Вконтакте Facebook Twitter Лента RSS

Как найти направляющие косинусы вектора. Направляющие косинусы векторов

Обозначьте через альфа, бета и гамма углы, образованные вектором а с положительным направлением координатных осей (см. рис.1). Косинусы этих углов называются направляющими косинусами вектора а.

Инструкция

Так как координаты а в декартовой прямоугольной системе координат равны проекциям вектора на координатные оси, то
а1 = |a|cos(альфа), a2 = |a|cos(бета), a3 = |a|cos(гамма). Отсюда:
cos (альфа)=a1||a|, cos(бета) =a2||a|, cos(гамма)= a3/|a|.
При этом |a|=sqrt(a1^2+ a2^2+ a3^2). Значит
cos (альфа)=a1|sqrt(a1^2+ a2^2+ a3^2), cos(бета) =a2|sqrt(a1^2+ a2^2+ a3^2),
cos(гамма)= a3/sqrt(a1^2+ a2^2+ a3^2).

Следует отметить основное свойство направляющих косинусов. Сумма квадратов направляющих косинусов вектора равна единице.
Действительно, cos^2(альфа)+cos^2(бета)+cos^2(гамма)=
= a1^2|(a1^2+ a2^2+ a3^2)+ a2^2|(a1^2+ a2^2+ a3^2)+ a3^2/(a1^2+ a2^2+ a3^2) =
=(a1^2+ a2^2+ a3^2)|(a1^2+ a2^2+ a3^2) = 1.

Первый способ

Пример: дано: вектор а={1, 3, 5). Найти его направляющие косинусы.
Решение. В соответствии с найденным выпишем:
|а|= sqrt(ax^2+ ay^2+ az^2)=sqrt(1+9 +25)=sqrt(35)=5,91.
Таким образом, ответ можно записать в следующей форме:
{cos(альфа), cos(бета), cos(гамма)}={1/sqrt(35), 3/sqrt (35), 5/(35)}={0,16;0,5;0,84}.

Второй способ

При нахождении направляющих косинусов вектора а, можно использовать методику определения косинусов углов с помощью скалярного произведения. В данном случае в виду имеются углы между а и направляющими единичными векторами прямоугольных декартовых координат i, j и k. Их координаты {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, соответственно.
Следует напомнить, что скалярное произведение векторов определяется так.

Если угол между векторами ф, то скалярное произведение двух ветров (по определению) – это число, равное произведению модулей векторов на cosф. (a, b) = |a||b|cos ф. Тогда, если b=i, то (a, i) = |a||i|cos(альфа),
или a1 = |a|cos(альфа). Далее все действия выполняются аналогично способу 1, с учетом координат j и k.

Вопрос 6.

Векторное произведение: определение и свойства. Площадь параллелограмма и треугольника.Выражение скалярного произведения через координаты. Примеры.

В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов и есть вектор , где - координатные векторы.

Пусть дан вектор . Единичный вектор того же направления, что и(орт вектора) находится по формуле:

.

Пусть ось образует с осями координат углы
.Направляющими косинусами оси называются косинусы этих углов:. Если направлениезадано единичным вектором, то направляющие косинусы служат его координатами, т.е.:

.

Направляющие косинусы связаны между собой соотношением:

Если направление задано произвольным вектором, то находят орт этого вектора и, сравнивая его с выражением для единичного вектора, получают:

Скалярное произведение

Скалярными произведением
двух векторовиназывается число, равное произведению их длин на косинус угла между ними:
.

Скалярное произведение обладает следующими свойствами:


Следовательно,
.

Геометрический смысл скалярного произведения : скалярное произведение вектора на единичный векторравно проекции векторана направление, определяемое, т.е.
.

Из определения скалярного произведения вытекает следующая таблица умножения ортов
:

.

Если векторы заданы своими координатами
и
, т.е.
,
, то, перемножая эти векторы скалярно и используя таблицу умножения ортов, получим выражение скалярного произведения
через координаты векторов:

.

Векторное произведение

Векторным произведением вектора на векторназывается вектор, длина и направление которого определяется условиями:


Векторное произведение обладает следующими свойствами:


Из первых трех свойств следует, что векторное умножение суммы векторов на сумму векторов подчиняется обычным правилам перемножения многочленов. Надо только следить за тем, чтобы порядок следования множителей не менялся.

Основные орты перемножаются следующим образом:

Если
и
, тоcучетом свойств векторного произведения векторов, можно вывести правило вычисления координат векторного произведения по координатам векторов-сомножителей:

Если принять во внимание полученные выше правила перемножения ортов, то:

Более компактную форму записи выражения для вычисления координат векторного произведения двух векторов можно построить, если ввести понятие определителя матрицы.

Рассмотрим частный случай, когда вектора ипринадлежат плоскости
, т.е. их можно представить как
и
.

Если координаты векторов записать в виде таблицы следующим образом:
, то можно сказать, что из них сформирована квадратная матрица второго порядка, т.е. размером
, состоящая из двух строк и двух столбцов. Каждой квадратной матрице ставится в соответствие число, которое вычисляется из элементов матрицы по определенным правилам и называется определителем. Определитель матрицы второго порядка равен разности произведений элементов главной диагонали и побочной диагонали:

.

В таком случае:

Абсолютная величина определителя, таким образом, равна площади параллелограмма, построенного на векторах и, как на сторонах.

Если сравнить это выражение с формулой векторного произведения (4.7), то:

Это выражение представляет собой формулу для вычисления определителя матрицы третьего порядка по первой строке.

Таким образом:

Определитель матрицы третьего порядка вычисляется следующим образом:

и представляет собой алгебраическую сумму шести слагаемых.

Формулу для вычисления определителя матрицы третьего порядка легко запомнить, если воспользоваться правилом Саррюса , которое формулируется следующим образом:

    Каждое слагаемое является произведением трех элементов, расположенных в разных столбцах и разных строках матрицы;

    Знак “плюс” имеют произведения элементов, образующих треугольники со стороной, параллельной главной диагонали;

    Знак “минус” имеют произведения элементов, принадлежащих побочной диагонали, и два произведения элементов, образующих треугольники со стороной, параллельной побочной диагонали.

это косинусы углов, которые вектор образует с положительными полуосями координат. Направляющие косинусы однозначно задают направление вектора. Если вектор имеет длину 1, то его направляющие косинусы равны его координатам. В общем случае для вектора с координатами (a ; b ; c ) направляющие косинусы равны:

где a, b, g – углы, составляемые вектором с осями x , y , z соответственно.

21)Разложение вектора по ортам. Орт координатной оси обозначается через , оси - через , оси - через (рис. 1).

Для любого вектора , который лежит в плоскости , имеет место следующее разложение:

Если вектор расположен в пространстве, то разложение по ортам координатных осей имеет вид:

22)Скалярным произведением двух ненулевых векторов и называется число, равное произведению длин этих векторов на косинус угла между ними:

23)Угол между двумя векторами

Если угол между двумя векторами острый, то их скалярное произведение положительно; если угол между векторами тупой, то скалярное произведение этих векторов отрицательно. Скалярное произведение двух ненулевых векторов равно нулю, тогда и только тогда, когда эти векторы ортогональны.

24)Условие параллельности и перпендикулярности двух векторов.

Условие перпендикулярности векторов
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.Даны два вектора a(xa;ya) и b(xb;yb). Эти векторы будут перпендикулярны, если выражение xaxb + yayb = 0.

25)Векторные произведение двух векторов.

Векторным произведением двух неколлинеарных векторов называется такой вектор c=a×b, который удовлетворяет следующим условиям: 1) |c|=|a| |b| sin(a^b) 2) c⊥a, c⊥b 3) Векторы a, b, с образуют правую тройку векторов.

26) Коллинеарные и компланарные вектора..

Векторы коллинеарные, если абсцисса первого вектора относится к абсциссе второго так же, как ордината первого - к ординате второго.Даны два вектора a (xa ;ya ) и b (xb ;yb ). Эти векторы коллинеарны, если x a = x b и y a = y b , где R .

Векторы −→a ,−→b и −→c называются компланарными , если существует плоскость, которой они параллельны.

27) Смешанное произведение трех векторов. Смешанное произведение векторов - скалярное произведение вектора a на векторное произведение векторов b и c. Найти смешанное произведение векторов a = {1; 2; 3}, b = {1; 1; 1}, c = {1; 2; 1}.

Решение:

1·1·1 + 1·1·2 + 1·2·3 - 1·1·3 - 1·1·2 - 1·1·2 = 1 + 2 + 6 - 3 - 2 - 2 = 2

28)Расстояние между двумя точками на плоскости. Расстояние между двумя данными точками равно корню квадратному из суммы квадратов разностей одноименных координат этих точек.

29)Деление отрезка в данном отношении. Если точка М(x; y) лежит на прямой, проходящей через две данные точки ( , ) и ( , ), и дано отношение , в котором точка М делит отрезок , то координаты точки М определяются по формулам

Если точка М является серединой отрезка , то ее координаты определяются по формулам

30-31. Угловым коэффициентом прямой называется тангенс угла наклона этой прямой. Угловой коэффициент прямой обычно обозначают буквой k . Тогда по определению

Уравнение прямой с угловым коэффициентом имеет вид , где k - угловой коэффициент прямой, b – некоторое действительное число. Уравнением прямой с угловым коэффициентом можно задать любую прямую, не параллельную оси Oy (для прямой параллельно оси ординат угловой коэффициент не определен).

33.Общее уравнение прямой на плоскости. Уравнение вида есть общее уравнение прямой Oxy . В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

34.Уравнение прямой в отрезках на плоскости в прямоугольной системе координат Oxy имеет вид , где a и b - некоторые отличные от нуля действительные числа. Это название не случайно, так как абсолютные величины чисел а и b равны длинам отрезков, которые прямая отсекает на координатных осях Ox и Oy соответственно (отрезки отсчитываются от начала координат). Таким образом, уравнение прямой в отрезках позволяет легко строить эту прямую на чертеже. Для этого следует отметить в прямоугольной системе координат на плоскости точки с координатами и , и с помощью линейки соединить их прямой линией.

35.Нормальное уравнение прямой имеет вид

где – расстояние от прямой до начала координат;  – угол между нормалью к прямой и осью .

Нормальное уравнение можно получить из общего уравнения (1), умножив его на нормирующий множитель , знак  противоположен знаку , чтобы .

Косинусы углов между прямой и осями координат называют направляющими косинусами,  – угол между прямой и осью ,  – между прямой и осью :

тем самым, нормальное уравнение можно записать в виде

Расстояние от точки до прямой определяется по формуле

36.Расстояние между точкой и прямой вычисляется по следующей формуле:

где x 0 и y 0 координаты точки, а A, B и С коэффициенты из общего уравнения прямой

37. Приведение общего уравнения прямой к нормальному. Уравнение и плоскость в данном контексте не отличаются друг от друга чем-то, кроме количества слагаемых в уравнениях и размерностью пространства. Поэтому сначала скажу все про плоскость, а в конце сделаю оговорку по поводу прямой.
Пусть дано общее уравнение плоскости: Ax + By + Cz + D = 0.
;. получаем систему:g;Mc=cosb, MB=cosaПриведем его к нормальному виду. Для этого умножим обе части уравнения на нормирующий множитель М. Получаем: Мах+Мву+МСz+MD=0. При этом МА=cos;.g;Mc=cosb, MB=cosa получаем систему:

M2 B2=cos2b
M2 C2=cos2g

Сложив все уравнения системы, получаем М*(А2 +В2+С2)=1 Теперь остается только выразить отсюда М, чтобы знать, на какой именно нормирующий множитель надо умножить исходное общее уравнение для приведения его к нормальному виду:
M=-+1/КОРЕНЬ КВ А2 +B2 +C2
MD должен быть всегда меньше нуля, следовательно знак числа М берется противоположный знаку числа D.
С уравнением прямой все то же самое, только из формулы для М следует просто убрать слагаемое С2.

Ax + By + Cz + D = 0,

38. Общим уравнением плоскости в пространстве называется уравнение вида

где A 2 + B 2 + C 2 ≠ 0 .

В трехмерном пространстве в декартовой системе координат любая плоскость описывается уравнением 1–ой степени (линейным уравнением). И обратно, любое линейное уравнение определяет плоскость.

40.Уравнение плоскости в отрезках. В прямоугольной системе координат Oxyz в трехмерном пространстве уравнение вида , где a , b и c – отличные от нуля действительные числа, называется уравнением плоскости в отрезках . Абсолютные величины чисел a , b и c равны длинам отрезков, которые плоскость отсекает на координатных осях Ox , Oy и Oz соответственно, считая от начала координат. Знак чисел a , b и c показывает, в каком направлении (положительном или отрицательном) откладываются отрезки на координатных осях

41) Нормальное уравнение плоскости.

Нормальным уравнением плоскости называется ее уравнение, написанное в виде

где , , - направляющие косинусы нормали плоскоти, э

p - расстояние от начала координат до плоскости. При вычислении направляющих косинусов нормали следует считать, что она направлена от начала координат к плоскости (если же плоскость проходит через начало координат, то выбор положительного направления нормали безразличен).

42)Расстояние от точки до плоскости. Пусть плоскость задана уравнением и дана точка . Тогда расстояние от точки до плоскости определяется по формуле

Доказательство . Расстояние от точки до плоскости -- это, по определению, длина перпендикуляра , опущенного из точки на плоскость

Угол между плоскостями

Пусть плоскости и заданы соответственно уравнениями и . Требуется найти угол между этими плоскостями.

Плоскости, пересекаясь, образуют четыре двугранных угла: два тупых и два острых или четыре прямых, причем оба тупых угла равны между собой, и оба острых тоже равны между собой. Мы всегда будем искать острый угол. Для определения его величины возьмем точку на линии пересечения плоскостей и в этой точке в каждой из

плоскостей проведем перпендикуляры и к линии пересечения.

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода