Вконтакте Facebook Twitter Лента RSS

Устройство фотоаппарата. Пленочные и цифровые фотокамеры

Цифровой фотоаппарат – оптико-механический прибор, с электронным способом регистрации, обработки и хранения цифровых изображений, с помощью которого производится фотосъемка (рис. 23).

Цифровой фотоаппарат состоит из следующих основных частей:

Корпус со светонепроницаемой камерой;

Объектив;

Диафрагма;

Фотографический затвор;

Кнопка спуска – инициирует съёмку кадра;

Видоискатель;

Фокусировочное устройство;

Фотоэкспонометр;

Встроенная фотовспышка;

Элементы питания камеры;

Матрица;

Дисплей;

Органы управления;

Оптический стабилизатор изображения;

Цифровой блок обработки и хранения данных;

Карта памяти.

Рис. 23. Устройство цифрового фотоаппарата

Конструкция современной цифровой камеры имеет много общего с пленочной камерой, поэтому в дальнейшем Мы будем рассматривать лишь те элементы, которые являются уникальными для цифровой фотокамеры или обладают определенной спецификой использования.

Фотографический затвор. Цифровые фотоаппараты могут обладать как механическим затвором так и электронным.

Электронные фотографические затворы представляют собой не отдельное устройство, а принцип дозирования экспозиции цифровой матрицей. Выдержка определяется временем между обнулением матрицы и моментом считывания с нее информации. Применение электронного затвора позволяет достичь более коротких выдержек без использования дорогостоящих высокоскоростных механических затворов. Есть модели фотоаппаратов, в которых используется комбинация механического и электронного затвора. В таких камерах механический затвор используется при длительных выдержках, а электронный – при коротких.

Видоискатель. В настоящее время многие цифровые камеры имеют оптический или электронный видоискатель (электронная система имитирующая видоискатель зеркальной фотокамеры) для быстрой компоновки кадра и жидкокристаллический дисплей, выполняющий несколько функций, для более точного построения композиции, и просмотра результата съемки. Недостатком жидкокристаллического дисплея является невозможность его использования при высокой освещенности, так как в таких условиях информация на дисплее становиться не различима, и как следствие невозможность осуществить кадрирование. На ЖК дисплей в зависимости от режима работы фотокамеры может выводиться также информация об экспозиционных параметрах и др. С помощью ЖК дисплея мы получаем доступ к меню управления настройками камеры.

Матрица (светочувствительная матрица) – специализированная аналоговая или цифро-аналоговая интегральная микросхема, состоящая из светочувствительных элементов (фотосенсоров), выстроенных в ряды и строки (рис. 24). Матрица предназначена для преобразования, спроецированного на неё оптического изображения в аналоговый электрический сигнал или в поток цифровых данных (при наличии АЦП непосредственно в составе матрицы). При проецировании изображения на матрицу, в каждом ее фотосенсоре накапливается электрический заряд, пропорциональный яркости приходящегося на него элемента изображения. Матрица является основным элементом цифровых фотоаппаратов и видеокамер. Применяется в планшетных и проекционных сканерах.



Рис. 24. Матрица цифрового фотоаппарата

Фотосенсор – это устройство, преобразующее световую энергию (фотоны) в энергию электрического заряда (электроны): чем ярче свет, тем больше заряд (рис. 25).

Рис. 25. Схема фрагмента матрицы цифровой фотокамеры: 1 – инфракрасный фильтр;
2 – микролинза; 3 – красный светофильтр пикселя (фрагмент фильтра Байера);
4 – фотосенсор; 5 –кремниевая подложка

С матрицы в фотоаппарат поступает аналоговая информация, которая образуется в результате измерения электрического заряда на фотосенсорах. Далее с помощью аналого-цифрового преобразователя она преобразуется в цифровую форму – двоичный код. Двоичное число – это последовательность 0 и 1, где каждая цифра называется битом информации. Число бит называют глубиной цвета. В цифровой фотографии, как правило двоичные цифры группируются в цепочки из восьми бит – байты. Байт несет информацию о 256 (десятичная система) возможных значений яркости фотосенсора, что соответствует 256 оттенкам серого.

Фотосенсоры фиксируют яркость элемента изображения, не неся ни какой информации о его цвете. Для получения информации о цвете – матрицу фотосенсоров сверху накрывают матрицей миниатюрных светофильтров, каждый из которых пропускает красный, зеленый или синий свет и задерживает остальные, упорядоченных в виде мозаичного узора Байера (рис. 26). При этом преобладает зеленый цвет, что объясняется физиологией восприятия цвета глазом человека наиболее чувствительному к зеленой части спектра. Благодаря наличию светофильтров каждый пиксель (от англ. pixel – pixture element – элемент, из множества, которых строится цифровое изображение) в конкретном месте сенсора способен регистрировать интенсивность только одного из трех основных цветов (рис. 25). Вследствие этого большее количество света, достигающего фотосенсора, теряется. Захватывается только половина приходящего зеленого света, так как каждый ряд содержит только половину зеленых пикселей, а вторую половину составляют синие или красные. Регистрируется 25% красного и синего света. Поскольку большая часть света не регистрируется, светочувствительность матрицы в целом снижается. Фотосенсоры обладают повышенной чувствительностью к инфракрасному диапазону спектра, поэтому кроме цветных фильтров, устанавливают и инфракрасный.

Рис. 26. Фрагмент типичный сенсор состоит из чувствительного массива и последовательности фильтров, упорядоченных в виде мозаичного узора Байера

Большинство матриц цифровых фотоаппаратов захватывают лишь часть изображения, а полное цветное изображение (восстановление цвета каждого пикселя) получается в результате математической обработки (интерполяции) микропроцессором фотокамеры.

Основные технологии матриц цифровых фотоаппаратов

ПЗС – прибор с зарядовой связью (от англ. CCD – charge-coupled device). Приборы с зарядовой связью первоначально создавались как устройства памяти, в которых можно было поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.

ПЗС-матрица – специализированная аналоговая интегральная микросхема, выполненная на основе поликремния, состоящая из светочувствительных элементов (фотодиодов). Фотодиод способен сохранять электрический заряд (эта способность называется емкостью), накапливаемый при ударении фотонов о поверхность сенсора. Перед экспонированием производится сброс всех ранее образовавшихся зарядов и приведение всех элементов устройства в исходное состояние. В процессе экспонирования, в каждом пикселе матрицы, накапливается электрический заряд. Чем интенсивнее световой поток, тем больше накапливается электронов – выше итоговый заряд данного пикселя. После того как отработал фотографический затвор происходит процесс считывания этих зарядов. После аналогово-цифрового преобразования информация обрабатывается микропроцессором камеры.

КМОП – комплементарная структура металл-оксид-полупроводник (от англ. CMOS – Complementary Metal-Oxide Semiconductor). Структуры КМОП обладают чувствительностью к свету. КМОП-матрица – светочувствительная матрица, выполненная на основе КМОП-технологии. В КМОП матрице применяется технология APS (Active Pixel Sensors), которая добавляет к каждому пикселю транзисторный усилитель считывания, позволяя преобразовывать электрический заряд в напряжение и проводить ряд процедур обработки изображения непосредственно в фотосенсоре, реагируя на специфические условия освещенности в момент фотосъемки, что значительно увеличивает быстродействие фотоаппаратов построенных на их основе. Это обеспечило также произвольный доступ к фотодетекторам аналогично реализованному в микросхемах оперативной памяти. С помощью механизма произвольного доступа можно выполнять считывание выбранных групп пикселей – кадрированное считывание. Кадрирование позволяет уменьшить размер захваченного изображения и значительно увеличить скорость считывания по сравнению с ПЗС матрицами. Основные преимущества КМОП технологии – низкое энергопотребление, единство технологии производства с остальными, цифровыми элементами аппаратуры, возможность объединения на одном кристалле аналоговой и цифровой части, что приводит к значительному снижению их себестоимости.

Геометрический размер матрицы и его влияние на изображение.

Геометрический размер матрицы определяет размер изображения – формат кадра. В отличие от фиксированного формата кадра в пленочной фотографии 24×36 мм, размеры матриц современных цифровых фотоаппаратов значительно отличаются друг от друга. Размер матрицы измеряется по диагонали, в долях дюйма (4/3", 2/3", 1/1,8", 1/2,2").

Так как большинство пользователей имеют опыт съемки на пленочные фотоаппараты, оказалось удобным сравнивать объективы пленочных и цифровых камер по углу поля зрения. Для этого было введено понятие эквивалентного фокусного расстояния.

Эквивалентное фокусное расстояние (ЭФР) – фокусное расстояние цифровой камеры, преобразованное в соответствующие значения для 35-миллиметровой пленочной камеры по углу поля зрения. Эквивалентные значения необходимы из-за того, что для цифровых камер размеры датчика и фокусные расстояния объектива не являются стандартизированными, и поэтому преобразование значений важно для сравнения их характеристик. Например, типичный объектив цифровой камеры с фокусным расстоянием 5,8–17,4 мм может дать такое же поле зрения, как и объектив с переменным фокусным расстоянием 38–114 мм для пленочной камеры.

Для сравнения объективов цифровых фотокамер с объективами камер формата 35 мм используется коэффициент преобразования фокусного расстояния – кропфактор.

Кропфактор (K f) отношение диагонали 35 мм кадра (43,2 мм) к диагонали матрицы . Для плёночных фотоаппаратов и полноформатных матриц цифровых фотоаппаратов равен 1. Рассмотрим соотношение между размерами наиболее распространённых типоразмеров матриц цифровых фотоаппаратов со стандартным плёночным кадром (рис. 27).

Рис. 27. Сравнение размеров матриц цифровых фотокамер с кадром 35-мм плёнки.

Геометрический размер матрицы определяет площадь поглощения света и оказывает значительное влияние на многие характеристики изображения шумы, цвета, светочувствительность, ГРИП и т.п.

Отношение сторон кадра

В аналоговой (пленочной) фотографии используется формат кадра 3:2 (36×24 мм).

В цифровой фотографии существуют несколько форматов кадра:

– формат кадра 4:3 (телевизионный формат кадра: PAL, SECAM, NTSC);

– формат кадра 16:9 (телевизионный формат кадра телевидения высокой четкости);

– формат кадра 3:2.

В ряде фотоаппаратов имеется настройка, позволяющая программно изменять формат кадра, что приводит к изменению разрешения снимка (мегапиксели), так как формат кадра определяется геометрическим размером матрицы и соотношением ее сторон.

Формат кадра необходимо учитывать при фотосъемке, в зависимости от предполагаемого дальнейшего использования фотографии.

Устройство зеркальной камеры .

Как могут видеть мир? Что делает снимки резкими в наших камерах? Как вообще работает камера и фиксирует на пленку то что мы хотим сфотографировать? Конечно это вопросы утрированные. Камеры не могут видеть, камеры лишь отображают картинку через механизм фокусировки, которую в свою очередь уже видим мы. Так что давайте разберемся, что есть механизм фокусировки , как работают , каким образом происходит фокусировка на объекте съемки, какие камеры бывают по типу фокусировки и внутреннего устройства, разберемся в устройстве фотоаппаратов , и определим в чем плюсы, и в чем минусы, того или иного варианта устройства фотоаппарата .

Механизм фокусировки, это некое устройство в фотокамере , позволяющее нам правильно определять расстояние до снимаемого нами на камеру объекта. Этот механизм позволяет нам с вами видеть и в последствии фиксировать фотографируемую сцену в резкости на фотоноситель. Я конечно понимаю, что понятие резкость может быть весьма, и весьма, относительным. Тем не менее, при разных установках параметров съемки, именно это устройство в камере дает нам возможность:

    Определить расстояние до объекта

    Оценить масштабность сцены

    Задать правильные параметры съемки, чтоб не пролететь в ГРИП-е (для тех тко не знает что такое ГРИП, ждите следующий выпусков, мы будем рассматривать и это понятие.)

Одним из самых распространенных на сегодняшний день вариантов устройств фотокамер , это механизм зеркальной камеры(или правильней сказать устройство зеркальной камеры) . Да, да, наших с вами зеркалок, которые мы так любим и лелеем.

Итак, что есть зеркальный фотоаппарат? Это в первую очередь, фото камера, в которой объектив видоискателя, и объектив для захвата изображения один и тот же. Ниже я выкладываю рисунок, посредством которого, очень легко понять, по какому принципу устроены все зеркальные . При всем при этом, стоит отметить так же и тот факт, что с момента создания первого устройство фотоаппарата , его принципиальная схема ни как не изменилась. Свет проходит через отверстие, масштабируется и попадает на светочувствительный элемент внутри устройства фотоаппарата . Все блоки пропускающие свет к фотоносителю остались теми же. Единственным исключением стала замена фотопленки на цифровую фотоматрицу.

Итак по пунктам:

    Свет проходит через объектив устройства фотокамеры.

    После диафрагмы свет достигает зеркала, где по закону отражения уходит дальше.

    От зеркала свет отражаясь попадает через информационный экран (хотя он бывает не во всех зеркалках) в пентапризму.

    В пентапризме, отразившись о ее грани свет находит выход и попадает на линзу видоискателя, где мы собственно его видим нашим глазом.

(а вот вам картинка для прицельно общего представления устройства фотоаппарата зеркального )

Ну а теперь немного отличий пленочного и цифрового устройства зеркальных фотоаппаратов :

    Первое и самое что называется на виду лежащее, это носитель. В цифровой камере, это матрица электронная, а в пленочной — соответственно пленка.

    Второе, на сегодняшний день не настолько явное, но имеющее место быть в большинстве случаев, это площадь фотоносителя. В большинстве любительских и продвинутых, но не профессиональных камер, площадь матрицы существенно меньше, чем площадь пленочного кадра.

    Цифровой фотоаппарат позволяет после сделанного снимка, сразу его поглядеть и оценить, устройство пленочной камеры - зеркальной, этого сделать не позволяет, поскольку пленка это лишь носитель и одна из нескольких ступеней получения изображения кадра.

    Еще одним явным отличием, назову то, что большинство пленочных моделей зеркальных камер, это исключительно механические устройства, а вот камера цифровая работает за счет электропитания.

    Пункт из опыта съемки, на пленочный носитель, кадр лучше переэкспонировать, а вот для цифрового фотоаппарата, лучше будет недоэкспонированный кадр.

Ну что же, по устройству зеркальных камер пожалуй и все. В следующей части статьи мы рассмотрим устройство дальномерных камер.

P.S. Друзья, если статья понравилась вам или стала вам полезной. Сделайте и мне взаимное добро. Поделитесь ссылкой на статью на своих страничках «Вконтакте», «Одноклассниках», «Facebook», «Tweeter» и других страничках. Для этого нужно всего лишь нажать кнопки внизу страницы и следовать простым шагам инструкции. Так же приглашаю вас подписаться на мою рассылку, тогда вы точно не пропустите следующую, надеюсь интересную и полезную, статью. Форма подписки находится в верхнем правом углу страницы.

Каждый момент этой жизни бесценен вне зависимости от того грустный он или весёлый. Потому что это и есть жизнь. И нужно наслаждаться этими самыми моментами. Проблема лишь в том, что мы не настолько знаем свой мозг, чтобы уместить в нем все воспоминания. Но человек и вечный двигатель прогресса - лень, сделали такую чудо-штуку как фотоаппарат. А что же это такое. В моём понимании - это есть некое устройство, позволяющее выбирать и фиксировать на каком-либо носителе выбранное изображение, план местности, проекцию пространства - как угодно называйте.

Итак, носители есть разные, и в зависимости от его типа происходит первое деление в классификации фотоаппаратов.
Итак это плёночные и цифровые (возможно есть еще и другие)

В плёночных фотоаппаратах носителем инф-ции является плёнка. Плёнка - это кусок пластика(полиэстер, нитрат или ацетат целлюлозы) и нанесённая на него фотоэмульсия. Фотоэмульсия - это химический состав, который обладает светочувствитльностью. То есть в зависимости от степени освещения(то бишь от величины потока электро-магнитной волны) изменяет свои свойства, образуя скрытое изображение. Его потом преобразуют в явное. Фотоэмульсия состоит из галогенидов серебра в растворе защитного коллоида.

В цифровых фотоаппаратах изображение попадает на матрицу. Матрица - это интегральная микросхема с фотодиодами. Фотодиоды преобразуют свет в цифровой сигнал.

Одна из основных составляющих частей камеры - видоискатель. Видоискатель позволяет вам «прицеливаться» на объект съёмки. По типу видоискателя фотоаппараты условно делят на зеркальные, псевдозеркальные и «мыльницы „. У мыльниц в качестве видоискателя выступает маленький экран на задней стороне. Псевдозеркальные - те же мыльницы, но с расширенным количеством функций, внешним видом, напоминающим зеркалку и дыркой над экраном - глазком для прицеливания(кстати в глазке тоже экран). В отличии от зеркальных не имеют собственно зеркала и призмы, управление в основном электронное, размер матрицы небольшой, поэтому идет больше шумов. Но по сравнению с мыльницами имеют хорошую оптику, позволяют вручную настраивать параметры съемки.

Устройство зеркального фотоаппарата

Итак, основные элемненты цифровой зеркальной камеры(далее ЦЗК) приведены на следующем рисунке:

Ингридиенты:

1. Объектив. То что ловит и пропускает через систему линз изображение.
2. Собственно зеркало. Здесь оно показано в положении т.н. визирования, т.е. когда мы ловим объект.
3. Затвор. То что закрывает матрицу
4. Матрица. Светочувствительный материал
5. Зеркало(еще одно). Здесь оно в положении фотографирования
6. Линза видоискателя.
7. Пентапризма.
8. Окуляр видоискателя

Точечной линией показано, как идет изображение в положении визирования. Сначала свет проходит через систему линз объектива. Попадая в корпус камеры он отражается от зеркала(2), и идет через матовую линзу в пентапризму(7). Пентапризма(7) делает переворот изображения в его естественное(для нас) положение. Если бы не пентапрзма, то в окуляре видоискателя мы бы видели изображение вверх ногами.
Когда мы прицелились на объект и нажимаем кнопокочку съемки, то происходит следующее: Зеркало(2) убирается, затвор(3) поднимается(сворачивается, телепортируется - нужное подчеркнуть) на время выдержки и свет идет прямёхонько на матрицу, которая в течении времени выдержки облучается светом и формирует изображение.

История развития фототехники привела к тому, что были выработаны определённые стандарты на интерфейс между фотографом и используемой им фототехникой. В результате цифровые фотоаппараты в большинстве своих внешних черт и органах управления повторяют наиболее совершенные модели плёночной техники. Принципиальное различие оказывается в «начинке» аппарата, в технологиях фиксации и последующей обработке изображения.

Основные элементы цифрового фотоаппарата

  • Матрица
  • Объектив
  • Затвор
  • Видеоискатели
  • Процессор
  • Дисплей
  • Вспышка

Устройство зеркального фотоаппарата

Зеркальный цифровой фотоаппарат - это фотоаппарат, в котором объектив видоискателя и объектив для захвата изображения один и тот же, также в фотоаппарате используется цифровая матрица для записи изображения. В не зеркальном фотоаппарата в видоискатель попадает изображение из отдельного маленького объектива, чаще всего находящийся над основным. Отличие также имеется и от обычного устройства фотоаппарата (мыльницы), где отображается на экране изображение, попадающее непосредственно на матрицу.

В обычном устройстве зеркального цифрового фотоаппарата свет проходит через объектив (1). Затем он достигает диафрагмы, которая регулирует его количество (2), затем свет доходит до зеркала в устройстве зеркального цифрового фотоаппарата, отражается и проходит через призму (4), чтобы перенаправить его в видоискатель (5). Информационный экран добавляет к изображению дополнительную информацию о кадре и экспозиции (зависит от модели фотокамеры). В момент, когда происходит фотографирование, зеркало устройства фотоаппарата (6) поднимается, открывается затвор фотоаппарата (7). В этот момент свет попадает прямо на матрицу фотоаппарата и происходит экспонирование кадра - фотографирование. Затем закрывается затвор, обратно опускается зеркало, и фотоаппарат готов к следующему снимку. Необходимо понимать, что весь этот сложный процесс внутри происходит за доли секунды.

C самого создания первого устройство фотоаппарата, основная схема работы его почти не изменилась. Свет проходит через отверстие, масштабируется и попадает на светочувствительный элемент внутри устройства фотоаппарата. Будь это пленочной камерой или зеркальной цифровой фотокамерой. Рассмотрим основные отличая зеркального фотоаппарата от не зеркального. Как вы могли догадаться главное отличие в наличии специального зеркала. Это зеркальце позволяет фотографу видеть в видоискателе абсолютно такую же картинку, которая попадает на плёнку или матрицу.

Механизм работы цифрового фотоаппарата довольно сложен для неподготовленного читателя, но все-таки кратко опишем его: до нажатия клавиши затвора в зеркальных фотоаппаратах между объективом и матрицей расположено зеркало, отражаясь от которого, свет попадает в видоискатель. В незеркальных фотоаппаратах и зеркальных фотоаппаратах в режиме Live View свет из объектива падает на матрицу, при этом на ЖК экран выводится изображение, сформированное на матрице. В некоторых фотоаппаратах при этом может происходить автоматическая фокусировка. При неполном нажатии клавиши затвора (если такой режим предусмотрен) происходит выбор всех автоматически выбираемых параметров съёмки (фокусировка, определение экспопары, чувствительности фотоматериала (ISO) и т. д.). При полном нажатии происходит съёмка кадра, и считывание информации с матрицы во встроенную память фотоаппарата (буфер). Далее производится обработка полученных данных процессором с учётом установленных параметров коррекции экспозиции, ISO, баланса белого и др., после чего данные сжимаются в формат JPEG и сохраняются на флэш-карту. При съёмке в формат RAW данные сохраняются на флэш-карту без обработки процессором (возможна коррекция битых пикселей и сжатие алгоритмом без потерь). Так как запись на флэш-карту изображения занимает достаточно большое количество времени, многие фотоаппараты позволяют снимать следующий кадр до окончания записи предыдущего на флэш-карту, если в буфере есть свободное место.

Отличие устройства зеркального цифрового фотоаппарата от пленочного зеркального фотоаппарата?

1. Первое отличие очевидно: в цифровом зеркальном фотоаппарате используется электроника для записи изображения на карту памяти, в то время как устройство пленочного зеркального фотоаппарата захватывает изображение на пленку.

2. Второе отличие между цифровым и пленочным зеркальным фотоаппаратом в том, что большинство цифровых зеркальных фотоаппаратов записывают изображение на поверхность матрицы, которая по площади меньше, чем кадр в пленочной зеркалке.

3. Устройство цифрового фотоаппарата позволяет фотографу увидеть изображение сразу после съемки.

4. Более старые модели пленочных фотокамер не требуют электрического питания. Они полностью состоят из механики. А цифровым зеркальным фотоаппаратам необходимы батарейки или аккумуляторы.

5. При съёмке на пленку лучше немного переэкспонировать кадр, но для цифрового фотоаппарата лучше немного недоэкспонировать кадр.

6. Независимо от того, цифровой фотоаппарат или пленочный, оба типа фото камер имеют огромные возможности по смене объективов, пультов дистанционного управление, вспышек, элементов питания и других аксессуаров.

Сегодня мы не представляем свою жизнь без фотографий. Они окружают нас сплошь и рядом. Сделать фото - элементарная задача для современного человека. Но когда-то об этом могли только мечтать. Давайте узнаем, какой была история фотоаппарата начиная от первых задумок инженеров и заканчивая современными технологиями.

Человека всегда привлекало прекрасное. Однажды он захотел описать его, придать ему форму. В поэзии прекрасное обрело форму слова, в музыке - звука, а в живописи - изображения. Единственное что не смог запечатлеть человек - мгновение. К примеру, поймать раскаты грозы, рассекающие небо, или разбивающуюся каплю. С появлением фотоаппарата это и много другое стало возможным. История развития фотоаппарата включает в себя множество попыток изобретений устройств, регистрирующих изображение. Она начинается давным-давно, когда изучая оптику математики заметили, что изображение можно перевернуть, пропустив его через небольшое отверстие, в темную комнату. Рассмотрим наиболее значимые события, повлиявшие на историю фотоаппарата.

Законы Кеплера

А вы знаете, когда началась история фотоаппарата? Первые технологии, которые позже стали применяться для создания фотографий, появились в 1604 году, когда Йоганн Кеплер - немецкий астроном - установил света в зеркале. Впоследствии на них была основана теория линз, по которым Галилео Галилей - итальянский физик - создал первый в мире телескоп для наблюдения небесных тел. Принцип преломления лучей был установлен и изучен. Осталось научиться регистрировать полученное изображение на бумаге.

Открытие Ньепса

Практически через два столетия, в 20-х годах 19 века, французский изобретатель Жозеф Нисефор Ньепс открыл способ регистрации изображения. Многие считают, что именно с этого момента началась история возникновения фотоаппарата. Суть способа состояла в обработке попадающего света асфальтовым лаком и сохранении его на стеклянной поверхности. Этот лак представлял нечто похожее на современный битум, а стекло называлось камерой-обскурой. С помощью этого метода, изображение приобретало форму и становилось видимым. Это был первый случай в истории, когда картина рисовалась не художником, а преломленными лучами света.

Новое качество снимка от Тальбота

Изучая камеру-обскуру Ньепса, английский физик Уильям Тальбот добился улучшения качества изображения с помощью негатива - изобретенного им отпечатка фотографии. Произошло это в 1835 году. Данное открытие позволило не только делать фото нового качества, но и копировать их. На своем первом фото Тальбот запечатлел окно своего дома. Изображение четко передает очертание окна и рамы. В своем докладе, написанном немного позже, Тальбот назвал фотографию миром прекрасного. Именно он заложил основу принципа, который использовался для печати фотографий еще долгие годы.

Изобретение Сэттона

В 1861 году английский фотограф Т. Сэттон разработал фотоаппарат, у которого был единый зеркальный объектив. Фотоаппарат состоял из штатива и крупного ящика, на верхней стороне которого была специальная крышка. Уникальность крышки заключалась в том, что она не пропускала свет, но через нее можно было смотреть. Объектив регистрировал фокус на стекле, которое с помощью зеркал формировало изображение. По большому счету, это был первый фотоаппарат. История дальнейшего развития фотографии развивалась более динамично.

«Кодак»

Популярный нынче бренд «Кодак» впервые заявил о себе в 1889 году, когда Джордж Истман запатентовал первую рулонную фотопленку, а затем и фотокамеру, сконструированную специально под эту пленку. В результате появилась крупная корпорация «Кодак». Интересно отметить, что название «Кодак» не несет какой-либо смысловой нагрузки. Истман просто хотел придумать слово, которое начиналось бы и заканчивалось на одну и ту же букву.

Пластины для фото

В 1904 году торговая марка Lumiere наладила выпуск пластин для цветных фотографий. Они стали прообразом современного снимка.

Фотоаппараты Leica

В 1923 году появился фотоаппарат, который работал с 35-миллиметровой пленкой. Появилась возможность просматривать негативы и выбирать для печати лучшие из них. Спустя два года в массовое производство запустились фотоаппараты Leica. В 1935 году появилась модель Leica 2, которая оснащалась видоискателем, мощной фокусировкой, и могла совмещать две картинки в одну. А версия Leica 3 также позволяла регулировать длительность выдержки. Долгое время модели Leica были неотъемлемым атрибутом в фотографическом искусстве.

Цветные пленки

В 1935 году компания Kodak начала выпускать цветную пленку «Кодакхром». После печати такую пленку нужно было отдавать на доработку, во время которой и накладывались цветные компоненты. Через семь лет проблема была решена. В результате пленка «Кодакколор» на ближайшие полвека стала одной из наиболее часто применяемых в профессиональной и любительской фотосъемке.

Фотокамера «Полароид»

В 1963 году история фотоаппарата получила новый вектор. Фотокамера «Полароид» перевернула представление о быстрой печати фото. Камера позволяла печатать фото сразу после того, как оно было сделано. Нужно было лишь нажать на кнопку и подождать пару минут. За это время фотоаппарат прорисовывал на чистом отпечатке контуры картинки, а затем полную гамму цветов. На ближайшие 30 лет, фотоаппараты «Полароид» обеспечили себе первенство на рынке. Спад популярности этих моделей начался лишь в годы, когда зарождалась эпоха цифрового фото.

В 70-х фотоаппараты начали снабжать экспонометром, автоматической фокусировкой, встроенной вспышкой и автоматическими режимами съемки. В 80-х некоторые модели уже оборудовались жидкокристаллическими дисплеями, на которые выводились настройки и режимы аппарата. История цифрового фотоаппарата начиналась примерно тогда же.

Эпоха цифрового фото

В 1974 году, благодаря электронному астрономическому телескопу, удалось сделать первое цифровое фото звездного неба. А в 1980-м компания Sony запустила выпуск цифровой фотокамеры Mavica. Видео, снятое на нее, записывалось на гибкий флоппи-диск. Его можно было бесконечно очищать для новой записи. В 1988 году вышла первая модель цифрового аппарата от компании Fujifilm. Аппарат получил название Fuji DS1P. Фотографии, сделанные на него, сохранялись в цифровом виде на электронный носитель.

В 1991 году фирма Kodak создала цифровую зеркальную камеру, которая имела 1,3 мегапикселя разрешения и ряд функций, позволяющий делать с нее профессиональные цифровые снимки. А фирма Canon в 1994 году снабдила свои фотоаппараты системой оптической стабилизации изображения. Вслед за Canon от пленочных моделей отказалась и фирма Kodak. Произошло это в 1995 году. Дальнейшая история фотоаппарата развивалась еще динамичнее, хотя принципиально важных разработок больше не было. А вот что было, так это уменьшение габаритов и стоимости при увеличении функциональности. Именно от удачного сочетания этих характеристик и зависит сегодня успешность компании на рынке.

2000-е

Корпорации Samsung и Sony, которые развиваются на базе цифровых технологий, поглотили львиную долю рынка цифровых фотоаппаратов. Любительские модели преодолели границу в 3 мегапикселя разрешения и стали соперничать с профессиональной техникой по Несмотря на стремительное развитие цифровых технологий - распознавание лица и улыбки в кадре, устранение эффекта «красных» глаз, многократное зумирование и прочие функции, - цена на фототехнику стремительно падает. Телефоны, снабженные камерой и цифровым зумом, начали противостоять фотоаппаратам. Пленочные аппараты уже мало кого интересуют, а аналоговые фотографии начали цениться как раритет.

Как устроен фотоаппарат?

Теперь мы с вами знаем, из каких этапов состояла история фотоаппарата. Кратко рассмотрев ее, познакомимся с устройством фотоаппарата поближе.

Пленочный фотоаппарат работает следующим образом: проходя через диафрагму объектива, свет вступает в реакцию с пленкой, покрытой химическими элементами, и сохраняется на ней. Корпус не пропускает свет, равно как и крышка пленкодержателя. В фильмовом канале, пленка перематывается после каждого снимка. Объектив состоит из нескольких линз, которые позволяют менять фокусировку. В профессиональном объективе, кроме линз, устанавливаются также зеркала. Яркость оптического изображения регулируется с помощью диафрагмы. С помощью затвора приоткрывается шторка, закрывающая пленку. От того, насколько долго затвор находится в открытом положении, зависит экспозиция фотографии. В случае если объект недостаточно освещен, применяется вспышка. Она состоит из газоразрядной лампы, при мгновенном разряжении которой можно получить свет, превышающий по яркости свет тысячи свечей.

Цифровой фотоаппарат на стадии прохождения света через объектив работает также как и пленочный. Но после того как изображение преломляется через оптическую систему, оно преобразуется в цифровую информацию на матрице. От разрешения матрицы зависит качество снимка. После нее перекодированная картинка сохраняется в цифровом виде на носителе информации. Корпус такого фотоаппарата аналогичен пленочному, но в нем отсутствует фильмовой канал и место под катушку с пленкой. В этой связи габариты цифрового фотоаппарата гораздо меньше. Привычным атрибутом для современных цифровых моделей является ЖК-дисплей. Он, с одной стороны, служит видоискателем, а с другой - позволяет осуществлять удобную навигацию по меню и видеть результат фокусировки.

Объектив цифрового аппарата также состоит из линз или зеркал. В любительских камерах он может быть небольшим, но функциональным. Главным элементом цифрового фотоаппарата является матрица-сенсор. Она представляет собой небольшую пластинку с проводниками, которая формирует качество картинки. За все функции цифровой камеры отвечает микропроцессор.

Заключение

Сегодня мы узнали, из каких этапов состояла увлекательная история фотоаппарата. Фотографии сегодня никого не удивляют, но были времена, когда они считались настоящим чудом инженерной мысли. Сейчас фото делается за считанные секунды, а раньше на это уходил дни.

История создания фотоаппарата с появлением цифровых камер получила новую веху развития. Если раньше фотограф вынужден был идти на всякие ухищрения чтобы получился красивый снимок, то теперь за это отвечает богатое на функции программное обеспечение фотоаппарата. Кроме того, любое цифровое фото можно дополнительно отредактировать на компьютере. Создатели первых фотоаппаратов о таком даже не мечтали.

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода