Вконтакте Facebook Twitter Лента RSS

Слои атмосферы. Строение атмосферы Слои атмосферы поэтому и

Космос наполнен энергией. Энергия наполняет пространство неравномерно. Есть места её концентрации и разряжения. Так можно оценить плотность. Планета – упорядоченная система, с максимальной плотностью вещества в центре и с постепенным уменьшением концентрации к периферии. Силы взаимодействия определяют состояние материи, форму, в которой она существует. Физика описывает агрегатное состояние веществ: твердое тело, жидкость, газ и так далее.

Атмосфера - это газовая среда окружающая планету. Атмосфера Земли обеспечивает свободное перемещение и пропускает свет, формирует простор, в котором процветает жизнь.


Участок от поверхности земли до высоты приблизительно 16 километров (от экватора к полюсам меньшее значение, также зависит от сезона) называют тропосферой. Тропосфера слой, в котором сосредоточено около 80% всего воздуха атмосферы и почти весь водяной пар. Именно здесь протекают процессы формирующие погоду. Давление и температура падают с высотой. Причиной понижения температуры воздуха является адиабатический процесс, при расширении газ охлаждается. У верхней границы тропосферы значения могут достигать -50, -60 градусов Цельсия.

Далее начинается Стратосфера. Она распространяется вверх на 50 километров. В этом слое атмосферы температура с высотой увеличивается, приобретая значение в верхней точке около 0 С. Повышение температуры вызвано процессом поглощения озоновым слоем ультрафиолетовых лучей. Излучение вызывает химическую реакцию. Молекулы кислорода распадаются на одиночные атомы, которые могут объединяться с нормальными молекулами кислорода, в итоге появляется озон.

Излучение солнца с длинами волн от 10 до 400 нанометров классифицируется как ультрафиолетовое. Чем короче длина волны УФ излучения, тем большую опасность оно представляет для живых организмов. Только малая доля излучения доходит до поверхности Земли, к тому же менее активная часть её спектра. Такая особенность природы, позволяет человеку получать здоровый солнечный загар.

Следующий слой атмосферы называется Мезосфера. Пределы приблизительно с 50 км до 85 км. В мезосфере концентрация озона, который бы мог задерживать УФ энергию низкая, поэтому температура снова начинает падать с высотой. В пиковой точке температура опускается до -90 С, некоторые источники указывают величину -130 С. В этом слое атмосферы сгорает большинство метеорных тел.

Слой атмосферы, растянувшийся с высоты 85 км на расстояние 600 км от Земли, называется Термосфера. Термосфера первой встречает солнечное излучение, в том числе, так называемый вакуумный ультрафиолет.

Вакуумный УФ задерживается воздушной средой, тем самым нагревает этот слой атмосферы до огромных температур. Однако поскольку давление здесь крайне мало, этот, казалось бы, раскаленный газ не оказывает на объекты такого воздействия как при условиях на поверхности земли. Наоборот предметы, помещенные в такую среду, будут остывать.

На высоте 100 км проходит условная черта «линия Кармана», которую принято считать началом космоса.

В термосфере происходят полярные сияния. В этом слое атмосферы солнечный ветер взаимодействует с магнитным полем планеты.

Последним слоем атмосферы является Экзосфера, внешняя оболочка, простирающаяся на тысячи километров. Экзосфера практически пустое место, тем не менее, количество атомов блуждающих здесь на порядок больше чем в межпланетном пространстве.

Человек дышит воздухом. Нормальное давление – 760 миллиметров ртутного столба. На высоте 10 000 м давление составляет около 200 мм. рт. ст. На такой высоте человек вероятно может дышать, хотя бы не продолжительное время, но для этого нужна подготовка. Состояние явно будет неработоспособное.

Газовый состав атмосферы: 78 % азот, 21 % кислород, около процента аргон всё остальное – смесь газов представляющих мельчайшую долю от общего количества.


Атмосфера (от греч. atmos — пар и spharia — шар) — воздушная оболочка Земли, вращающаяся вместе с ней. Развитие атмосферы было тесно связано с геологическими и геохимическими процессами, протекающими на нашей планете, а также с деятельностью живых организмов.

Нижняя граница атмосферы совпадает с поверхностью Земли, так как воздух проникает в мельчайшие поры в почве и растворен даже в воде.

Верхняя граница на высоте 2000-3000 км постепенно переходит в космическое пространство.

Благодаря атмосфере, в которой содержится кислород, возможна жизнь на Земле. Атмосферный кислород используется в процессе дыхания человека, животными, растениями.

Если бы не было атмосферы, на Земле была бы такая же тишина, как на Луне. Ведь звук — это колебание частиц воздуха. Голубой цвет неба объясняется тем, что солнечные лучи, проходя сквозь атмосферу, как через линзу, разлагаются на составляющие цвета. При этом рассеиваются больше всего лучи голубого и синего цветов.

Атмосфера задерживает большую часть ультрафиолетового излучения Солнца, которое губительно действует на живые организмы. Также она удерживает у поверхности Земли тепло, не давая нашей планете охлаждаться.

Строение атмосферы

В атмосфере можно выделить несколько слоев, различающихся по и плотности (рис. 1).

Тропосфера

Тропосфера — самый нижний слой атмосферы, толщина которого над полюсами составляет 8-10 км, в умеренных широтах — 10-12 км, а над экватором — 16-18 км.

Рис. 1. Строение атмосферы Земли

Воздух в тропосфере нагревается от земной поверхности, т. е. от суши и воды. Поэтому температура воздуха в этом слое с высотой понижается в среднем на 0,6 °С на каждые 100 м. У верхней границы тропосферы она достигает -55 °С. При этом в районе экватора на верхней границе тропосферы температура воздуха составляет -70 °С, а в районе Северного полюса -65 °С.

В тропосфере сосредоточено около 80 % массы атмосферы, находится почти весь водяной пар, возникают грозы, бури, облака и осадки, а также происходит вертикальное (конвекция) и горизонтальное (ветер) перемещение воздуха.

Можно сказать, что погода в основном формируется в тропосфере.

Стратосфера

Стратосфера — слой атмосферы, расположенный над тропосферой на высоте от 8 до 50 км. Цвет неба в этом слое кажется фиолетовым, что объясняется разреженностью воздуха, из-за которой солнечные лучи почти не рассеиваются.

В стратосфере сосредоточено 20 % массы атмосферы. Воздух в этом слое разрежен, практически нет водяного пара, а потому почти не образуются облака и осадки. Однако в стратосфере наблюдаются устойчивые воздушные течения, скорость которых достигает 300 км/ч.

В этом слое сосредоточен озон (озоновый экран, озоносфера), слой, который поглощает ультрафиолетовые лучи, не пропуская их к Земле и тем самым защищая живые организмы на нашей планете. Благодаря озону температура воздуха на верхней границе стратосферы находится в пределах от -50 до 4-55 °С.

Между мезосферой и стратосферой расположена переходная зона — стратопауза.

Мезосфера

Мезосфера — слой атмосферы, расположенный на высоте 50-80 км. Плотность воздуха здесь в 200 раз меньше, чем у поверхности Земли. Цвет неба в мезосфере кажется черным, в течение дня видны звезды. Температура воздуха снижается до -75 (-90)°С.

На высоте 80 км начинается термосфера. Температура воздуха в этом слое резко повышается до высоты 250 м, а потом становится постоянной: на высоте 150 км она достигает 220-240 °С; на высоте 500-600 км превышает 1500 °С.

В мезосфере и термосфере под действием космических лучей молекулы газов распадаются на заряженные (ионизированные) частицы атомов, поэтому эта часть атмосферы получила название ионосфера — слой очень разреженного воздуха, расположенный на высоте от 50 до 1000 км, состоящий в основном из ионизированных атомов кислорода, молекул окиси азота и свободных электронов. Для этого слоя характерна высокая наэлектризован- ность, и от него, как от зеркала, отражаются длинные и средние радиоволны.

В ионосфере возникают полярные сияния — свечение разреженных газов под влиянием электрически заряженных летящих от Солнца частиц — и наблюдаются резкие колебания магнитного поля.

Экзосфера

Экзосфера — внешний слой атмосферы, расположенный выше 1000 км. Этот слой еще называют сферой рассеивания, так как частицы газов движутся здесь с большой скоростью и могут рассеиваться в космическое пространство.

Состав атмосферы

Атмосфера — это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), озона и других газов, но их содержание ничтожно (табл. 1). Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО 2 примерно на 10-12 %.

Входящие в состав атмосферы газы выполняют различные функциональные роли. Однако основное значение этих газов определяется прежде всего тем, что они очень сильно поглощают лучистую энергию и тем самым оказывают существенное влияние на температурный режим поверхности Земли и атмосферы.

Таблица 1. Химический состав сухого атмосферного воздуха у земной поверхности

Объемная концентрация. %

Молекулярная масса, ед.

Кислород

Углекислый газ

Закись азота

от 0 до 0,00001

Двуокись серы

от 0 до 0,000007 летом;

от 0 до 0,000002 зимой

От 0 ло 0,000002

46,0055/17,03061

Двуокись азога

Окись углерода

Азот, самый распространенный газ в атмосфере, химически мало активен.

Кислород , в отличие от азота, химически очень активный элемент. Специфическая функция кислорода — окисление органического вещества гетеротрофных организмов, горных пород и недоокисленных газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мертвого органического вещества.

Роль углекислого газа в атмосфере исключительно велика. Он поступает в атмосферу в результате процессов горения, дыхания живых организмов, гниения и представляет собой, прежде всего, основной строительный материал для создания органического вещества при фотосинтезе. Кроме этого, огромное значение имеет свойство углекислого газа пропускать коротковолновую солнечную радиацию и поглощать часть теплового длинноволнового излучения, что создаст так называемый парниковый эффект, о котором речь пойдет ниже.

Влияние на атмосферные процессы, особенно на тепловой режим стратосферы, оказывает и озон. Этот газ служит естественным поглотителем ультрафиолетового излучения Солнца, а поглощение солнечной радиации ведет к нагреванию воздуха. Средние месячные значения общего содержания озона в атмосфере изменяются в зависимости от широты местности и времени года в пределах 0,23-0,52 см (такова толщина слоя озона при наземных давлении и температуре). Наблюдается увеличение содержания озона от экватора к полюсам и годовой ход с минимумом осенью и максимумом весной.

Характерным свойством атмосферы можно назвать то, что содержание основных газов (азота, кислорода, аргона) с высотой изменяется незначительно: на высоте 65 км в атмосфере содержание азота — 86 %, кислорода — 19, аргона — 0,91, на высоте же 95 км — азота 77, кислорода — 21,3, аргона — 0,82 %. Постоянство состава атмосферного воздуха по вертикали и по горизонтали поддерживается его перемешиванием.

Кроме газов, в воздухе содержатся водяной пар и твердые частицы. Последние могут иметь как естественное, так и искусственное (антропогенное) происхождение. Это цветочная пыльца, крохотные кристаллики соли, дорожная пыль, аэрозольные примеси. Когда в окно проникают солнечные лучи, их можно увидеть невооруженным глазом.

Особенно много твердых частиц в воздухе городов и крупных промышленных центров, где к аэрозолям добавляются выбросы вредных газов, их примесей, образующихся при сжигании топлива.

Концентрация аэрозолей в атмосфере определяет прозрачность воздуха, что сказывается на солнечной радиации, достигающей поверхности Земли. Наиболее крупные аэрозоли — ядра конденсации (от лат.condensatio — уплотнение, сгущение) — способствуют превращению водяного пара в водяные капли.

Значение водяного пара определяется прежде всего тем, что он задерживает длинноволновое тепловое излучение земной поверхности; представляет основное звено больших и малых круговоротов влаги; повышает температуру воздуха при конденсации водяных наров.

Количество водяного пара в атмосфере изменяется во времени и пространстве. Так, концентрация водяного пара у земной поверхности колеблется от 3 % в тропиках до 2-10 (15) % в Антарктиде.

Среднее содержание водяного пара в вертикальном столбе атмосферы в умеренных широтах составляет около 1,6-1,7 см (такую толщину будет иметь слой сконденсированного водяного пара). Сведения относительно водяного пара в различных слоях атмосферы противоречивы. Предполагалось, например, что в диапазоне высот от 20 до 30 км удельная влажность сильно увеличивается с высотой. Однако последующие измерения указывают на большую сухость стратосферы. По-видимому, удельная влажность в стратосфере мало зависит от высоты и составляет 2-4 мг/кг.

Изменчивость содержания водяного пара в тропосфере определяется взаимодействием процессов испарения, конденсации и горизонтального переноса. В результате конденсации водяного пара образуются облака и выпадают атмосферные осадки в виде дождя, града и снега.

Процессы фазовых переходов воды протекают преимущественно в тропосфере, именно поэтому облака в стратосфере (на высотах 20-30 км) и мезосфере (вблизи мезопаузы), получившие название перламутровых и серебристых, наблюдаются сравнительно редко, тогда как тропосферные облака нередко закрывают около 50 % всей земной поверхности.

Количество водяного пара, которое может содержаться в воздухе, зависит от температуры воздуха.

В 1 м 3 воздуха при температуре -20 °С может содержаться не более 1 г воды; при 0 °С — не более 5 г; при +10 °С — не более 9 г; при +30 °С — не более 30 г воды.

Вывод: чем выше температура воздуха, тем больше водяного пара может в нем содержаться.

Воздух может быть насыщенным и не насыщенным водяным паром. Так, если при температуре +30 °С в 1 м 3 воздуха содержится 15 г водяного пара, воздух не насыщен водяным паром; если же 30 г — насыщен.

Абсолютная влажность — это количество водяного пара, содержащегося в 1 м 3 воздуха. Оно выражается в граммах. Например, если говорят «абсолютная влажность равна 15», то это значит, что в 1 м Л содержится 15 г водяного пара.

Относительная влажность воздуха — это отношение (в процентах) фактического содержания водяного пара в 1 м 3 воздуха к тому количеству водяного пара, которое может содержаться в 1 м Л при данной температуре. Например, если по радио во время передачи сводки погоды сообщили, что относительная влажность равна 70 %, это значит, что воздух содержит 70 % того водяного пара, которое он может вместить при данной температуре.

Чем больше относительная влажность воздуха, т. с. чем ближе воздух к состоянию насыщения, тем вероятнее выпадение осадков.

Всегда высокая (до 90 %) относительная влажность воздуха наблюдается в экваториальной зоне, так как там в течение всего года держится высокая температура воздуха и происходит большое испарение с поверхности океанов. Такая же высокая относительная влажность и в полярных районах, но уже потому, что при низких температурах даже небольшое количество водяного пара делает воздух насыщенным или близким к насыщению. В умеренных широтах относительная влажность меняется по сезонам — зимой она выше, летом — ниже.

Особенно низкая относительная влажность воздуха в пустынях: 1 м 1 воздуха там содержит в два-три раза меньше возможного при данной температуре количество водяного пара.

Для измерения относительной влажности пользуются гигрометром (от греч. hygros — влажный и metreco — измеряю).

При охлаждении насыщенный воздух не может удержать в себе прежнего количества водяного пара, он сгущается (конденсируется), превращаясь в капельки тумана. Туман можно наблюдать летом в ясную прохладную ночь.

Облака — это тог же туман, только образуется он не у земной поверхности, а на некоторой высоте. Поднимаясь вверх, воздух охлаждается, и находящийся в нем водяной пар конденсируется. Образовавшиеся мельчайшие капельки воды и составляют облака.

В образовании облаков участвуют и твердые частицы , находящиеся в тропосфере во взвешенном состоянии.

Облака могут иметь различную форму, которая зависит от условий их образования (табл. 14).

Самые низкие и тяжелые облака — слоистые. Они располагаются на высоте 2 км от земной поверхности. На высоте от 2 до8 км можно наблюдать более живописные кучевые облака. Самые высокие и легкие — перистые облака. Они располагаются на высоте от 8 до 18 км над земной поверхностью.

Семейства

Роды облаков

Внешний облик

А. Облака верхнего яруса — выше 6 км

I. Перистые

Нитевидные, волокнистые, белые

II. Перисто-кучевые

Слои и гряды из мелких хлопьев и завитков, белые

III. Перисто-слоистые

Прозрачная белесая вуаль

Б. Облака среднего яруса — выше 2 км

IV. Высококучевые

Пласты и гряды белого и серою цвета

V. Высокослоистые

Ровная пелена молочно-серого цвета

В. Облака нижнего яруса — до 2 км

VI. Слоисто-дождевые

Сплошной бесформенный серый слой

VII. Слоисто-кучевые

Непросвечиваемые слои и гряды серого цвета

VIII. Слоистые

Непросвечиваемая пелена серого цвета

Г. Облака вертикального развития — от нижнего до верхнего яруса

IX. Кучевые

Клубы и купола ярко-бе- лого цвета, при ветре с разорванными краями

X. Кучево-дождевые

Мощные кучевообразные массы темно-свинцового цвета

Охрана атмосферы

Главным источником являются промышленные предприятия и автомобили. В больших городах проблема загазованности главных транспортных магистралей стоит очень остро. Именно поэтому во многих крупных городах мира, в том числе и в нашей стране, введен экологический контроль токсичности выхлопных газов автомобилей. Поданным специалистов, задымленность и запыленность воздуха может наполовину сократить поступление солнечной энергии к земной поверхности, что приведет к изменению природных условий.

ВЕРХНИЕ СЛОИ АТМОСФЕРЫ

ВЕРХНИЕ СЛОИ АТМОСФЕРЫ , слои атмосферы от 50 км и выше, свободные от возмущений, вызванных погодой. Включают МЕЗОСФЕРУ, ТЕРМОСФЕРУ И ИОНОСФЕРУ. На этой высоте воздух разрежен, температура изменяется в пределах от -1100 °С на низком уровне до 250°-1500 °С на более высоком. На поведение верхних слоев атмосферы сильно влияют такие внеземные явления, как солнечная и КОСМИЧЕСКАЯ РАДИАЦИЯ, под действием которых молекулы атмосферного газа ионизируются и образуют ионосферу, а также атмосферные потоки, вызывающие турбулентность.


Научно-технический энциклопедический словарь .

Смотреть что такое "ВЕРХНИЕ СЛОИ АТМОСФЕРЫ" в других словарях:

    - (см. Атмосфера, Воздух) измеряется барометром и гипсотермометром (см.). По мере поднятия вверх от земной поверхности Д. уменьшается; но в каждом данном случае величина уменьшения давления может быть различная и находится в зависимости от… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Верхние слои атмосферы Земли, начиная от 50 80 км, характеризующиеся значительным содержанием ионов и свободных электронов. Повышенная ионизация воздуха в И. результат действия ультрафиолетового и рентгеновского излучений Солнца на молекулы… … Астрономический словарь

    Газовая оболочка, окружающая небесное тело. Ее характеристики зависят от размера, массы, температуры, скорости вращения и химического состава данного небесного тела, а также определяются историей его формирования начиная с момента зарождения.… … Энциклопедия Кольера

    Земля - (Earth) Планета Земля Строение Земли, эволюция жизни на Земле, животный и растительный мир, Земля в солнечной системе Содержание Содержание Раздел 1. Общая о планете земля. Раздел 2. Земля как планета. Раздел 3. Строение Земли. Раздел 4.… … Энциклопедия инвестора

    Структура облаков в атмосфере Венеры, сфотографированная зондом «Пионер Венера 1» в 1979 г. Характерная форма облаков в виде буквы V вызвана сильными ветрами вблизи экватора … Википедия

    Солнце и обращающиеся вокруг него небесные тела 9 планет, более 63 спутников, четыре системы колец у планет гигантов, десятки тысяч астероидов, несметное количество метеороидов размером от валунов до пылинок, а также миллионы комет. В… … Энциклопедия Кольера

    I Атмосфера Земли (от греч. atmos пар и sphaira шар), газовая оболочка, окружающая Землю. А. принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землёй как единое целое. Масса А. составляет около 5,15 1015… …

    - (от греч. atmos ‒ пар и sphaira ‒ шар), газовая оболочка, окружающая Землю. А. принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землёй как единое целое. Масса А. составляет около 5,15 1015 т. А. обеспечивает… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Собаки в космосе (значения) … Википедия

    У этого термина существуют и другие значения, см. Ветер (значения). Ветроуказатель простейшее устройство для определения скорости и направления ветра, использующееся на аэродромах … Википедия

Книги

  • Песня песка , Василий Воронков. Уцелевшие после катастрофы города сотни лет окружены мертвыми песками. Из-за сильного излучения кораблям приходится подниматься в верхние слои атмосферы, чтобы пересечь разделяющую города…

Атмосфера имеет четко выраженные слои воздуха. Слои воздуха отличаются между собой температурой, разностью газов и их плотностью и давлением . Нужно отметить, что слои стратосфера и тропосфера защищают Землю от солнечной радиации. В высших слоях живой организм может получить смертельную дозу ультрафиолетового солнечного спектра. Для быстрого перехода к нужному слою атмосферы, нажмите на соответствующий слой:

Тропосфера и тропопауза

Тропосфера — температура, давление, высота

Верхняя граница держится на отметке 8 — 10 км примерно. В умеренных широтах 16 — 18 км, а в полярных 10 — 12 км. Тропосфера — это нижний главный слой атмосферы. В этом слое находится более 80% всей массы атмосферного воздуха и близко 90% всей водяной пары. Именно в тропосфере возникают конвекция и турбулентность, образуются облака , происходят циклоны. Температура понижается с ростом высоты. Градиент: 0,65 °/100 м. Нагретая земля и вода нагревают прилагающий воздух. Нагретый воздух поднимается в верх, охлаждается и образует облака. Температура в верхних границах слоя может достигать — 50/70 °C.

Именно в этом слое происходят изменения климатических погодных условий. В нижнюю границу тропосферы называют приземным , так как он имеет много летучих микроорганизмов и пыли. Скорость ветра увеличивается с увеличением высоты в этом слое.

Тропопауза

Это переходной слой тропосферы к стратосфере. Здесь прекращается зависимость снижения температуры с повышением высоты. Тропопауза — минимальная высота, где вертикальный градиент температуры падает до 0,2°C/100 м. Высота тропопаузы зависит от сильных климатических проявлений, таких как циклоны. Над циклонами высота тропопаузы понижается, а над антициклонами повышается.

Стратосфера и Стратопауза

Высота слоя стратосферы примерно от 11 до 50 км. Присутствует незначительное изменение температуры на высоте 11 — 25 км. На высоте 25 — 40 км наблюдается инверсия температуры, от 56,5 поднимается до 0,8°C. От 40 км до 55 температура держится на отметке 0°C. Эту область называют — Стратопаузой .

В Стратосфере наблюдают воздействие солнечной радиации на молекулы газа, они диссоциируют на атомы. В этом слое нету почти водяного пара. Современные сверхзвуковые коммерческие самолёты летают на высоте до 20 км из-за стабильных полетных условий. Высотные метеозонды поднимаются на высоту 40 км. Здесь присутствуют устойчивые воздушные течения, скорость их достигает 300 км/ч. Также в этом слое сосредоточен озон , слой который поглощает ультрафиолетовые лучи.

Мезосфера и Мезопауза — состав, реакции, температура

Слой мезосферы начинается примерно на высоте 50 км и заканчивается на отметке 80 — 90 км. Температуры понижается с повышением высоты примерно 0,25-0,3°C/100 м. Основным энергетическим действием здесь является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов (имеет 1 или 2 непарных электронная) т.к. они реализуют свечение атмосферы.

Почти все метеоры сгорают в мезосфере. Ученые назвали эту зону — Игноросферой . Эту зону тяжело исследовать, так как аэродинамическая авиация здесь очень плохая из-за плотности воздуха, которая здесь в 1000 раз меньше чем на Земле. А для запуска искусственных спутников плотность еще очень высокая. Исследования проводят с помощью метеорологических ракет, но это извращенность. Мезопауза переходной слой между мезосферой и термосферой. Имеет температуру минимум -90°C.

Линия Кармана

Линию кармана называют границей между атмосферой Земли и космосом. Согласно международной авиационной федерацией (ФАИ) высота этой границы — 100 км. Такое определения дали в честь американского ученого Теодора Фон Кармана. Он определил, что примерно на этой высоте плотность атмосферы настолько мала, что аэродинамическая авиация здесь становится невозможная, так как скорость летательного устройства должна быть большей первой космической скорости . На такой высоте теряет смысл понятие звуковой барьер. Здесь управлять летательным аппаратом можно лишь за счет реактивных сил.

Термосфера и Термопауза

Верхняя граница этого слоя примерно 800 км. Температура растёт примерно до высоты 300 км где достигает порядка 1500 К. Выше температура остается неизменной. В этом слое происходит полярное сияние — происходит в следствии воздействия солнечной радиации на воздуха. Также этот процесс называют ионизацией атмосферного кислорода.

Из-за малой разряженности воздуха полёты выше линии Кармана реализуемы только по баллистических траекториях. Все пилотируемые орбитальные полеты (кроме полетов на Луну) происходят в этом слое атмосферы.

Экзосфера — плотность, температура, высота

Высота экзосферы выше 700 км. Здесь газ сильно разрежён,и происходит процесс диссипации — утечка частиц в межпланетное пространство. Скорость таких частиц может достигать 11,2 км/сек. Рост солнечной активности приводит к расширению толщины этого слоя.

  • Газовая оболочка не улетает в космос из-за земного притяжения. Воздух состоит из частиц, которые имеют свою массу. Из закона тяготения можно вынести то, что каждый объект обладающий массой притягивается к Земли.
  • Закон Буйс-Баллота гласит, что если находиться в Северном полушарии и встать спиной к ветру, то справа будет располагаться зона высокого давления, а слева — низкого. В Южном же полушарии все будет наоборот.

Атмосфера имеет слоистую структуру. Границы между слоями не резкие и их высота зависит от широты и времени года. Слоистая структура - результат температурных изменений на разных высотах. Погода формируется в тропосфере (нижние примерно 10 км: около 6 км над полюсами и более 16 км над экватором). И верхняя граница тропософеры выше летом, чем зимой.

От поверхности Земли вверх эти слои:

Тропосфера

Стратосфера

Мезосфера

Термосфера

Экзосфера

Тропосфера

Нижняя часть атмосферы, до высоты 10-15 км, в которой сосредоточено 4/5 всей массы атмосферного воздуха, носит название тропосферы. Для нее характерно, что температура здесь с высотой падает в среднем на 0.6°/100 м (в отдельных случаях распределение температуры по вертикали варьирует в широких пределах). В тропосфере содержится почти весь водяной пар атмосферы и возникают почти все облака. Сильно развита здесь и турбулентность, особенно вблизи земной поверхности, а также в так называемых струйных течениях в верхней части тропосферы.

Высота, до которой простирается тропосфера, над каждым местом Земли меняется изо дня в день. Кроме того, даже в среднем она различна под разными широтами и в разные сезоны года. В среднем годовом тропосфера простирается над полюсами до высоты около 9 км, над умеренными широтами до 10-12 км и над экватором до 15-17 км. Средняя годовая температура воздуха у земной поверхности около +26° на экваторе и около -23° на северном полюсе. На верхней границе тропосферы над экватором средняя температура около -70°, над северным полюсом зимой около -65°, а летом около -45°.

Давление воздуха на верхней границе тропосферы соответственно ее высоте в 5-8 раз меньше, чем у земной поверхности. Следовательно, основная масса атмосферного воздуха находится именно в тропосфере. Процессы, происходящие в тропосфере, имеют непосредственное и решающее значение для погоды и климата у земной поверхности.

В тропосфере сосредоточен весь водяной пар и именно поэтому все облака образуются в пределах тропосферы. Температура уменьшается с высотой.

Солнечные лучи легко проходят через тропосферу, а тепло, которое излучает нагретая солнечными лучами Земля, накапливается в тропосфере: такие газы, как углекислый газ, метан а также пары воды удерживают тепло. Такой механизм прогревания атмосферы от Земли, нагретой солнечной радиацией, называется парниковый эффект. Именно потому, что источником тепла для атмосферы является Земля, температура воздуха с высотой уменьшается

Граница между турбулентной тропосферой и спокойной стратосферой называется тропопауза. Здесь образуются быстро движущиеся ветры, называемые "реактивные потоки".

Когда-то предполагали, что температура атмосферы падает и выше тропософеры, однако измерения в высоких слоях атмосферы показали, что это не так:сразу выше тропопаузы температура почти постоянна, а затем начинает увеличиваться Сильные горизонтальные ветры дуют в стратосфере не образуя турбулентности. Воздух стратосферы очень сухой и поэтому облака редки. Образуются так называемые перламутровые облака.

Стратосфера очень важна для жизни на Земле, так именно в этом слое находится небольшое количество озона, которое поглощает сильное ультрафиолетовое излучение, вредное для жизни. Поглощая ультрафиолетовое излучение, озон нагревает стратосферу.

Стратосфера

Над тропосферой до высоты 50-55 км лежит стратосфера, характеризующаяся тем, что температура в ней в среднем растет с высотой. Переходный слой между тропосферой и стратосферой (толщиной 1-2 км) носит название тропопаузы.

Выше были приведены данные о температуре на верхней границе тропосферы. Эти температуры характерны и для нижней стратосферы. Таким образом, температура воздуха в нижней стратосфере над экватором всегда очень низкая; притом летом много ниже, чем над полюсом.

Нижняя стратосфера более или менее изотермична. Но, начиная с высоты около 25 км, температура в стратосфере быстро растет с высотой, достигая на высоте около 50 км максимальных, притом положительных значений (от +10 до +30°). Вследствие возрастания температуры с высотой турбулентность в стратосфере мала.

Водяного пара в стратосфере ничтожно мало. Однако на высотах 20-25 км наблюдаются иногда в высоких широтах очень тонкие, так называемые перламутровые облака. Днем они не видны, а ночью кажутся светящимися, так как освещаются солнцем, находящимся под горизонтом. Эти облака состоят из переохлажденных водяных капелек. Стратосфера характеризуется еще тем, что преимущественно в ней содержится атмосферный озон, о чем было сказано выше

Мезосфера

Над стратосферой лежит слой мезосферы, примерно до 80 км. Здесь температура с высотой падает до нескольких десятков градусов ниже нуля. Вследствие быстрого падения температуры с высотой в мезосфере сильно развита турбулентность. На высотах, близких к верхней границе мезосферы (75-90 км), наблюдаются еще особого рода облака, также освещаемые солнцем в ночные часы, так называемые серебристые. Наиболее вероятно, что они состоят из ледяных кристаллов.

На верхней границе мезосферы давление воздуха раз в 200 меньше, чем у земной поверхности. Таким образом, в тропосфере, стратосфере и мезосфере вместе, до высоты 80 км, заключается больше чем 99,5% всей массы атмосферы. На вышележащие слои приходится ничтожное количество воздуха

На высоте около 50 км над Землей температура снова начинает падать, обозначая верхнюю границу стратосферы и начало следующего слоя - мезосферы. Мезосфера имеет самую холодную температуру в атмосфере: от -2 до - 138 градусов Цельсия. Здесь же находятся самые высокие облака: в ясную погоду их можно видеть при закате. Они называются noctilucent (светящиеся ночью).

Термосфера

Верхняя часть атмосферы, над мезосферой, характеризуется очень высокими температурами и потому носит название термосферы. В ней различаются, однако, две части: ионосфера, простирающаяся от мезосферы до высот порядка тысячи километров, и лежащая над нею внешняя часть - экзосфера, переходящая в земную корону.

Воздух в ионосфере чрезвычайно разрежен. Мы уже указывали, что на высотах 300-750 км его средняя плотность порядка 10-8-10-10 г/м3. Но и при такой малой плотности каждый кубический сантиметр воздуха на высоте 300 км еще содержит около одного миллиарда (109) молекул или атомов, а на высоте 600 км - свыше 10 миллионов (107). Это на несколько порядков больше, чем содержание газов в межпланетном пространстве.

Ионосфера, как говорит само название, характеризуется очень сильной степенью ионизации воздуха - содержание ионов здесь во много раз больше, чем в нижележащих слоях, несмотря на сильную общую разреженность воздуха. Эти ионы представляют собой в основном заряженные атомы кислорода, заряженные молекулы окиси азота и свободные электроны. Их содержание на высотах 100-400 км - порядка 1015-106 на кубический сантиметр.

В ионосфере выделяется несколько слоев, или областей, с максимальной ионизацией, в особенности на высотах 100- 120 км и 200-400 км. Но и в промежутках между этими слоями степень ионизации атмосферы остается очень высокой. Положение ионосферных слоев и концентрация ионов в них все время меняются. Спорадические скопления электронов с особенно большой концентрацией носят название электронных облаков.

От степени ионизации зависит электропроводность атмосферы. Поэтому в ионосфере электропроводность воздуха в общем в 1012 раз больше, чем у земной поверхности. Радиоволны испытывают в ионосфере поглощение, преломление и отражение. Волны длиной более 20 м вообще не могут пройти сквозь ионосферу: они отражаются уже электронными слоями небольшой концентрации в нижней части ионосферы (на высотах 70- 80 км). Средние и короткие волны отражаются вышележащими ионосферными слоями.

Именно вследствие отражения от ионосферы возможна дальняя связь на коротких волнах. Многократное отражение от ионосферы и земной поверхности позволяет коротким волнам зигзагообразно распространяться на большие расстояния, огибая поверхность Земного шара. Так как положение и концентрация ионосферных слоев непрерывно меняются, меняются и условия поглощения, отражения и распространения радиоволн. Поэтому для надежной радиосвязи необходимо непрерывное изучение состояния ионосферы. Наблюдения над распространением радиоволн как раз являются средством для такого исследования.

В ионосфере наблюдаются полярные сияния и близкое к ним по природе свечение ночного неба - постоянная люминесценция атмосферного воздуха, а также резкие колебания магнитного поля - ионосферные магнитные бури.

Ионизация в ионосфере обязана своим существованием действию ультрафиолетовой радиации Солнца. Ее поглощение молекулами атмосферных газов приводит к возникновению заряженных атомов и свободных электронов, о чем говорилось выше. Колебания магнитного поля в ионосфере и полярные сияния зависят от колебаний солнечной активности. С изменениями солнечной активности связаны изменения в потоке корпускулярной радиации, идущей от Солнца в земную атмосферу. А именно корпускулярная радиация имеет основное значение для указанных ионосферных явлений.

Температура в ионосфере растет с высотой до очень больших значений. На высотах около 800 км она достигает 1000°.

Говоря о высоких температурах ионосферы, имеют в виду то, что частицы атмосферных газов движутся там с очень большими скоростями. Однако плотность воздуха в ионосфере так мала, что тело, находящееся в ионосфере, например летящий спутник, не будет нагреваться путем теплообмена с воздухом. Температурный режим спутника будет зависеть от непосредственного поглощения им солнечной радиации и от отдачи его собственного излучения в окружающее пространство. Термосфера находится выше мезосферы на высоте от 90 до 500 км над поверхностью Земли. Молекулы газа здесь сильно рассеянны, поглощают рентгеновское излучение и коротковолновую часть ультрафиолетового излучения. Из-за этого температура может достигать 1000 градусов Цельсия.

Термосфера в основном соответствует ионосфере, где ионизированный газ отражает радиоволны обратно к Земле - это явление дает возможным устанавливать радиосвязь.

Экзосфера

Выше 800-1000 км атмосфера переходит в экзосферу и постепенно в межпланетное пространство. Скорости движения частиц газов, особенно легких, здесь очень велики, а вследствие чрезвычайной разреженности воздуха на этих высотах частицы могут облетать Землю по эллиптическим орбитам, не сталкиваясь между собою. Отдельные частицы могут при этом иметь скорости, достаточные для того, чтобы преодолеть силу тяжести. Для незаряженных частиц критической скоростью будет 11,2 км/сек. Такие особенно быстрые частицы могут, двигаясь по гиперболическим траекториям, вылетать из атмосферы в мировое пространство, "ускользать", рассеиваться. Поэтому экзосферу называют еще сферой рассеяния.

Ускользанию подвергаются преимущественно атомы водорода, который является господствующим газом в наиболее высоких слоях экзосферы.

Недавно предполагалось, что экзосфера, и с нею вообще земная атмосфера, кончается на высотах порядка 2000-3000 км. Но из наблюдений с помощью ракет и спутников создалось представление, что водород, ускользающий из экзосферы, образует вокруг Земли так называемую земную корону, простирающуюся более чем до 20 000 км. Конечно, плотность газа в земной короне ничтожно мала. На каждый кубический сантиметр здесь приходится в среднем всего около тысячи частиц. Но в межпланетном пространстве концентрация частиц (преимущественно протонов и электронов) по крайней мере, в десять раз меньше.

С помощью спутников и геофизических ракет установлено существование в верхней части атмосферы и в околоземном космическом пространстве радиационного пояса Земли, начинающегося на высоте нескольких сотен километров и простирающегося на десятки тысяч километров от земной поверхности. Этот пояс состоит из электрически заряженных частиц - протонов и электронов, захваченных магнитным полем Земли и движущихся с очень большими скоростями. Их энергия - порядка сотен тысяч электрон-вольт. Радиационный пояс постоянно теряет частицы в земной атмосфере и пополняется потоками солнечной корпускулярной радиации.

атмосфера температура стратосфера тропосфера

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода