис.2) определенного диаметра D и по величине диаметра отпечатка d судят о его твердости. Твердость по Бринеллю (НВ) определяется из выражения:

, кгс/мм 2 ,

где – нагрузка, кгс (кН); – площадь поверхности отпечатка, мм 2 .

Нагрузка Р, диаметр шарика D и продолжительность выдержки шарика под нагрузкой выбираются в зависимости от вида материала, толщины образца и предполагаемой твердости по таблице 1. После нагружения шарика нагрузкой Р и выдержки под этой нагрузкой измерительной лупой определяют диаметр отпечатка d. По выше приведенной расчетной формуле или диаметру отпечатка в таблице 1 при шарике диаметром 10 мм и нагрузке30 кН (3000 кгс) находят соответствующее число твердости НВ, например, при диаметре отпечатка d = 3,5 мм будет твердость металла НВ 302.

Твердость НВ, измеренная по методу Бринелля, для ряда металлов, связана эмпирической зависимостью с пределом их прочности при растяжении s В:

s В =0,35 НВ – для сталей,

s В =0,45 НВ – для медных сплавов.

Таблица 1.

Зависимость режимов испытания (D, Р, t)

от твердости и толщины испытываемого образца

К недостаткам метода Бринелля необходимо отнести невозможность испытания металлов, имеющих твердость более НВ 450, или толщину менее 2 мм, появление остаточных следов деформации на поверхности испытанного изделия. При испытании металлов с твердостью более НВ 450 возможна деформация шарика, вследствие чего результаты будут неточными.



Метод Роквелла основан на том, что в испытуемый образец вдавливается индентор (тело внедрения): алмазный конус с углом при вершине 120° или закаленный стальной шарик диаметром 1,59 мм. Алмазный конус используют для твердых металлов, а шарик – для мягких. Алмазный конус или шарик (рис.3) вдавливают в испытуемый образец под действием двух последовательно прилагаемых нагрузок – предварительной Р 0 , равной 0,1 кН (10 кгс), и основной Р 1 .

При вдавливании алмаза к нему прилагается общая нагрузка Р = Р 0 +Р 1:

0,6 кН (60 кгс) – шкала твердомера А;

или 1,5 кН (150 кгс) – шкала твердомера С.

При вдавливании шарика прилагается общая нагрузка 1кН (100кгс)– шкала твердомера В.

Соответственно этим нагрузкам на индикаторе прибора имеются шкалы: черные А и С и красная В. Шкалой А пользуются при измерении твердости изделий с очень твердым поверхностным слоем, полученным посредством химико-термической обработки (цементация, азотирование и др.), а также твердых сплавов с твердостью до HRA 85. Шкалой В пользуются при измерении твердости незакаленных сталей, цветных металлов и сплавов , имеющих твердость до HRB 100. Шкалой С пользуются при измерении твердости закаленных сталей , обладающих твердостью до HRС 67. Числа твердости по Роквеллу измеряются в условных единицах и определяются при вдавливании алмазного конуса по формулам:

где 100 – число черных делений шкалы С и шкалы А циферблата индикатора прибора, а 130 – число красных делений шкалы В; h 0 – глубина (мм) внедрения алмаза (шарика) под действием предварительной нагрузки; h – глубина (мм) внедрения алмаза (шарика) под действием общей нагрузки Р, замеренной после ее снятия, но с оставлением предварительной нагрузки; 0,002 мм – глубина внедрения алмаза (шарика), соответствующая перемещению стрелки индикатора на одно деление.

Метод Роквелла отличается простотой и высокой производительностью, практически обеспечивает сохранение качества поверхности после испытаний, позволяет испытывать металлы и сплавы как низкой, так и высокой твердости при толщине изделия (слоя) до 0,8 мм. Этот метод не рекомендуется применять для сплавов с неоднородной структурой (чугуны: серые, ковкие и высокопрочные). Соотношение твердостей материалов, замеренных этими двумя различными способами, видно из таблицы 2.

Таблица 2.

Соотношение чисел твердости по Бринеллю и Роквеллу

Твердость Твердость Твердость
По Роквеллу По Бринеллю По Роквеллу По Бринеллю По Роквеллу По Бринеллю
шкала D=10 мм, Р = 3000 кгс шкалы D=10 мм, Р=3000 кгс шкала D=10 мм, Р=3000 кгс
С Диаметр отпечатка, мм HB C B Диаметр отпечатка, мм НВ В Диаметр отпечатка, мм HB
HRC HRC HRB HRB
2,20 3,40 4,60
2,25 3,45 4,65
2,30 3,50 4,70
2,35 3,55 4,75
2,40 3,60 4,80
2,45 3,65 4,85
2,50 3,70 4,90
2,55 3,75 4,95
2,60 3,80 5,00
2,65 3,85 5,05
2,70 3,90 5,10
2,75 3,95 5,15
2,80 4,00 5,20
2,85 4,05 5,25
2,90 4,10 5,30
2,95 4,15 5,35
3,00 4,20 5,40
3,05 4,25 5,45
3,10 4,30 5,50
3,15 4,35 5,55
3,20 4,40 5,60
3,25 4,45 5,65
3,30 4,50 5,70
3,35 4,55 5,75


, кгс/мм 2 ,

где – угол между противоположными гранями пирамиды при вершине, равный 136°; – среднее арифметическое значение длины обеих диагоналей отпечатка после снятия нагрузки в мм.

При испытаниях применяют нагрузки, равные 50, 100, 200, 300, 500 и 1000 Н. Возможность применения малых нагрузок в 50 и 100 Н позволяет определять твердость деталей малой толщины и тонких поверхностных слоев, например: цементированных, цианированных и азотированных сталей.

В табл. 3 представлены варианты обозначения твердости различных материалов.

Таблица 3.

Варианты материалов с различной твердостью*

№ варианта Значения твердости материалов
HB 280 HRA 72 HB 470 HB 780 HRA 74 HV 130 HB 110 HRB 50 HV 530 HB 430 HRC 47 HV 420 HB 477 HRC 54 HV237 HRB 77 HRC 50 HRA 82 HRB 70 HRC 27
HB 480 HRC 80 HV 280 HB 280 HB 470 HB 130 HV 130 HRA 30 HV 130 HRB 50 HRC 37 HRA 47 HRC 47 HRC 47 HB 477 HRB 67 HRB 67 HRA 77 HRB 77 HRA 82
HB 780 HB 480 HRC 80 HB 410 HRC 45 HV 530 HB 130 HV 130 HRC 66 HB 170 HRC 54 HRC 37 HRA 47 HV 340 HRA 57 HRB 70 HRB 67 HRB 67 HRB 77 HV 230
HRC 53 HB210 HV 280 HRC 51 HV 234 HV 430 HRC 35 HB 130 HRA 70 HRC 43 HB 630 HRB 75 HRC 37 HV 313 HRB 327 HRA 85 HV 150 HRA 77 HB 260 HRC 57
HB 170 HRA 67 HRC 54 HRC 51 HV 434 HRA 60 HRC 76 HV 150 HRA 70 HRC 56 HV 330 HB 700 HB 437 HV 313 HB 210 HRC 75 HV 310 HRA 57 HB 260 HRC 29

Числа твердости по Виккерсу и по Бринеллю имеют одинаковую размерность и для материалов твердостью до НВ 450 практически совпадают. Вместе с тем измерения пирамидой дают более точные значения для материалов с высокой твердостью, чем измерения с использованием шарика или конуса. Алмазная пирамида имеет большие угол в вершине и диагональ ее отпечатка, что повышает точность измерения отпечатка даже при проникновении пирамиды на небольшую глубину. Диагональ отпечатка измеряют с помощью измерительного микроскопа, вмонтированного в твердомер Виккерса.

В настоящее время имеются более удобные (портативные, с цифровой индикацией твердости по Бринеллю и Роквеллу, с относительно небольшой погрешностью измерений) в работе твердомеры. Так, твердомер динамический ЭЛИТ-2 измеряет твердость стальных изделий по скорости отскока бойка от поверхности, а твердомер ультразвуковой УЗИТ-3 - методом измерения акустического импеданса при внедрении магнитостриктора с алмазом Виккерса в поверхность изделия.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Саратовский государственный технический университет

Определение твердости материалов

Методические указания к учебно-исследовательской лабораторной работе для студентов всех специальностей

дневной, вечерней и заочной форм обучения

Одобрено

редакционно-издательским советом

Саратовского государственного

технического университета

Саратов 2009

Цель работы: ознакомить студентов с методами определения твердости материалов

Определение твердости является широко применяемым в лабораторных и заводских условиях способом испытаний для характеристики механических свойств материалов.

Твердость металлов измеряют при помощи воздействия на поверхность металла наконечника, изготовленного из малодеформирующего материала (твердая закаленная сталь, алмаз, сапфир, или твердый сплав). Наконечник может иметь форму шарика, конуса, пирамиды или иглы.

Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника: вдавливание наконечника, царапание поверхности, удар наконечника-шарика.

Наибольшее применение получило измерение твердости вдавливанием. В результате вдавливания поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Особенность происходящей при этом деформации в том, что она протекает только в небольшом объеме, окруженном недеформированным металлом. Таким образом, твердость характеризует сопротивление металла пластической деформации и представляет собой его механическое свойство.

Следует различать два способа определения твердости вдавливанием: измерение макротвердости и измерение микротвердости:

1. Измерение твердости (макротвердости) характерно тем, что в испытуемый металл вдавливается тело значительных размеров (например, стальной шарик диаметром 10 мм), проникающее на сравнительно большую глубину. В результате чего в деформируемом объеме оказываются представленными все фазы и структурные составляющие сплава. Измеренная твердость должна в этом случае характеризовать твердость всего испытуемого материала (“усредненная” твердость).

Выбор формы, размеров наконечника и величины нагрузки зависят от целей испытания, структуры, ожидаемых свойств, состояния поверхности и размеров испытуемого образца.

2. Измерение микротвердости имеет целью определить твердость отдельных зерен, фаз и структурных составляющих сплава. В этом случае объем, деформированный вдавливанием, должен быть меньше объема измеряемого зерна. Поэтому прилагаемая нагрузка выбирается небольшой.

Наиболее широко применяются следующие способы измерения твердости:

    вдавливанием стального шарика (метод Бринелля);

    вдавливанием алмазного конуса (метод Роквелла);

    вдавливанием четырехгранной алмазной пирамиды (метод Виккерса).

ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЕМ ШАРИКА

(ТВЕРДОСТЬ ПО БРИНЕЛЛЮ)

Этот способ используется для определения твердости как металлов, так и неметаллических материалов.

При измерении твердости металлов по Бринеллю в материал вдавливается стальной закаленный шарик под действием заданной нагрузки в течении определенного времени. В результате на поверхности образца образуется отпечаток, диаметр которого измеряют. Значение твердости определяют по величине поверхности отпечатка, оставляемого шариком. Шарик вдавливается с помощью пресса (рис. 1). Испытуемый образец (деталь) 3 устанавливается на столик 1, прошлифованной поверхностью кверху. Поворотом вручную маховика 2 по часовой стрелке столик поднимают вверх, и образец 3 прижимается к шарику 4. Нагрузка прилагается автоматически с помощью электродвигателя 5 при нажатии пусковой кнопки. Эта нагрузка, создаваемая грузом 6, действует обычно 10-60 с в зависимости от твердости измеряемого материала. После автоматического выключения двигателя, поворачивая маховик 2 против часовой стрелки, опускают столик прибора и снимают образец 3.

Рис. 1. Схема измерения твердости по Бринеллю

На образце остается отпечаток со сферической поверхностью (лунка). Диаметр отпечатка, измеряют обычно лупой, на окуляре которой нанесена шкала с делениями, соответствующими 0,1 мм. Схема испытания на твердость по методу Бринелля и отсчет по шкале показаны на рис. 1.

Число твердости по Бринеллю, обозначаемая НВ, определяется путем деления нагрузки на площадь поверхности сферического отпечатка, и может быть определено по формуле:

выражена в Ньютонах или

,

выражена в килограмм-силе.

В этих выражениях

А – площадь поверхности отпечатка, мм;

D - диаметр вдавливаемого шарика, мм;

d - диаметр отпечатка, мм.

Диаметр шарика, нагрузку и продолжительность выдержки под нагрузкой выбирают в зависимости от твердости и толщины испытуемого изделия или образца. Для испытания используют образцы с чистой и гладкой поверхностью, а толщина образцов должна быть не менее десятикратной глубины отпечатка.

Нормы испытания на твердость по Бринеллю приведены в табл. 1.

Таблица 1

Нормы испытания на твердость по Бринеллю

При измерении твердости шариком определенного диаметра и установленными нагрузками нет необходимости проводить расчет по указанной выше формуле. На практике используется заранее составленными таблицами, указывающими число НВ от диаметра отпечатка.

Измерение твердости по Бринеллю не является универсальным способом, поскольку не позволяет:

а) использовать материалы с твердостью более НВ4500Н, так как шарик будет деформироваться и показания будут не точны;

б) измерять твердость тонкого поверхностного слоя (толщиной 1-2 мм), так как шарик будет продавливать тонкий слой металла.

ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЕМ

АЛМАЗНОГО КОНУСА ИЛИ СТАЛЬНОГО ШАРИКА

(ТВЕРДОСТЬ ПО РОКВЕЛЛУ)

Принципиальное отличие измерения твердости по способу Роквелла от измерения по способу Бринелля состоит в том, что ее измеряют не по диаметру, а по глубине отпечатка получаемого в результате вдавливания алмазного конуса с углом при вершине равным 120 о или стального закаленного шарика диаметром 1,588 мм. Конус или шарик вдавливают в испытуемый образец под действием двух последовательно прилагаемых нагрузок: предварительной Р 0 и основной будет равна: Р= Р 0 + Р 1 .

При испытании сначала прикладывают предварительную нагрузку Р 0 =100 Н, затем общую нагрузку Р , равную: при вдавливании шарика (шкала В) 1000 Н; при вдавливании алмазного конуса (шкала С) 1500 Н; при вдавливании алмазного конуса (шкала А) 600 Н (рис. 2).

Рис.2. Разновидность глубины проникновения наконечника под действием двух нагрузок

Твердость по Роквеллу обозначается цифрами и буквами HR с указанием шкалы твердости (А,В,С).

Число твердости по Роквеллу определяют по формуле

HR = (k-(h-h 0 )/c

где h 0 - глубина внедрения наконечника под действием силы Р 0 ;

h - глубина внедрения наконечника под действием общей

нагрузки Р ;

к - постоянная величина, для шарика 0,26; для конуса 0,2;

с - цена деления циферблата индикатора.

При измерении твердости нагрузка должна действовать строго перпендикулярно к поверхности образца. Нагрузки следует прилагать плавно.

Твердость измеряют на приборе, представленном на рис. 3.

Рис.3. Схема прибора для измерения твердости по Роквеллу

Стол 1 служит для установки на нем испытуемого образца 3. Вращая по часовой стрелке маховик 2, подводят образец до соприкосновения с наконечником 4. При дальнейшем вращении маховика наконечник начинает внедряться в образец, а на шкале индикатора наблюдают за поворотом малой стрелки. Предварительное нагружение производят до тех пор, пока малая стрелка индикатора не совпадет с красной точкой.

Когда образец получает предварительную нагрузку 100 Н (10 кГс), большая стрелка индикатора принимает вертикальное положение (или близкое к нему). Точную установку шкалы индикатора на ноль производят при помощи барабана 6. Затем нажимают на клавишу 7, при этом обеспечивается действие основной нагрузки и создается общая нагрузка (предварительная + основная).

При таком нагружении большая стрелка перемещается по циферблату индикатора против часовой стрелки. Время приложения общей нагрузки 5-7 с. Затем основная нагрузка снимается автоматически и остается только предварительная. Большая стрелка индикатора перемещается по часовой стрелке. Цифра, которую укажет на циферблате индикатора большая стрелка, представляет число твердости по Роквеллу. Далее поворачивают маховик 2 против часовой стрелки, опускают столик и снимают образец.

Твердость на приборе Роквелла можно измерять:

1) алмазным конусом с общей нагрузкой 1500 Н (150 кГс). В этом случае значение твердости определяют по черной шкале “С” индикатора и обозначают НRC. Эта шкала применяется при испытании закаленных сталей (до HRC 67);

2) алмазным конусом с общей нагрузкой 600 Н (60 кГс). В этом случае значения твердости также определяются по черной шкале “С”, но обозначают HRA. Числа HRA можно перевести на числа HRC по формуле: HRC = 2 HRA - 104. Эта шкала применяется для испытания сверхтвердых сплавов (например на основе карбидов вольфрама, обладающих твердостью HRC>68), тонкого листового материала и для измерения твердости тонких поверхностных слоев (0,3-0,5 мм);

3) стальным шариком с общей нагрузкой 1000 Н (100 кГс).

В этом случае значения твердости определяют по красной шкале “В” и обозначают HRB. Шкала В служит для испытания металлов средней твердости и для испытания изделия толщиной от 0,8 до 2 мм.

К достоинствам метода Роквелла следует отнести высокую производительность, простоту обслуживания, точность измерения и сохранение качественной поверхности после испытаний.

ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЯ

АЛМАЗНОЙ ПИРАМИДЫ

(ТВЕРДОСТЬ ПО ВИККЕРСУ)

Этот способ используется для измерения твердости черных и цветных металлов и сплавов.

Твердость по методу Виккерса определяют путем вдавливания в испытуемую поверхность алмазной четырехгранной пирамиды с углом при вершине 136 0 под нагрузкой 50, 100, 200, 300, 500, 1000 Н. По диагоналям h 1 и h 2 отпечатка, пирамиды и углу при вершине пирамиды определяют площадь поверхности отпечатка и рассчитывают по формуле:

HV = (2 P sin (/2)/ d 2 ) = 1,854 (P / d 2 ),

 - угол между противоположными гранями пирамиды (136 0);

d – среднеарифметические значения длин обеих диагоналей отпечатка после снятия нагрузки, мм.

Испытания проводят на приборе (рис. 4), имеющем неподвижную станину, в нижней части которой установлен столик 1, перемещающийся по вертикали вращением маховика 2. Образец 3 устанавливают на столик испытуемой поверхностью кверху и поднимают столик почти до соприкосновения образца с алмазной пирамидой 4. Нажатием педали пускового рычага 5 приводят в действие нагружающий механизм, который через рычаг передает давление грузов 6. Продолжительность нагружения при испытании составляет от 10 до 60 с, что регистрируется сигнальной лампочкой на приборе. После снятия нагрузки столик опускают и подводят микроскоп 7, с помощью которого определяют длину диагонали отпечатка.

Рис.4. Схема прибора для измерения твердости по Виккерсу

В окуляре микроскопа (рис. 5,б) имеются подвижная шкала и три штриха - два основных 1 и 2, и один дополнительный 3 (рис. 5,б). Вращением винта 1 (рис. 5,а) подводят штрих 1 к левому углу отпечатка (рис. 5,б). Вращением микрометрического винта 2 (рис. 5,а) подводят штрих 2 к правому углу отпечатка. Полученную величину диагонали отпечатка записать в протокол испытания.

Рис.5. Схемы: а). микрометрического винта; б). определения величины отпечатка

Измерять необходимо обе диагонали отпечатка и принимать среднюю величину измерений. Полученный результат перевести в значение твердости HV, пользуясь таблицами. Возможность применения малых нагрузок 50, 100 Н позволяет определить твердость деталей малой толщины и тонких поверхностных слоев, например, цементированных, азотированных и других.

Числа твердости по Виккерсу и по Бринеллю для материалов твердостью до НВ 4500 практически совпадают. Вместе с тем, измерения пирамидой дают более точные значения для металлов с высокой твердостью, чем измерения шариком или конусом. Алмазная пирамида имеет большой угол в вершине (136 0) и диагональ его отпечатка примерно в 7 раз больше глубины отпечатка, что повышает точность измерения даже при проникновении пирамиды на небольшую глубину.

ИЗМЕРЕНИЕ МИКРОТВЕРДОСТИ

Для изучения свойств и превращений в сплавах необходимо знать не только «усредненную» твердость, представляющую твердость в результате суммарного влияния присутствующих в сплаве фаз и структурных составляющих. В некоторых случаях необходимо знать твердость отдельных фаз и структур. Микротвердость определяют вдавливанием алмазной пирамиды. Для этого используют прибор типа ПМТ-3 (рис.6), разработанный М.Н. Хрущевым и Е.С. Берковичем. Прибор состоит из штатива 8, вертикальной микроскопа с тубусом, который перемещается вверх и вниз с помощью макрометрического винта 6 и микрометрического винта 5. На верхний конец тубуса насажен окулярный микрометр 7, а в нижнем конце закреплены шток 2 с алмазной пирамидой, опакиллюминатор 9 и объективы 11. С помощью микрометрических винтов 13 перемещают столик в необходимом направлении. Ручка 1 служит для поворота столика на 90 о. Прибор снабжен двумя объективами для просмотра микрошлифа при увеличениях в 478 и 135 раз. Окуляр увеличивает в 15 раз. Окулярный микрометр имеет неподвижную сетку, отсчетный микрометрический барабанчик и каретку с подвижной сеткой. На неподвижной сетке нанесены штрихи с цифрами и угольник с прямым углом, вершина которого совпадает с цифрой 0. Для определения микротвердости применяют несколько типов наконечников: с квадратным основанием; с основанием в виде равностороннего треугольника; с ромбическим основанием; с бицилиндрическим основанием. Наиболее широко используют алмазный наконечник. Наконечник имеет угол между гранями на вершине 136 о (такой же как для измерения твердости по Виккерсу). Нагрузка для вдавливания создается грузами 3, которые устанавливаются на шток 2. В приборе применяются грузы от 1 до 500 граммов в зависимости от особенностей изучаемой структуры. Для измерения специально готовят образцы, которые шлифуют и полируют, а при необходимости подвергают травлению реактивами. Приготовленный микрошлиф устанавливают на столике 12, чтобы поверхность микрошлифа была обращена вверх. Установленный микрошлиф просматривают через окуляр. С помощью винтов столик перемещают и выбирают необходимый участок на микрошлифе. Этот участок размещают в середине поля зрения микроскопа точно в вершине угла неподвижной сетки. Затем устанавливают груз. После этого опускают шток с алмазной пирамидой, чтобы алмаз коснулся образца. В этом положении выдерживают 5 – 10 секунд, после чего шток поднимают. Столик 12 поворачивают на 180 о под объектив микроскопа и измеряют диагонали отпечатка. Длина диагонали указывается на микрометрическом барабанчике прибора. Определяют длину обеих диагоналей и вычисляют среднюю длину. Полученную среднюю длину переводят по таблице в число микротвердости. Измерения проводят не менее 2-3 раз. Числа твердости в таблице вычислены по формуле
и представляют числа твердости по Виккерсу. Прибор позволяет фотографировать микроструктуру сплава с полученными отпечатками.


Рис.6. Схема прибора ПМТ-3

ЗАДАНИЕ 1

    Изучить работу прибора для измерения твердости по Бринеллю.

    Определить твердость образцов из углеродистых конструкционных и инструментальных сталей, и сравнить полученные результаты.

    Перевести числа твердости по Бринеллю в числа твердости по Роквеллу.

    Сделать вывод о влиянии состава сплава на его твердость.

Протокол испытаний на твердость по методу Бринелля

Таблица 1

ЗАДАНИЕ 2

    Изучить работу прибора для измерения твердости по методу Роквелла.

    Определить твердость образцов стали в оттоженном состоянии и закаленном состоянии, сплавов цветных металлов и твердых сплавов.

    Результаты измерений внести в протокол испытаний.

    Сделать вывод о влиянии состава материала на его твердость.

ЗАДАНИЕ 3

    Изучить работу прибора для измерения твердости по методу Виккерса.

    Определить твердость образцов из малоуглеродистой стали после цементации, азотирования.

    Результаты измерений записать в протокол испытаний.

1. Цель работы.

2. Задание.

3. Описание методики проведения испытаний.

4. Протокол испытания на твердость.

5. Выводы по работе.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

    Что такое твердость материалов?

    Как измеряется твердость материалов?

    Определение твердости по Бринеллю; по Роквеллу; по Виккерсу.

    Обозначения твердости.

    Область применения методов определения твердости по Бринеллю; по Роквеллу и по Виккерсу.

ЛИТЕРАТУРА

    Геллер Ю. А. , Рахштадт Л. Г. Материаловедение. М.: Металлургия. 1975.- 345с.

    Самоходний А. И., Кунявский М. Н. Лабораторные работы по металловедению и термической обработки металлов. М.: Машиностроение. 1981.

    Советова Л.В., Гусев В.И. Руководство к лабораторной работе «Определение твердости материалов». Саратов, СПИ, 1982г.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МАТЕРИАЛОВ

Методические указания к учебно-исследовательской лабораторной работе для студентов всех специальностей

дневной, вечерней и заочной форм обучения

Составил:

Федоров Юлий Степанович

Метод первопроходец. Звание заслуживает система определения твердости материалов, разработанная Августом Бринеллем. Это инженер из Швеции. Его метод стал первым стандартизированным и широко используемым. Шкалу Бринелля мир «взял на вооружение» в 1900-ом году. Разберемся, в чем суть системы, твердость каких материалов можно узнать с ее помощью, и есть ли у метода минусы.

Твердость по Бринеллю – суть метода

Для определения твердости используют прибор, составленный из измерительного блока и пресса. Наконечник пресса – стальной шарик. Его именуют индентором. Диаметр шарика соответствует ГОСТу 9012 – 59 (ИСО 6506-81, ИСО 410-82), установленному в 1990-лм году. Разрешены 3 показателя: 2,5, 5 и 10 миллиметров.

Нужный индентор выбирают так, чтобы отпечаток от него лежал в пределах 0,2-0,7 диаметра шарика. Измерение твердости по Бринеллю производится либо стальным шариком, либо шариком из карбида вольфрама. Последний, позволяет узнать твердость материалов, превышающих показатель обычной стали.

Карбидный индентор, как правило, нужен для инструментальных сплавов. Шарик из обычной стали используют, измеряя твердость древесины, меди, нержавейки, . То есть, твердомер применяют не только к металлам.

Метод измерения твердости по Бринеллю состоит из 2-х нагрузок. Сначала, пресс опускают для пробной. Небольшим надавливанием устанавливают начальное положение индентора. После, сообщают уже солидный вес, держат определенное время, потом, измеряют диаметр следа. Звучит «стройно», но есть сложность.

По краям отпечатка образуются навалы и наплывы материала. Из-за них диаметр, глубина могут быть неточными. Твердость по методу Бринелля измеряют до упругого восстановления, то есть до возвращения материала в первоначальную форму. Это возвращение может быть неполным. Тогда, фиксируется его степень.

В схожем методе Роквелла упругого восстановления не дожидаются, да и в качестве индентора используют не только металлические шары, но и алмазные конусы. Это стоит учитывать, замеряя твердость по Бринеллю и Роквеллу . Для чистоты эксперимента можно добавить еще один метод, главное, соблюсти нюансы исследований и уметь соотнести их результаты. Об этом и поговорим.

Определение твердости по Бринеллю – о цифрах и буквах

Результаты исследований выражаются в буквенно-цифровой записи. Из букв в ней присутствуют либо HB, либо HBW. Первое обозначение актуально для стального шарика. Вторая запись указывает на то, что вдавливали сферу из карбида . К буквам добавляют 2 или 3 числа. Первое – показатель твердости. Максимально возможный по Бринеллю – 650. Такой показатель измеряется карбидным индентором. Стальной вдавливается в материалы твердостью до 450-ти единиц.

Второе число в записи – диаметр шарика-наконечника. Он не указывается лишь в том случае, если максимальный, то есть равен 10-ти миллиметрам. Третье число в обозначении – сила, с которой давили на испытуемый образец. Рассмотрим такой перевод твердости по Бринеллю : 500 HBW 5/800. Запись HBW свидетельствует о применение карбидного шарика. Его диаметр составил 5 миллиметров.

Сила давления была равна 800-от килограммов силы (кгс). 500- итоговая твердость материала. Вычисляется она по формуле отношения приложенного усилия к площади отпечатка. Интересно, что со значениями Бринелля совпадает еще одна – Виккерса. Обе начинаются со 100 единиц. Правда наивысшая твердость по Виккерсу и Бринеллю разнится.

У Виккерса значения доходят до 1 200-от. Записи результатов отличаются лишь буквами. Шкала Виккерса обозначается HV. Стоит учитывать это, выбирая товары с указанием твердости. То, что по Бринеллю тверже стали, по Виккерсу – материал весьма податливый.

Кстати, согласно большинству словарей, твердость – это свойства пластичности, упругости и сопротивления деформациям, или иным разрушениям, при вдавливании в верхний слой испытуемого образца другого, более твердого вещества. Ну, вот, уточнили о чем речь. Пора разобраться, какая твердость и для каких материалов считается приемлемой.

Твердость по Бринеллю – таблица значений

Твердость стали по Бринеллю может быть от 103-ти до 200-от единиц. Показатель зависит от . Не стоит забывать, что существует мягкая, нержавеющая и закаленная сталь. Сплав Ст0, к примеру, занимает нижнюю планку твердости. СТ2пс – марка со 116-ю HB. У СТ3пс показатель равен 131. 170 HB отличают сталь СТ5Гпс и СТ5пс. 200 единиц у марок ВСт6сп, СТ6пс и СТ6сп.

Твердость металлов по Бринеллю , в том числе и их сплавов, к коим причисляется сталь, важна при эксплуатации многих предметов. Пример – подшипники. Они подвергаются трению. Будь сплав для подшипников мягким, машина не отходит и гарантийного срока. Сопротивляемость деталей износу, зависящая от твердости, важна и при конструировании космических аппаратов, летной техники, строительных конструкций.

Твердость стали по Брюнеллю для арматуры высотных зданий, к примеру, должна быть не ниже 150-ти единиц. Если брать усредненные цифры для металлов, то черные, как правило, маркируются числом 140 HB, а твердость цветных не превышает 130-ти. Драгоценные металлы одни из самых податливых.

Так, твердость по Бринеллю – всего 50. Выше говорилось, что шкала начинается со 100. Однако, современные технологи нередко дополняют ее, доводя до единицы. Твердость некоторых цветных металлов щелочноземельной группы составляет всего 30 HB.

Если вопрос не о строительстве и конструировании машин, а о ремонте, людей больше интересуют показатели древесины. Ее твердость тоже иногда измеряют по Бринеллю . Для металлов есть ГОСТы. Массы изначально «замешивают» в соответствии с техническими требованиями. Для древесины условия иные. Твердость зависит не только от породы, но и от условий произрастания.

Липа из разных местностей может отличаться на 10-20 баллов, как и сосна, дуб, ольха. Поэтому, лучше смотреть не из чего сделаны стол, или паркет, а какая твердость указана в документах к ним.

Для паркета берется древесина, как минимум, средней твердости. Если отбросить, погрешность на условия произрастания, точно подойдут блоки из белой акации, самшита, железной березы, граба и кизила.

Твердость этих пород приближенна к 100 HB. Это на торцах. Радиальный и тангенциальный показатели неизбежно ниже процентов на 30. Древесину по Бринеллю мерят в странах Европы. Россия к ним примыкает. Продукция из США соответствует Янка. Этот тест узконаправлен, применим только к дереву.

В Америке прилагаемую к материалу силу записывают не в килограммах, а в фунтах. Диаметр металлического выражен в дюймах, составляет 0,444. В миллиметрах это около 11-ти.

Итоговый результат измерений не бывает ниже 660 единиц. Высший показатель – 4 500. Таким «хвастается» гваяковое дерево. Оно одно из самых дорогих, поскольку из-за твердости сложно обрабатывается, к тому же, редко встречается.

В общем, число 4 500, даже на товарах из Штатов, встретишь редко. А вот значения Бринелля проставлены на большинстве продукции, изготавливаемой в России, и завозимой из-за рубежа. Это , в премудростях которой стоит разобраться.

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода