Вконтакте Facebook Twitter Лента RSS

Модели строения атома. Схема строения атома: ядро, электронная оболочка

Урок посвящен формированию представлений о сложном строении атома. Рассматривается состояние электронов в атоме, вводятся понятия «атомная орбиталь и электронное облако», формы орбиталей (s--, p-, d-орбитали). Также рассматриваются такие аспекты, как максимальное число электронов на энергетических уровнях и подуровнях, распределение электронов по энергетическим уровням и подуровням в атомах элементов первых четырех периодов, валентные электроны s-, p- и d-элементов. Приводится графическая схема строения электронных слоев атомов (электронно-графическая формула).

Тема: Строение атома. Периодический закон Д.И. Менделеева

Урок: Строение атома

В переводе с греческого языка, слово «атом» означает «неделимый». Однако, были открыты явления, которые демонстрируют возможность его деления. Это испускание рентгеновских лучей, испускание катодных лучей, явление фотоэффекта, явление радиоактивности. Электроны, протоны и нейтроны - это частицы, из которых состоит атом. Они называются субатомными частицами.

Табл. 1

Кроме протонов, в состав ядра большинства атомов входят нейтроны , не несущие никакого заряда. Как видно из табл. 1, масса нейтрона практически не отличается от массы протона. Протоны и нейтроны составляют ядро атома и называются нуклонами (nucleus - ядро). Их заряды и массы в атомных единицах массы (а.е.м.) показаны в таблице 1. При расчете массы атома массой электрона можно пренебречь.

Масса атома (массовое число) равна сумме масс, составляющих его ядро протонов и нейтронов. Массовое число обозначается буквой А . Из названия этой величины видно, что она тесно связана с округленной до целого числа атомной массой элемента. A = Z + N

Здесь A - массовое число атома (сумма протонов и нейтронов), Z - заряд ядра (число протонов в ядре), N - число нейтронов в ядре. Согласно учению об изотопах, понятию «химический элемент» можно дать такое определение:

Химическим элементом называется совокупность атомов с одинаковым зарядом ядра.

Некоторые элементы существуют в виде нескольких изотопов . «Изотопы» означает «занимающий одно и тоже место». Изотопы имеют одинаковое число протонов, но отличаются массой, т. е. числом нейтронов в ядре (числом N). Поскольку нейтроны практически не влияют на химические свойства элементов, все изотопы одного и того же элемента химически неотличимы.

Изотопами называются разновидности атомов одного и того же химического элемента с одинаковым зарядом ядра (то есть с одинаковым числом протонов), но с разным числом нейтронов в ядре.

Изотопы отличаются друг от друга только массовым числом. Это обозначается либо верхним индексом в правом углу, либо в строчку: 12 С или С-12. Если элемент содержит несколько природных изотопов, то в периодической таблице Д.И. Менделеева указывается, его средняя атомная масса с учетом распространённости. Например, хлор содержит 2 природных изотопа 35 Cl и 37 Cl, содержание которых составляет соответственно 75% и 25%. Таким образом, атомная масса хлора будет равна:

А r (Cl )=0,75 . 35+0,25 . 37=35,5

Для тяжёлых искусственно-синтезированных атомов приводится одно значение атомной массы в квадратных скобках. Это атомная масса наиболее устойчивого изотопа данного элемента.

Основные модели строения атома

Исторически первой в 1897 году была модель атома Томсона.

Рис. 1. Модель строения атома Дж. Томсона

Английский физик Дж. Дж. Томсон предположил, что атомы состоят из положительно заряженной сферы, в которую вкраплены электроны (рис. 1). Эту модель образно называют «сливовый пудинг», булочка с изюмом (где «изюминки» - это электроны), или «арбуз» с «семечками» - электронами. Однако от этой модели отказались, т. к. были получены экспериментальные данные, противоречащие ей.

Рис. 2. Модель строения атома Э. Резерфорда

В 1910 году английский физик Эрнст Резерфорд со своими учениками Гейгером и Марсденом провели эксперимент, который дал поразительные результаты, необъяснимые с точки зрения модели Томсона. Эрнст Резерфорд доказал на опыте, что в центре атома имеется положительно заряженное ядро (рис. 2), вокруг которого, подобно планетам вокруг Солнца, вращаются электроны. Атом в целом электронейтрален, а электроны удерживаются в атоме за счет сил электростатического притяжения (кулоновских сил). Эта модель имела много противоречий и главное, не объясняла, почему электроны не падают на ядро, а также возможность поглощения и излучения им энергии.

Датский физик Н. Бор в 1913 году, взяв за основу модель атома Резерфорда, предложил модель атома, в которой электроны-частицы вращаются вокруг ядра атома примерно так же, как планеты обращаются вокруг Солнца.

Рис. 3. Планетарная модель Н. Бора

Бор предположил, что электроны в атоме могут устойчиво существовать только на орбитах, удаленных от ядра на строго определенные расстояния. Эти орбиты он назвал стационарными. Вне стационарных орбит электрон существовать не может. Почему это так, Бор в то время объяснить не мог. Но он показал, что такая модель (рис. 3) позволяет объяснить многие экспериментальные факты.

В настоящее время для описания строения атома используется квантовая механика. Это наука, главным аспектом в которой является то, что электрон обладает свойствами частицы и волны одновременно, т. е. корпускулярно-волновым дуализмом. Согласно квантовой механике, область пространства, в которой вероятность нахождения электрона наибольшая, называется орбиталью. Чем дальше электрон находится от ядра, тем меньше его энергия взаимодействия с ядром. Электроны с близкими энергиями образуют энергетический уровень. Число энергетических уровней равно номеру периода , в котором находится данный элемент в таблице Д.И. Менделеева. Существуют различные формы атомных орбиталей. (Рис. 4). d-орбиталь и f-орбиталь имеют более сложную форму.

Рис. 4. Формы атомных орбиталей

В электронной оболочке любого атома ровно столько электронов, сколько протонов в его ядре, поэтому атом в целом электронейтрален. Электроны в атоме размещаются так, чтобы их энергия была минимальной. Чем дальше электрон находится от ядра, тем больше орбиталей и тем сложнее они по форме. На каждом уровне и подуровне может помещаться только определенное количество электронов. Подуровни, в свою очередь, состоят из одинаковых по энергии орбиталей .

На первом энергетическом уровне, наиболее близком к ядру, может существовать одна сферическая орбиталь (1 s ). На втором энергетическом уровне - сферическая орбиталь, большая по размеру и три р-орбитали: 2 s 2 ppp . На третьем уровне: 3 s 3 ppp 3 ddddd .

Кроме движения вокруг ядра, электроны обладают еще движением, которое можно представить, как их движение вокруг собственной оси. Это вращение называется спином (в пер. с англ. «веретено»). На одной орбитали могут находиться лишь два электрона, обладающих противоположными (антипараллельными) спинами.

Максимальное число электронов на энергетическом уровне определяется по формуле N =2 n 2.

Где n - главное квантовое число (номер энергетического уровня). См. табл. 2

Табл. 2

В зависимости от того, на какой орбитали находится последний электрон, различают s -, p -, d -элементы. Элементы главных подгрупп относятся к s -, p -элементам. В побочных подгруппах находятся d -элементы

Графическая схема строения электронных слоев атомов (электронно-графическая формула).

Для описания расположения электронов на атомных орбиталях используют электронную конфигурацию. Для её написания в строчку пишутся орбитали в условных обозначениях (s- -, p -, d-, f -орбитали), а перед ними - числа, обозначающие номер энергетического уровня. Чем больше число, тем дальше электрон находится от ядра. В верхнем регистре, над обозначением орбитали, пишется количество электронов, находящихся на данной орбитали (Рис. 5).

Рис. 5

Графически распределение электронов на атомных орбиталях можно представить в виде ячеек. Каждая ячейка соответствует одной орбитали. Для р-орбитали таких ячеек будет три, для d-орбитали - пять, для f-орбитали - семь. В одной ячейке может находиться 1 или 2 электрона. Согласно правилу Гунда , электроны распределяются на одинаковых по энергии орбиталях (например, на трех p-орбиталях) сначала по одному, и лишь когда в каждой такой орбитали уже находится по одному электрону, начинается заполнение этих орбиталей вторыми электронами. Такие электроны называют спаренными. Объясняют это тем, что в соседних ячейках электроны меньше отталкиваются друг от друга, как одноименно заряженные частицы.

См. рис. 6 для атома 7 N.

Рис. 6

Электронная конфигурация атома скандия

21 Sc : 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 4 s 2 3 d 1

Электроны внешнего энергетического уровня называются валентными. 21 Sc относится к d -элементам.

Подведение итога урока

На уроке было рассмотрено строение атома, состояние электронов в атоме, введено понятие «атомная орбиталь и электронное облако». Учащиеся узнали, что такое форма орбиталей (s -, p -, d -орбитали), каково максимальное число электронов на энергетических уровнях и подуровнях, распределение электронов по энергетическим уровням, что такое s -, p - и d -элементы. Приведена графическая схема строения электронных слоев атомов (электронно-графическая формула).

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - 14-е изд. - М.: Просвещение, 2012.

2. Попель П.П. Химия: 8 кл.: учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С.Кривля. - К.: ИЦ «Академия», 2008. - 240 с.: ил.

3. А.В. Мануйлов, В.И. Родионов. Основы химии. Интернет-учебник.

Домашнее задание

1. №№5-7 (с. 22) Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - 14-е изд. - М.: Просвещение, 2012.

2. Напишите электронные формулы для следующих элементов: 6 C, 12 Mg, 16 S, 21 Sc.

3. Элементы имеют следующие электронные формулы: а) 1s 2 2s 2 2p 4 .б) 1s 2 2s 2 2p 6 3s 2 3p 1 . в) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 . Какие это элементы?

Вопросы:

2 . Какие модели строения атома вы знаете?
3 . Из курса физики вспомните, как физические явления интерференции и дифракции (что это такое?) доказывают двойственную природу частиц микромира.

4 . Из каких частиц состоит атомное ядро? Что такое изотопы? Запишите символы изотопов хлора, калия и аргона. Почему свойства различных изотопов одного и того же элемента идентичны, хотя их относительная атомная масса различна?

5 . Как устроена электронная оболочка атома? Что такое энергетический уровень (электронный слой) атома? Что представляет собой электронная орбиталь? Какие орбитали вам известны?

7 . Как заполняются энергетические уровни и электронные орбитали у атомов химических элементов главных и побочных подгрупп таблицы Д. И. Менделеева? В чем сходство и различие в строении атомов элементов главных и побочных подгрупп одной группы?
8 . Запишите электронные конфигурации атомов элементов, имеющих порядковые номера б, 15, 20, 25 в Периодической системе Д. И. Менделеева. К каким электронным семействам относят эти элементы?

Ответы:




Первая модель строения атома была предложена Дж. Томсоном в 1904 г., согласно которой атом – положительно заряженная сфера с вкрапленными в нее электронами. Несмотря на свое несовершенство томсоновская модель позволяла объяснить явления испускания, поглощения и рассеяния света атомами, а также установить число электронов в атомах легких элементов.

Рис. 1. Атом, согласно модели Томсона. Электроны удерживаются внутри положительно заряженной сферы упругими силами. Те из них, которые находятся на поверхности, могут легко «выбиваться» , оставляя ионизированный атом.

    1. 2.2 Модель Резерфорда

Модель Томсона была опровергнута Э. Резерфордом (1911 г.), который доказал, что положительный заряд и практически вся масса атома сконцентрированы в малой части его объема – ядре, вокруг которого двигаются электроны (рис. 2).

Рис. 2. Эта модель строения атома известна как планетарная, т. к. электроны вращаются вокруг ядра подобно планетам солнечной системы.

Согласно законам классической электродинамики, движение электрона по окружности вокруг ядра будет устойчивым, если сила кулоновского притяжения будет равна центробежной силе. Однако, в соответствии с теорией электромагнитного поля, электроны в этом случае должны двигаться по спирали, непрерывно излучая энергию, и падать на ядро. Однако атом устойчив.

К тому же при непрерывном излучении энергии у атома должен наблюдаться непрерывный, сплошной спектр. На самом деле спектр атома состоит из отдельных линий и серий.

Таким образом, данная модель противоречит законам электродинамики и не объясняет линейчатого характера атомного спектра.

2.3. Модель Бора

В 1913 г. Н. Бор предложил свою теорию строения атома, не отрицая при этом полностью предыдущие представления. В основу своей теории Бор положил два постулата.

Первый постулат говорит о том, что электрон может вращаться вокруг ядра только по определенным стационарным орбитам. Находясь на них, он не излучает и не поглощает энергию (рис.3).

Рис. 3. Модель строения атома Бора. Изменение состояния атома при переходе электрона с одной орбиты на другую.

При движении по любой стационарной орбите запас энергии электрона (Е 1, Е 2 …) остается постоянным. Чем ближе к ядру расположена орбита, тем меньше запас энергии электрона Е 1 ˂ Е 2 …˂ Е n . Энергия электрона на орбитах определяется уравнением:

где m – масса электрона, h – постоянная Планка, n – 1, 2, 3… (n=1 для 1-ой орбиты, n=2 для 2-ой и т.д.).

Второй постулат говорит о том, что при переходе с одной орбиты на другую электрон поглощает или выделяет квант (порцию) энергии.

Если подвергнуть атомы воздействию (нагреванию, облучению и др.), то электрон может поглотить квант энергии и перейти на более удаленную от ядра орбиту (рис. 3). В этом случае говорят о возбужденном состоянии атома. При обратом переходе электрона (на более близкую к ядру орбиту) энергия выделяется в виде кванта лучистой энергии – фотона. В спектре это фиксируется определенной линией. На основании формулы

,

где λ – длина волны, n = квантовые числа, характеризующие ближнюю и дальнюю орбиты, Бор рассчитал длины волн для всех серий в спектре атома водорода. Полученные результаты соответствовали экспериментальным данным. Стало ясным происхождение прерывистых линейчатых спектров. Они – результат излучения энергии атомами при переходе электронов из возбужденного состояния в стационарное. Переходы электронов на 1-ю орбиту образуют группу частот серии Лаймана, на 2-ю – серию Бальмера, на 3-ю серию Пашена (рис. 4,табл. 1).

Рис. 4. Соответствие между электронными переходами и спектральными линиями атома водорода.

Таблица 1

Проверка формулы Бора для серий водородного спектра

Однако, теория Бора не смогла объяснить расщепление линий в спектрах многоэлектронных атомов. Бор исходил из того, что электрон – это частица, и использовал для описания электрона законы, характерные для частиц. Вместе с тем накапливались факты, свидетельствующие о том, что электрон способен проявлять и волновые свойства. Классическая механика оказалась не в состоянии объяснить движение микрообъектов, обладающих одновременно свойствами материальных частиц и свойствами волны. Эту задачу позволила решить квантовая механика – физическая теория, исследующая общие закономерности движения и взаимодействия микрочастиц, обладающих очень малой массой (табл. 2).

Таблица 2

Свойства элементарных частиц, образующих атом

Химическими веществами называют то, из чего состоит окружающий нас мир.

Свойства каждого химического вещества делятся на два типа: это химические, которые характеризуют его способность образовывать другие вещества, и физические, которые объективно наблюдаются и могут быть рассмотрены в отрыве от химических превращений. Так, например, физическими свойствами вещества являются его агрегатное состояние (твердое, жидкое или газообразное), теплопроводность, теплоемкость, растворимость в различных средах (вода, спирт и др.), плотность, цвет, вкус и т.д.

Превращения одних химических веществ в другие вещества называют химическими явлениями или химическими реакциями. Следует отметить, что существуют также и физические явления, которые, очевидно, сопровождаются изменением каких-либо физических свойств вещества без его превращения в другие вещества. К физическим явлениям, например, относятся плавление льда, замерзание или испарение воды и др.

О том, что в ходе какого-либо процесса имеет место химическое явление, можно сделать вывод, наблюдая характерные признаки химических реакций, такие как изменение цвета, образование осадка, выделение газа, выделение теплоты и (или) света.

Так, например, вывод о протекании химических реакций можно сделать, наблюдая:

Образование осадка при кипячении воды, называемого в быту накипью;

Выделение тепла и света при горении костра;

Изменение цвета среза свежего яблока на воздухе;

Образование газовых пузырьков при брожении теста и т.д.

Мельчайшие частицы вещества, которые в процессе химических реакций практически не претерпевают изменений, а лишь по-новому соединяются между собой, называются атомами.

Сама идея о существовании таких единиц материи возникла еще в древней Греции в умах античных философов, что собственно и объясняет происхождение термина «атом», поскольку «атомос» в буквальном переводе с греческого означает «неделимый».

Тем не менее, вопреки идее древнегреческих философов, атомы не являются абсолютным минимумом материи, т.е. сами имеют сложное строение.

Каждый атом состоит из так называемых субатомных частиц – протонов, нейтронов и электронов, обозначаемых соответственно символами p + , n o и e − . Надстрочный индекс в используемых обозначениях указывает на то, что протон имеет единичный положительный заряд, электрон – единичный отрицательный заряд, а нейтрон заряда не имеет.

Что касается качественного устройства атома, то у каждого атома все протоны и нейтроны сосредоточены в так называемом ядре, вокруг которого электроны образуют электронную оболочку.

Протон и нейтрон обладают практически одинаковыми массами, т.е. m p ≈ m n , а масса электрона почти в 2000 раз меньше массы каждого из них, т.е. m p /m e ≈ m n /m e ≈ 2000.

Поскольку фундаментальным свойством атома является его электронейтральность, а заряд одного электрона равен заряду одного протона, из этого можно сделать вывод о том, что количество электронов в любом атоме равно количеству протонов.

Так, например, в таблице ниже представлен возможный состав атомов:

Вид атомов с одинаковым зарядом ядер, т.е. с одинаковым числом протонов в их ядрах, называют химическим элементом. Таким образом, из таблицы выше можно сделать вывод о том, что атом1 и атом2 относятся в одному химическому элементу, а атом3 и атом4 — к другому химическому элементу.

Каждый химический элемент имеет свое название и индивидуальный символ, который читается определенным образом. Так, например, самый простой химический элемент, атомы которого содержат в ядре только один протон, имеет название «водород» и обозначается символом «Н», что читается как «аш», а химический элемент с зарядом ядра +7 (т.е. содержащий 7 протонов) — «азот», имеет символ «N» , который читается как «эн».

Как можно заметить из представленной выше таблицы, атомы одного химического элемента могут отличаться количеством нейтронов в ядрах.

Атомы, относящиеся к одному химическому элементу, но имеющие разное количество нейтронов и, как следствие массу, называют изотопами.

Так, например, химический элемент водород имеет три изотопа – 1 Н, 2 Н и 3 Н. Индексы 1, 2 и 3 сверху от символа Н означают суммарное количество нейтронов и протонов. Т.е. зная, что водород – это химический элемент, который характеризуется тем, что в ядрах его атомов находится по одному протону, можно сделать вывод о том, что в изотопе 1 Н вообще нет нейтронов (1-1=0), в изотопе 2 Н – 1 нейтрон (2-1=1) и в изотопе 3 Н – два нейтрона (3-1=2). Поскольку, как уже было сказано, нейтрон и протон имеют одинаковые массы, а масса электрона по сравнению с ними пренебрежимо мала, это значит, что изотоп 2 Н практически в два раза тяжелее изотопа 1 Н, а изотоп 3 Н — и вовсе в три раза. В связи с таким большим разбросом масс изотопов водорода изотопам 2 Н и 3 Н даже были присвоены отдельные индивидуальные названия и символы, что не характерно больше ни для одного другого химического элемента. Изотопу 2 Н дали название дейтерий и присвоили символ D, а изотопу 3 Н дали название тритий и присвоили символ Т.

Если принять массу протона и нейтрона за единицу, а массой электрона пренебречь, фактически верхний левый индекс помимо суммарного количества протонов и нейтронов в атоме можно считать его массой, в связи с чем этот индекс называют массовым числом и обозначают символом А. Поскольку за заряд ядра любого атома отвечают протоны, а заряд каждого протона условно считается равным +1, количество протонов в ядре называют зарядовым числом (Z). Обозначив количество нейтронов в атоме буквой N, математически взаимосвязь между массовым числом, зарядовым числом и количеством нейтронов можно выразить как:

Согласно современным представлениям, электрон имеет двойственную (корпускулярно-волновую) природу. Он обладает свойствами как частицы, так и волны. Подобно частице, электрон имеет массу и заряд, но в то же время поток электронов, подобно волне, характеризуется способностью к дифракции.

Для описания состояния электрона в атоме используют представления квантовой механики, согласно которым электрон не имеет определенной траектории движения и может находиться в любой точке пространства, но с разной вероятностью.

Область пространства вокруг ядра, где наиболее вероятно нахождение электрона, называется атомной орбиталью.

Атомная орбиталь может обладать различной формой, размером и ориентацией. Также атомную орбиталь называют электронным облаком.

Графически одну атомную орбиталь принято обозначать в виде квадратной ячейки:

Квантовая механика имеет крайне сложный математический аппарат, поэтому в рамках школьного курса химии рассматриваются только лишь следствия квантово-механической теории.

Согласно этим следствиям, любую атомную орбиталь и находящийся на ней электрон полностью характеризуют 4 квантовых числа.

  • Главное квантовое число – n — определяет общую энергию электрона на данной орбитали. Диапазон значений главного квантового числа – все натуральные числа, т.е. n = 1,2,3,4, 5 и т.д.
  • Орбитальное квантовое число — l – характеризует форму атомной орбитали и может принимать любые целочисленные значения от 0 до n-1, где n, напомним, — это главное квантовое число.

Орбитали с l = 0 называют s -орбиталями . s-Орбитали имеют сферическую форму и не обладают направленностью в пространстве:

Орбитали с l = 1 называются p -орбиталями . Данные орбитали обладают формой трехмерной восьмерки, т.е. формой, полученной вращением восьмерки вокруг оси симметрии, и внешне напоминают гантель:

Орбитали с l = 2 называются d -орбиталями , а с l = 3 – f -орбиталями . Их строение намного более сложное.

3) Магнитное квантовое число – m l – определяет пространственную ориентацию конкретной атомной орбитали и выражает проекцию орбитального момента импульса на направление магнитного поля. Магнитное квантовое число m l соответствует ориентации орбитали относительно направления вектора напряженности внешнего магнитного поля и может принимать любые целочисленные значения от –l до +l, включая 0, т.е. общее количество возможных значений равно (2l+1). Так, например, при l = 0 m l = 0 (одно значение), при l = 1 m l = -1, 0, +1 (три значения), при l = 2 m l = -2, -1, 0, +1, +2 (пять значений магнитного квантового числа) и т.д.

Так, например, p-орбитали, т.е. орбитали с орбитальным квантовым числом l = 1, имеющие форму «трехмерной восьмерки», соответствуют трем значениям магнитного квантового числа (-1, 0, +1), что, в свою очередь, соответствует трем перпендикулярным друг другу направлениям в пространстве.

4) Спиновое квантовое число (или просто спин) — m s — условно можно считать отвечающим за направление вращения электрона в атоме, оно может принимать значения. Электроны с разными спинами обозначают вертикальными стрелками, направленными в разные стороны: ↓ и .

Совокупность всех орбиталей в атоме, имеющих одно и то же значение главного квантового числа, называют энергетическим уровнем или электронной оболочкой. Любой произвольный энергетический уровень с некоторым номером n состоит из n 2 орбиталей.

Множество орбиталей с одинаковыми значениями главного квантового числа и орбитального квантового числа представляет собой энергетический подуровень.

Каждый энергетический уровень, которому соответствует главное квантовое число n, содержит n подуровней. В свою очередь, каждый энергетический подуровень с орбитальным квантовым числом l, состоит из (2l+1) орбиталей. Таким образом, s-подуровень состоит из одной s-орбитали, p-подуровень – трех p-орбиталей, d-подуровень – пяти d-орбиталей, а f-подуровень — из семи f-орбиталей. Поскольку, как уже было сказано, одна атомная орбиталь часто обозначается одной квадратной ячейкой, то s-, p-, d- и f-подуровни можно графически изобразить следующим образом:

Каждой орбитали соответствует индивидуальный строго определенный набор трех квантовых чисел n, l и m l .

Распределение электронов по орбиталям называют электронной конфигурацией.

Заполнение атомных орбиталей электронами происходит в соответствии с тремя условиями:

  • Принцип минимума энергии : электроны заполняют орбитали, начиная с подуровня с наименьшей энергией. Последовательность подуровней в порядке увеличения их энергий выглядит следующим образом: 1s<2s<2p<3s<3p<4s≤3d<4p<5s≤4d<5p<6s…;

Для того чтобы проще запомнить данную последовательность заполнения электронных подуровней, весьма удобна следующая графическая иллюстрация:

  • Принцип Паули : на каждой орбитали может находиться не более двух электронов.

Если на орбитали находится один электрон, то он называется неспаренным, а если два, то их называют электронной парой.

  • Правило Хунда : наиболее устойчивое состояние атома является такое, при котором в пределах одного подуровня атом обладает максимально возможным числом неспаренных электронов. Такое наиболее устойчивое состояние атома называется основным состоянием.

Фактически вышесказанное означает то, что, например, размещение 1-го, 2-х, 3-х и 4-х электронов на трех орбиталях p-подуровня будет осуществляться следующим образом:

Заполнение атомных орбиталей от водорода, имеющего зарядовое число равное 1, до криптона (Kr) с зарядовым числом 36 будет осуществляться следующим образом:

Подобное изображение порядка заполнения атомных орбиталей называется энергетической диаграммой. Исходя из электронных диаграмм отдельных элементов, можно записать их так называемые электронные формулы (конфигурации). Так, например, элемент с 15ю протонами и, как следствие, 15ю электронами, т.е. фосфор (P), будет иметь следующий вид энергетической диаграммы:

При переводе в электронную формулу атома фосфора примет вид:

15 P = 1s 2 2s 2 2p 6 3s 2 3p 3

Цифрами нормального размера слева от символа подуровня показан номер энергетического уровня, а верхними индексами справа от символа подуровня показано количество электронов на соответствующем подуровне.

Ниже приведены электронные формул первых 36 элементов периодической системы Д.И. Менделеева.

период № элемента символ название электронная формула
I 1 H водород 1s 1
2 He гелий 1s 2
II 3 Li литий 1s 2 2s 1
4 Be бериллий 1s 2 2s 2
5 B бор 1s 2 2s 2 2p 1
6 C углерод 1s 2 2s 2 2p 2
7 N азот 1s 2 2s 2 2p 3
8 O кислород 1s 2 2s 2 2p 4
9 F фтор 1s 2 2s 2 2p 5
10 Ne неон 1s 2 2s 2 2p 6
III 11 Na натрий 1s 2 2s 2 2p 6 3s 1
12 Mg магний 1s 2 2s 2 2p 6 3s 2
13 Al алюминий 1s 2 2s 2 2p 6 3s 2 3p 1
14 Si кремний 1s 2 2s 2 2p 6 3s 2 3p 2
15 P фосфор 1s 2 2s 2 2p 6 3s 2 3p 3
16 S сера 1s 2 2s 2 2p 6 3s 2 3p 4
17 Cl хлор 1s 2 2s 2 2p 6 3s 2 3p 5
18 Ar аргон 1s 2 2s 2 2p 6 3s 2 3p 6
IV 19 K калий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1
20 Ca кальций 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2
21 Sc скандий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1
22 Ti титан 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2
23 V ванадий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3
24 Cr хром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 здесь наблюдается проскок одного электрона с s на d подуровень
25 Mn марганец 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5
26 Fe железо 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6
27 Co кобальт 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7
28 Ni никель 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 8
29 Cu медь 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 здесь наблюдается проскок одного электрона с s на d подуровень
30 Zn цинк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10
31 Ga галлий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 1
32 Ge германий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 2
33 As мышьяк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 3
34 Se селен 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 4
35 Br бром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5
36 Kr криптон 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Как уже было сказано, в основном своем состоянии электроны в атомных орбиталях расположены согласно принципу наименьшей энергии. Тем не менее, при наличии пустых p-орбиталей в основном состоянии атома, нередко, при сообщении ему избыточной энергии атом можно перевести в так называемое возбужденное состояние. Так, например, атом бора в основном своем состоянии имеет электронную конфигурацию и энергетическую диаграмму следующего вида:

5 B = 1s 2 2s 2 2p 1

А в возбужденном состояниии (*), т.е. при сообщении некоторой энергии атому бора, его электронная конфигурация и энергетическая диаграмма будут выглядеть так:

5 B* = 1s 2 2s 1 2p 2

В зависимости от того, какой подуровень в атоме заполняется последним, химические элементы делят на s, p, d или f.

Нахождение s, p, d и f-элементов в таблице Д.И. Менделеева:

  • У s-элементов последний заполняемый s-подуровень. К данным элементам относятся элементы главных (слева в ячейке таблицы) подгрупп I и II групп.
  • У p-элементов заполняется p-подуровень. К p-элементам относят последние шесть элементов каждого периода, кроме первого и седьмого, а также элементы главных подгрупп III-VIII групп.
  • d-Элементы расположены между s – и p-элементами в больших периодах.
  • f-Элементы называют лантаноидами и актиноидами. Они вынесены вниз таблицы Д.И. Менделеева.

Мы выяснили, что сердце атома - это его ядро. Вокруг него располагаются электроны. Они не могут быть неподвижны, так как немедленно упали бы на ядро.

В начале XX в. была принята планетарная модель строения атома, согласно которой вокруг очень малого по размерам положительного ядра движутся электроны, подобно тому как вращаются планеты вокруг Солнца. Дальнейшие исследования показали, что строение атома значительно сложнее. Проблема строения атома остаётся актуальной и для современной науки.

Элементарные частицы, атом, молекула - всё это объекты микромира, не наблюдаемого нами. В нём действуют иные законы, чем в макромире, объекты которого мы можем наблюдать или непосредственно, или с помощью приборов (микроскоп, телескоп и т. д.). Поэтому, обсуждая далее строение электронных оболочек атомов, будем понимать, что мы создаём своё представление (модель), которое в значительной степени соответствует современным взглядам, хотя и не является абсолютно таким же, как у учёного-химика. Наша модель упрощена.

Электроны, двигаясь вокруг ядра атома, образуют в совокупности его электронную оболочку. Число электронов в оболочке атома равно, как вы уже знаете, числу протонов в ядре атома, ему соответствует порядковый, или атомный, номер элемента в таблице Д. И. Менделеева. Так, электронная оболочка атома водорода состоит из одного электрона, хлора - из семнадцати, золота - из семидесяти девяти.

Как же движутся электроны? Хаотически, подобно мошкам вокруг горящей лампочки? Или же в каком-то определённом порядке? Оказывается, именно в определённом порядке.

Электроны в атоме различаются своей энергией. Как показывают опыты, одни из них притягиваются к ядру сильнее, другие - слабее. Главная причина этого заключается в разном удалении электронов от ядра атома. Чем ближе электроны к ядру, тем они прочнее связаны с ним и их труднее вырвать из электронной оболочки, а вот чем дальше они от ядер, тем легче их оторвать. Очевидно, что по мере удаления от ядра атома запас энергии электрона (Е) увеличивается (рис. 38).

Рис. 38.
Максимальное число электронов на энергетическом уровне

Электроны, движущиеся вблизи ядра, как бы загораживают (экранируют) ядро от других электронов, которые притягиваются к ядру слабее и движутся на большем удалении от него. Так образуются электронные слои в электронной оболочке атома. Каждый электронный слой состоит из электронов с близкими значениями энергии,

поэтому электронные слои называют ещё энергетическими уровнями. Далее мы так и будем говорить: «Электрон находится на определённом энергетическом уровне».

Число заполняемых электронами энергетических уровней в атоме равно номеру периода в таблице Д. И. Менделеева, в котором находится химический элемент. Значит, электронная оболочка атомов 1-го периода содержит один энергетический уровень, 2-го периода - два, 3-го - три и т. д. Например, в атоме азота она состоит из двух энергетических уровней, а в атоме магния - из трёх:

Максимальное (наибольшее) число электронов, находящихся на энергетическом уровне, можно определить по формуле: 2n 2 , где n - номер уровня. Следовательно, первый энергетический уровень заполнен при наличии на нём двух электронов (2×1 2 = 2); второй - при наличии восьми электронов (2×2 2 = 8); третий - восемнадцати (2×З 2 = 18) и т. д. В курсе химии 8-9 классов мы будем рассматривать элементы только первых трёх периодов, поэтому с завершённым третьим энергетическим уровнем у атомов мы не встретимся.

Число электронов на внешнем энергетическом уровне электронной оболочки атома для химических элементов главных подгрупп равно номеру группы.

Теперь мы можем составить схемы строения электронных оболочек атомов, руководствуясь планом:

  1. определим общее число электронов на оболочке по порядковому номеру элемента;
  2. определим число заполняемых электронами энергетических уровней в электронной оболочке по номеру периода;
  3. определим число электронов на каждом энергетическом уровне (на 1-м - не больше двух; на 2-м - не больше восьми, на внешнем уровне число электронов равно номеру группы - для элементов главных подгрупп).

Ядро атома водорода имеет заряд +1, т. е. содержит только один протон, соответственно только один электрон на единственном энергетическом уровне:

Это записывают с помощью электронной формулы следующим образом:

Следующий элемент 1-го периода гелий. Ядро атома гелия имеет заряд +2. У него на первом энергетическом уровне имеются уже два электрона:


На первом энергетическом уровне могут поместиться только два электрона и никак не больше - он полностью завершён. Потому-то 1-й период таблицы Д. И. Менделеева и состоит из двух элементов.

У атома лития, элемента 2-го периода, появляется ещё один энергетический уровень, на который и «отправится» третий электрон:

У атома бериллия на второй уровень «попадает» ещё один электрон:

Атом бора на внешнем уровне имеет три электрона, а атом углерода - четыре электрона... атом фтора - семь электронов, атом неона - восемь электронов:

Второй уровень может вместить только восемь электронов, и поэтому он завершён у неона.

У атома натрия, элемента 3-го периода, появляется третий энергетический уровень (обратите внимание - атом элемента 3-го периода содержит три энергетических уровня!), и на нём находится один электрон:

Обратите внимание: натрий - элемент I группы, на внешнем энергетическом уровне у него один электрон!

Очевидно, нетрудно будет записать строение энергетических уровней для атома серы, элемента VIA группы 3-го периода:

Завершает 3-й период аргон:

Атомы элементов 4-го периода конечно же имеют четвёртый уровень, на котором у атома калия находится один электрон, а у атома кальция - два электрона.

Теперь, когда мы познакомились с упрощёнными представлениями о строении атомов элементов 1-го и 2-го периодов Периодической системы Д. И. Менделеева, можно внести уточнения, приближающие нас к более верному взгляду на строение атома.

Начнём с аналогии. Подобно тому как быстро движущаяся игла швейной машинки, пронзая ткань, вышивает на ней узор, так и неизмеримо быстрее движущийся в пространстве вокруг атомного ядра электрон «вышивает», только не плоский, а объёмный рисунок электронного облака. Так как скорость движения электрона в сотни тысяч раз больше скорости движения швейной иглы, то говорят о вероятности нахождения электрона в том или ином месте пространства. Допустим, что нам удалось, как на спортивном фотофинише, установить положение электрона в каком-то месте около ядра и отметить это положение точкой. Если такой «фотофиниш» сделать сотни, тысячи раз, то получится модель электронного облака.

Иногда электронные облака называют орбиталями. Поступим так и мы. В зависимости от энергии электронные облака, или орбитали, отличаются размерами. Понятно, что чем меньше запас энергии электрона, тем сильнее притягивается он к ядру и тем меньше по размерам его орбиталь.

Электронные облака (орбитали) могут иметь разную форму. Каждый энергетический уровень в атоме начинается с s-орбитали, имеющей сферическую форму. На втором и последующих уровнях после одной s-орбитали появляются р-орбитали гантелеобразной формы (рис. 39). Таких орбиталей три. Любую орбиталь занимают не более двух электронов. Следовательно, на s-орбитали их может быть только два, а на трёх р-орбиталях - шесть.

Рис. 39.
Формы s- и р-орбиталей (электронных облаков)

Используя для обозначения уровня арабские цифры и обозначая орбитали буквами s и р, а число электронов данной орбитали арабской цифрой вверху справа над буквой, мы можем изобразить строение атомов более полными электронными формулами.

Запишем электронные формулы атомов 1-го и 2-го периодов:

Если элементы имеют сходные по строению внешние энергетические уровни, то и свойства этих элементов сходны. Например, аргон и неон содержат на внешнем уровне по восемь электронов, и потому они инертны, т. е. почти не вступают в химические реакции. В свободном виде аргон и неон - газы, молекулы которых одноатомны. Атомы лития, натрия и калия содержат на внешнем уровне по одному электрону и обладают сходными свойствами, поэтому они помещены в одну и ту же группу Периодической системы Д. И. Менделеева.

Сделаем обобщение: одинаковое строение внешних энергетических уровней периодически повторяется, поэтому периодически повторяются и свойства химических элементов. Эта закономерность отражена в названии Периодической системы химических элементов Д. И. Менделеева.

Ключевые слова и словосочетания

  1. Электроны в атомах располагаются на энергетических уровнях.
  2. На первом энергетическом уровне могут находиться только два электрона, на втором - восемь. Такие уровни называют завершёнными.
  3. Число заполняемых энергетических уровней равно номеру периода, в котором находится элемент.
  4. Число электронов на внешнем уровне атома химического элемента равно номеру его группы (для элементов главных подгрупп).
  5. Свойства химических элементов периодически повторяются, так как периодически повторяется строение внешних энергетических уровней у их атомов.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода