Вконтакте Facebook Twitter Лента RSS

Схема гаусс пушки своими руками от батареек. Электромагнитные ускорители масс

Презентация к исследовательской работе "Пушка Гаусса". Исследование принципа работы пушки Гаусса, электромагнитного ускорителя масс, работающая на явлении электромагнитной индукции.

Просмотр содержимого документа
«Аннотация»

Аннотация.

Устройство - «Пушка Гаусса» относится к электромагнитному ускорителю масс, которая работает на явлении электромагнитной индукции.

Цель работы: исследование принципа работы электромагнитного ускорителя масс на основе пушки Гаусса и возможности его применения в электротехнике.

Задачи:

1. Изучить устройство пушки Гаусса и построить ее опытную модель
2. Рассмотреть параметры эксперимента
3. Исследовать вопрос практического применения устройства, работающих по принципу пушки Гаусса

Методы исследования: эксперимент и моделирование.

Экспериментальная установка состоит из блока зарядки и колебательного контура .

Зарядное устройство питается от сети переменного тока 220В, частотой 50Гц и состоит из четырех полупроводниковых диодов. Колебательный контур включает: конденсатора ёмкостью 800мкф и 330В, катушки индуктивности1,34 мГн.

Производился горизонтальный выстрел из опытного образца массой m =2,45г, при этом дальность полета составило в среднем s =17м, при высоте полета h =1,20м.

По исходным экспериментальным данным: массы двух снарядов, напряжения, емкости конденсатора, дальности и высоты полета, мной были вычислены энергия запасаемая конденсатором, время полета, скорость, кинетическая энергия движения снаряда, кпд установки.

Исходные данные

Дальность полёта, s

Высота полёта, h

Ёмкость конденсатора, C

Напряжение сети, U

Экспериментальные данные

Энергия, запасаемая в конденсаторе, E с =

Время разряда конденсатора, Т раз =

Индуктивность соленоида, L =

Время полёта, t =

0,4 9 с

Скорость вылета снаряда, 𝑣 =

Кинетическая энергия снаряда, E =

КПД пушки

Выводы: мне удалось собрать действующую установку ускорителя с кпд = 3,2% - 4,6%. Модель была мной исследована на дальность полета снаряда. Я установил зависимость дальности полета от скорости вылета снаряда, рассчитал кпд установки. Для повышения кпд необходимо

А. увеличить скорость вылета снаряда, т. к., чем быстрее движется снаряд, тем меньше

потерь при его разгоне. Этого можно достичь за счет

1. уменьшения массы снаряда. Мои экспериментальные исследования показали, что снаряд массой 2,45г имеет дальность полета 11м, а скорость вылета – 22,45 м/с; снаряд – 1,02г – 20,5м и 41,83м/с;

    увеличения мощности магнитного поля за счет увеличения индуктивности катушки. Для этого я увеличил количество витков, что соответственно при постоянном диаметре провода, увеличился диаметр самой катушки;

    ограничения времени действие магнитного поля на снаряд. Для этого соленоид нужно взять коротким.

В. Чем короче и толще будут соединительные провода, тем больше КПД будет иметь Гаусс.

С. Очень перспективно делать многоступенчатый магнитный ускоритель – каждая последующая ступень будет обладать более высоким КПД, чем предыдущая благодаря увеличению скорости снаряда. Но при малом времени нахождения снаряда в зоне эффективного действия ускоряющего магнитного поля требуется как можно быстрее установить в соленоиде ток нужной величины, а потом его отключить, дабы избежать бесполезных трат энергии. Всему этому препятствует индуктивность катушки и требования к параметрам коммутационных устройств. Разрешить эту проблему можно множеством разных способов – использовать последующие обмотки увеличивающейся длины при постоянном количестве витков – индуктивность будет ниже, а время пролета через них снаряда не намного больше, чем у предыдущей ступени. Чтобы сделать эффективный многоступенчатый магнитный ускоритель масс, не особо критичный к его настройке, требуется обеспечить несколько важных условий:

    использовать один общий источник питания обмоток;

    использовать ключи, обеспечивающее строго заданное по времени включение тока на обмотку;

    использовать синхронное с движением снаряда включение и выключение

обмоток - ток в обмотке должен включатся, когда снаряд попадает в зону

эффективного действия ускоряющего магнитного поля, и должен отключатся,

когда снаряд выходит из этой зоны;

    на различных ступенях использовать различные обмотки.

Просмотр содержимого презентации
«Пушка Гаусса»


Пушка Гаусса

(англ. Gauss gun, Coil gun, Gauss cannon) - одна из разновидностей электромагнитного ускорителя масс.

Пушка названа по имени немецкого учёного Карла Гаусса, заложившего основы математической теории электромагнетизма.

Ванюшин Семён,

ученик 9 класса МОУ «СОШ №56» г. Чебоксары



Фотографии Discovery Channel

http://www.coilgun.info/discovery/photos.htm


Название детали

В 1-ой пушке

Количество слоёв

во 2-ой пушке

Длина соленоида

Кол-во витков

Материал

Диаметр, форма

Длина

Обтекаемая, цилиндрическая

Масса



Исходные данные

Дальность полёта, s

Высота полёта, h

Ёмкость конденсатора, C

Напряжение сети, U

Экспериментальные данные

Энергия, запасаемая в конденсаторе, Е

Время разряда конденсатора, Т раз

Время работы катушки индуктивности, Т

Индуктивность соленоида, L

Время полёта, t

Скорость вылета снаряда,𝑣

Кинетическая энергия снаряда, E


Преимущества:

Недостатки:

отсутствие гильз

большой расход энергии

неограниченность в выборе начальной скорости и энергии боеприпаса.

низкий КПД установки (пушка Гаусса по силе выстрела проигрывает даже пневматическому оружию)

возможность бесшумного выстрела без смены ствола и боеприпаса.

большой вес и габариты установки, при её низкой эффективности

относительно малая отдача.

большая надежность и износостойкость.

возможность работы в любых условиях, в том числе в космическом пространстве.


  • На данный момент пушку Гаусса используют только в качестве игрушки или проводят с ней различные испытания. Так, в феврале 2008 года ВМС США поставили на эсминец в качестве корабельного оружия рельсотрон, разгоняющий снаряд до 2520 м/с Лабораторные установки для исследования высокоскоростного удара отправляют в цель частицы массой менее 1 г со скоростью до 15 км/с.


Принцип работы.

http://upload.wikimedia.org/wikipedia/commons/f/f7/Coilgun_animation.gif


П р о е к т

Пушка Гаусса.

Электромагнитный ускоритель масс (ЭМУМ)

Выполненный, учениками 9г класса

ГБОУ СОШ 717, САО, города Москвы

Полякова Марина

Литвиненко Руслан

Руководитель проекта, учитель физики:

Дмитриева Ольга Александровна

МОСКВА, 2012

ВВЕДЕНИЕ……………………………………………………..3

ГЛАВАI ПРИНЦИП ДЕЙСТВИЯ (ОБЩИЙ)…………………………5

НЕОХОДИМЫЕ ФОРМУЛЫ ДЛЯ РАСЧЕТА……………………..7

АЛГОРИТМ И ОПИСАНИЕ СБОРКИ МОДЕЛИ………………….8

СХЕМА ИСПОЛЬЗОВАНИЯ…………………………………………11

ПРИНЦИП СОЗДАННОЙ МОДЕЛИ……………………….…...…11

ГЛАВАII ПРИМЕНЕНИЕ ДАННОГО УСТРОЙСТВА……………....13

2.1 В КОСМОСЕ И МИРНЫХ ЦЕЛЯХ………………………………….14

2.2 В ВОЕННЫХ ЦЕЛЯХ………………………………………………….15

2.3 НАШЕ ПРЕДЛОЖЕНИЕ.……………………………………………..16

ЗАКЛЮЧЕНИЕ……………………………………………………………..18

ЛИТЕРАТУРА………………………………………………...…………….21

ПРИЛОЖЕНИЕ

ВВЕДЕНИЕ

Принцип устройства был разработан Карлом Гауссом, немецким физиком, астрономом и математиком.

Проект посвящен изобретению под названием Пушка Гаусса (Гаусс Ган или Коил Ган, как его называют на западный манер), по фамилии выдающегося немецкого математика, астронома и физика
XIX века, сформулировавшего основные принципы работы оружия, основанного на электромагнитном ускорении масс, гаусс гана.
Многие слышали о пушке Гаусса из фантастических книг или компьютерных игр, так как Пушка Гаусса весьма популярна в научной фантастике, где выступает в качестве персонального
высокоточного смертоносного оружия, а также стационарного высокоточного и высокоскорострельного оружия.

Среди игр пушка Гаусса появлялась в Fallout 2, Fallout Tactics, Half-life (есть экпериментальное оружие, именуемое Тау-пушкой), в StarCraft пехотинцы вооружены автоматической винтовкой Гаусса C-14 «Impaler». Также оружие похожее на пушку Гаусса появлялось в серии игр Quake, но в сознании многих эта пушка остается просто выдумкой фантастов, которая в лучшем случае имеет высокогабаритные прототипы в реальности.

Цель работы : изучить устройство электромагнитного ускорителя масс (пушки Гаусса), а также принципы его действия и применение. Собрать действующую модель Пушки Гаусса.

Основные задачи :

Рассмотреть устройство по чертежам и макетам.

Изучить устройство и принцип действия электромагнитного ускорителя масс.

Создать действующую модель.

Применение данной модели.

Практическая часть работы :

Создание функционирующей модели ускорителя масс в условиях школы. Компьютерная презентация проекта в формате Power Point .

Гипотеза : возможно ли создание простейшей функционирующей модели Пушки Гаусса в условиях школы?

Актуальность проекта : данный проект является междисциплинарным и охватывает большое количество материала.

13,395 Просмотры

Довольна мощная модель знаменитой Гаусс пушки, которую можно сделать своими руками из подручных средств. Данная самодельная Гаусс пушки изготавливается очень просто, имеет лёгкую конструкцию, всё используемые детали найдутся у каждого любителя самоделок и радиолюбителя. С помощью программы расчёта катушки, можно получить максимальную мощность.

Итак, для изготовления Пушка Гаусса нам потребуется:

  1. Кусок фанеры.
  2. Листовой пластик.
  3. Пластиковая трубка для дула ∅5 мм.
  4. Медный провод для катушки ∅0,8 мм.
  5. Электролитические конденсаторы большой ёмкости
  6. Пусковая кнопка
  7. Тиристор 70TPS12
  8. Батарейки 4X1.5V
  9. Лампа накала и патрон для неё 40W
  10. Диод 1N4007

Сборка корпуса для схемы Гаусс пушки

Форма корпуса может быть любой, не обязательно придерживаться представленной схеме. Что бы придать корпусу эстетический вид, можно его покрасить краской из баллончика.

Установка деталей в корпус для Пушки Гаусса

Для начала крепим конденсаторы, в данном случае они были закреплены на пластиковые стяжки, но можно придумать и другое крепление.

Затем устанавливаем патрон для лампы накала на внешней стороне корпуса. Не забываем подсоединить к нему два провода для питания.

Затем внутри корпуса размещаем батарейный отсек и фиксируем его, к примеру саморезами по дереву или другим способом.

Намотка катушки для Пушки Гаусса

Для расчета катушки Гаусса можно использовать программу FEMM, скачать программу FEMM можно по этой ссылке https://code.google.com/archive/p/femm-coilgun

Пользоваться программой очень легко, в шаблоне нужно ввести необходимые параметры, загрузить их в программу и на выходе получаем все характеристики катушки и будущей пушки в целом, вплоть до скорости снаряда.

Итак приступим к намотке! Для начала нужно взять приготовленную трубку и намотать на неё бумагу, используя клей ПВА так, что бы внешний диаметр трубки был равен 6 мм.

Затем просверливаем отверстия по центру отрезков и насаживаем из на трубку. С помощью горячего клея фиксируем их. Расстояние между стенками должно быть 25 мм.

Насаживаем катушку на ствол и приступаем к следующему этапу…

Схема Гаусс Пушки. Сборка

Собираем схему внутри корпуса навесным монтажом.

Затем устанавливаем кнопку на корпус, сверлим два отверстия и продеваем туда провода для катушки.

Для упрощения использования, можно сделать для пушки подставку. В данном случае она была изготовлена из деревянного бруска. В данном варианте лафета были оставлены зазоры по краям ствола, это нужно для того что бы регулировать катушку, перемещая катушку, можно добиться наибольшей мощности.

Снаряды для пушки изготавливаются из металлического гвоздя. Отрезки делаются длиной 24 мм и диаметром 4 мм. Заготовки снарядов нужно заточить.

Уже, наверное, лет 50 все говорят о том, что век пороха подошел к концу, и дальше огнестрельное уже не может развиваться. Несмотря на то, что с таким утверждением я абсолютно не согласен и считаю, что современному огнестрельному оружию, а точнее патронам, еще есть куда расти и совершенствоваться, не могу пройти мимо попыток замены пороха и вообще привычного принципа работы оружия. Понятно, что пока многое из придуманного просто невозможно, в основном по причине отсутствия компактного источника электрического тока или же из-за сложности производства и обслуживания, но при этом лежат на пыльной полке и ждут своего времени множество интереснейших проектов.

Пушка Гаусса


Начать именно с этого образца хочется по той причине, что он достаточно простой, ну и потому, что есть и собственный небольшой опыт в попытке создания такого оружия, и, надо сказать, не самой безуспешной.

Лично я узнал впервые об этом образце оружия вовсе не из игры "Сталкер", хотя именно благодаря ей об этом оружии знают миллионы, и даже не из игры Fallout, а из литературы, а именно из журнала ЮТ. Представленная в журнале пушка Гаусса было самой примитивной и позиционировалась как детская игрушка. Так, само "оружие" состояло из пластиковой трубки с намотанной на ней катушкой медной проволоки, которая играла роль электромагнита при подаче на нее электрического тока. В трубку вкладывался металлический шарик, который при подаче тока стремился притянуть к себе электромагнит. Чтобы шарик не "завис" в электромагните, подача тока была кратковременной, с электролитического конденсатора. Таким образом, до электромагнита шарик разгонялся, а дальше при отключении электромагнита летел уже самостоятельно. К этому всему предлагалась электронная мишень, но не будем скатываться к теме о том, какая раньше была интересная, полезная и главное востребованная литература.

Собственно, описанное выше устройство и есть простейшая пушка Гаусса, но естественно, что подобное устройство явно не может быть оружием, разве что при очень большом и мощном единственном электромагните. Для достижения приемлемых скоростей метаемого снаряда необходимо использовать, если так можно выразиться, ступенчатую систему разгона, то есть на стволе должно быть установлено несколько электромагнитов один за одним. Главной проблемой при создании такого аппарата в домашних условиях является синхронизация работы электромагнитов, так как от этого напрямую зависит скорость метаемого снаряда. Хотя прямые руки, паяльник и чердак или дача со старыми телевизорами, магнитофонами, грампроигрывателями и никакие трудности не страшны. На данный момент, пробежав глазами по сайтам, где люди демонстрируют свое творчество, я заметил, что практически все располагают катушки электромагнитов на самом стволе, грубо говоря, просто наматывают на него катушки. Судя по результатам испытаний таких образцов, далеко от нынешней общедоступной пневматике по эффективности такое оружие не ушло, но для развлекательной стрельбы вполне годное.

Собственно, больше всего меня мучает вопрос, почему катушки все стараются расположить на стволе, куда более эффективнее было бы использовать электромагниты с сердечниками, которые будут направлены этими самыми сердечниками к стволу. Таким образом, можно разместить, скажем, 6 электромагнитов на площади, которую занимал ранее один электромагнит, соответственно это даст больший прирост к скорости метаемого снаряда. Несколько секций таких электромагнитов по всей длине ствола смогут разогнать небольшой кусочек стали до приличных скоростей, правда весить установка будет немало даже без источника тока. Все почему-то стараются и высчитывают время разрядки конденсатора, питающего катушку, для того чтобы согласовать катушки между собой, чтобы они разгоняли снаряд, а не тормозили его. Согласен, сесть и посчитать занятие очень интересное, вообще физика и математика замечательные науки, но почему не согласовать катушки при помощи фото и светодиодов и простейшей схемки, вроде как дефицита особого нет и вполне за умеренную плату можно получить необходимые детали, хотя посчитать, конечно, дешевле. Ну, а источник питания электрическая сеть, трансформатор, диодный мост и несколько электролитических конденсаторов соединенных параллельно. Но даже при таком монстре весом килограмм под 20 без автономного источника электрического тока впечатляющих результатов навряд ли получиться добиться, хотя смотря у кого какая впечатлительность. И не не не, я ничего подобного не делал (опустив голову, водит ногой в тапочке по полу), я вот только ту игрушку из ЮТ мастерил с одной катушкой.

В общем, даже при использовании как какое-то стационарное оружие, скажем тот же пулемет для защиты объекта, не меняющего свое местоположение, такое оружие будет достаточно дорогим, а главное тяжелым и не самым эффективным, если конечно речь идет о разумных габаритах, а не о монстре с пятиметровым стволом. С другой же стороны, очень высокая теоретическая скорострельность и боеприпасы по цене копейка за полтонны ну очень уж привлекательно выглядят.

Таким образом, для пушки Гаусса основной проблемой является то, что электромагниты имеют большой вес, ну и как всегда требуется источник электрического тока. В целом, разработку именно оружия на основе пушки Гаусса никто не ведет, есть проект по запуску небольших спутников, но он скорее теоретический и уже давно не развивается. Интерес к пушке Гаусса поддерживается только благодаря кинематографу и компьютерным играм, да еще и энтузиастам, любящим работать головой и руками, которых в наше время, к сожалению, не так много. Для оружия есть более практичное устройство, которое потребляет электрический ток, хотя о практичности тут можно поспорить, но в отличии от пушки Гаусса тут есть определенные сдвиги.

RailGun или по-нашему Рельсотрон

Это оружие не менее известно, чем пушка Гаусса, за что нужно сказать спасибо компьютерным играм и кинематографу, правда если с принципом работы пушки Гаусса знакомы все кто заинтересовался этим видом оружия, то с рельсотроном не все понятною.Попробуем разобраться что это за зверь, как он работает и какие у него перспективы.

Началось все в далеком 1920 году, именно в этом году был получен патент на данный образец оружия, причем оружия изначально, никто не планировал использовать изобретение в мирных целях. Автором рельсотрона, или более известного рэилгана, является француз – Андрэ Луи-Октав Фошон Виепле. Несмотря на то, что конструктору удалось достигнуть некоторого успеха по поражению живой силы противника, его изобретением никто не заинтересовался, уж очень громоздкой была конструкция, а результат был так себе и вполне сопоставимый с огнестрельным оружием. Так почти двадцать лет изобретение было заброшено, до тех пор пока не нашлась страна, которая позволяла тратить себе огромные средства для развития науки, и особенно той части науки, которая могла убивать. Речь идет о фашисткой Германии. Именно там французским изобретением заинтересовался Иоахим Хэнслер. Под руководством ученого была создана значительно более эффективная установка, которая имела длину всего два метра, но разгоняла метаемый снаряд до скорости более 1200 метров в секунду, правда сам метаемый снаряд был выполнен из алюминиевого сплава и имел вес 10 грамм. Тем не менее, этого было более чем достаточно для ведения огня, как по живой силе противника, так и по небронированной технике. В частности свою разработку конструктор позиционировал как средство борьбы с воздушными целями. Более высокая скорость полета метаемого снаряда, в сравнении с огнестрельным оружием, делала работу конструктора весьма перспективной, так как вести огонь по движущимся, причем движущимся постоянно, целям было намного проще. Однако конструкция требовала доработки и конструктор проделал очень большой труд по совершенствованию данного образца, несколько изменив начальный принцип его работы.

В первом образце все было более или менее понятно и ничего фантастического не было. Имелось две рельсы, которые были «стволом» оружия. Между ними укладывался сам метаемый снаряд, который изготавливался из пропускающего электрический ток материала, в результате при подаче тока на рельсы, под воздействием силы Лоренца, метаемый снаряд стремился вперед и в идеальных условиях, которых, естественно, никогда не добиться, его скорость могла приближаться к скорости света. Так как существовало множество факторов, которые мешали разогнать сметаемый снаряд до таких скоростей, то конструктор решил от некоторых из них избавиться. Главным достижением стало то, что в последних наработках уже не метаемый снаряд замыкал цепь, делало это электрическая дуга позади метаемого снаряда, собственно это решение используется до сих пор, только совершенствуясь. Таким образом, конструктору удалось приблизиться к скорости полета метаемого снаряда равной 3 километрам в секунду, в это был 1944 год прошлого века. К счастью конструктору не хватило времени на то, чтобы завершить свою работу и решить те проблемы которые имело оружие, а их было не мало. Причем настолько не мало, что эту разработку спихнули американцам и работ в этом направлении в Советском Союзе не проводили. Только в семидесятых годах начали развивать у нас данное оружие и на данный момент мы, к сожалению, отстаем, ну по крайней мере по общедоступным данным. В США же уже давно достигли скорости в 7,5 километров в секунду и не собираются останавливаться. Работы на данный момент ведутся в направлении развития рельсотрона как средства противовоздушной обороны, так что как ручное огнестрельное оружие рельсотрон все еще фантастика или очень далекое будущее.

Главной проблемой рельсотрона является то, что для достижения максимальной эффективности нужно использовать рельсы с очень малым сопротивлением. На данный момент они покрыты серебром, что вроде бы не так накладно в финансовом плане, однако с учетом того, что «ствол» оружия длиной совсем не один и не два метра, это уже существенные затраты. Кроме того, после нескольких выстрелов рельсы нужно менять и восстанавливать, что деньги, да и скорострельность такого оружия остается очень низкой. Кроме того, не стоит забывать о том, что сами рельсы стараются оттолкнуться друг от друга под воздействием все тех же сил, которые разгоняют метаемый снаряд. По этой причине конструкция должна обладать достаточной прочностью, но в тоже время сами рельсы должны иметь возможность быстрой замены. Но не это главная проблема. Для выстрела требуется огромное количество энергии, так что одним автомобильным аккумулятором за спиной не отделаешься, тут уже нужны более мощные источники электрического тока, что ставит под вопрос мобильность такой системы. Так в США планируют устанавливать подобные установки на эсминцах, причем уже говорят об автоматизации подачи метаемых снарядов, охлаждении и прочих прелестях цивилизации. На данный момент заявленная дальность стрельбы по наземным целям составляет 180 километров, о воздушных пока молчат. Наши же конструкторы пока еще не определились с тем, где они будут применять свои наработки. Однако по обрывкам информации можно сделать вывод, что как самостоятельное оружие рельсотрон пока использоваться не будет, а вот как средство, которое дополняет уже существующее дальнобойное оружие, позволяя существенно добавить к скорости метаемого снаряда желаемые пару сотен метров в секунду, рельсотрон имеет хорошие перспективы, да и стоимость такой разработки будет куда ниже нежели какие-то мегапушки на собственных кораблях.

Остается только вопрос стоит ли считать нас в этом вопросе отставшими, так как обычно то, что работает плохо стараются пропиарить всеми возможными способами «шоб усе боялись», а вот то, что действительно эффективно, но его время еще не пришло, закрыто за семью замками. Ну, по крайней мере, в это хочется верить.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

1.Введение.

Электромагнитная пушка Гаусса известна всем любителям компьютерных игр и фантастики. Назвали ее в честь немецкого физика Карла Гаусса, исследовавшего принципы электромагнетизма. Но так ли уж далеко смертельное фантастическое оружие от реальности?

Из курса школьной физики мы узнали, что электрический ток, проходя по проводникам, создает вокруг них магнитное поле. Чем больше ток, тем сильнее магнитное поле. Наибольший практический интерес представляет собой магнитное поле катушки с током, иначе говоря, катушки индуктивности (соленоид). Если катушку с током подвесить на тонких проводниках, то она установится в то же положение, в котором находится стрелка компаса. Значит, катушка индуктивности имеет два полюса - северный и южный.

Пушка Гаусса состоит из соленоида, внутри которого находится ствол из диэлектрика. В один из концов ствола вставляется снаряд, сделанный из ферромагнетика. При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. На концах снаряда при этом образуются полюса, симметричные полюсам катушки, из-за чего после прохода центра соленоида снаряд может притягиваться в обратном направлении и тормозиться.

Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электрические конденсаторы. Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индукция магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала.

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия. Это отсутствие гильз, неограниченность в выборе начальной скорости и энергии боеприпаса, возможность бесшумного выстрела, в том числе без смены ствола и боеприпас. Относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей). Теоретически, большая надежность и износостойкость, а также возможность работы в любых условиях, в том числе космического пространства. Также возможно применение пушек Гаусса для запуска легких спутников на орбиту.

Однако, несмотря на кажущуюся простоту, использование её в качестве оружия сопряжено с серьёзными трудностями:

Низкий КПД - около 10 %. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает 30%. Поэтому пушка Гаусса по силе выстрела проигрывает даже пневматическому оружию. Вторая трудность - большой расход энергии и достаточно длительное время накопительной перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания. Можно значительно увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения, что значительно уменьшит мобильность пушки Гаусса.

Высокое время перезаряда между выстрелами, то есть низкая скорострельность. Боязнь влаги, ведь намокнув, она поразит током самого стрелка.

Но главная проблема это мощные источники питания пушки, которые на данный момент являются громоздкими, что влияет на мобильность

Таким образом, на сегодняшний день пушка Гаусса для орудий с малой поражающей способностью (автоматы, пулеметы и т. д.) не имеет особых перспектив в качестве оружия, так как значительно уступает другим видам стрелкового вооружения. Перспективы появляются при использовании ее как крупнокалиберного орудия военно-морского. Так, например, в 2016 году ВМС США приступят к испытаниям на воде рельсотрона. Рельсотрон, или рельсовая пушка — орудие, в котором снаряд выбрасывается не с помощью взрывчатого вещества, а с помощью очень мощного импульса тока. Снаряд располагается между двумя параллельными электродами — рельсами. Снаряд приобретает ускорение за счёт силы Лоренца, которая возникает при замыкании цепи. С помощью рельсотрона можно разогнать снаряд до гораздо больших скоростей, чем с помощью порохового заряда.

Однако, принцип электромагнитного ускорения масс можно с успехом использовать на практике, например, при создании строительных инструментов - актуальное и современное направление прикладной физики. Электромагнитные устройства, преобразующие энергию поля в энергию движения тела, в силу разных причин ещё не нашли широкого применения на практике, поэтому имеет смысл говорить о новизне нашей работы.

1.1Актуальность проекта : данный проект является междисциплинарным и охватывает большое количество материала, изучив который возникла идея создать самим действующую модель пушки Гаусса.

1.2 Цель работы : изучить устройство электромагнитного ускорителя масс (пушки Гаусса), а также принципы его действия и применение. Собрать действующую модель Пушки Гаусса и определить скорость полета снаряда и его импульс.

Основные задачи :

1. Рассмотреть устройство по чертежам и макетам.

2. Изучить устройство и принцип действия электромагнитного ускорителя масс.

3. Создать действующую модель.

4. Определить скорость полета снаряда и его импульс.

Практическая часть работы :

Создание функционирующей модели ускорителя масс в условиях дома.

1.3Гипотеза : возможно ли создание простейшей функционирующей модели Пушки Гаусса в условиях дома?

2. Кратко о самом Гауссе.

Карл Фридрих Гаусс (1777-1855) — немецкий математик, астроном, геодезист и физик. Для творчества Гаусса характерна органическая связь между теоретической и прикладной математикой, широта проблематики. Труды Гаусса оказали большое влияние на развитие алгебры (доказательство основной теоремы алгебры), теории чисел (квадратичные вычеты), дифференциальной геометрии (внутренняя геометрия поверхностей), математической физики (принцип Гаусса), теории электричества и магнетизма, геодезии (разработка метода наименьших квадратов) и многих разделов астрономии.

Карл Гаусс родился 30 апреля 1777, Брауншвейг, ныне Германия. Скончался 23февраля 1855, Геттинген, Ганноверское королевство, ныне Германия. Еще при жизни он был удостоен почетного титула «принц математиков». Он был единственным сыном бедных родителей. Школьные учителя были так поражены его математическими и лингвистическими способностями, что обратились к герцогу Брауншвейгскому с просьбой о поддержке, и герцог дал деньги на продолжение обучения в школе и в Геттингенском университете (в 1795-98). Степень доктора Гаусс получил в 1799 в университете Хельмштедта

Открытия в области физики

В 1830-1840 годы Гаусс много внимания уделяет проблемам физики. В 1833 в тесном сотрудничестве с Вильгельмом Вебером, Гаусс строит первый в Германии электромагнитный телеграф. В 1839 выходит сочинение Гаусса «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния», в которой излагает. основные положения теории потенциала и доказывает знаменитую теорему Гаусса—Остроградского. Работа «Диоптрические исследования» (1840) Гаусса посвящена теории построения изображений в сложных оптических системах

3. Формулы, связанные с принципом действия пушки.

Кинетическая энергия снаряда

где: — масса снаряда, — его скорость

Энергия, запасаемая в конденсаторе

где: — напряжение конденсатора, — ёмкость конденсатора

Время разряда конденсаторов

Это время, за которое конденсатор полностью разряжается:

Время работы катушки индуктивности

Это время, за которое ЭДС катушки индуктивности возрастает до максимального значения (полный разряд конденсатора) и полностью падает до 0.

где: — индуктивность, — ёмкость

Одним из основных элементом пушки Гаусса это электрический конденсатор. Конденсаторы бывают полярные и неполярные - практически все конденсаторы большой емкости, используемые в магнитных ускорителях, электролитические и являются полярными. Т. е. очень важно правильное его подключение - положительный заряд подаем к выводу “+”, а отрицательный к “-”. Алюминиевый корпус электролитического конденсатора, кстати, так же является выводом “-”. Зная емкость конденсатора и его максимальное напряжение можно найти энергию, которую может накапливать этот конденсатор

4. Практическая часть

Наша катушка индуктивностью С имеет 30 витков (3 слоя по 10 витков, каждый). Два конденсатора суммарной емкостью 450 мкФ. Собрали модель по следующей схеме: см. Приложение 1.

Определение скорости полета снаряда, вылетающего из «ствола» нашей модели, мы осуществили опытным путём с помощью баллистического маятника. В основе опыта лежат законы сохранения импульса и энергии.Поскольку скорость полёта пули достигает значительной величины, прямое измерение скорости, то есть определение времени, за которое пуля проходит известное нам расстояние, требует наличия специальной аппаратуры. Мы измеряли скорость пули косвенным методом, используя неупругое соударение - соударение, в результате которого столкнувшиеся тела соединяются вместе и продолжают движение как одно целое. Летящий снаряд испытывает неупругий удар со свободным телом большей массы. После удара тело начинает двигаться со скоростью во столько же раз меньше скорости пули, во сколько масса пули меньше массы тела.

Неупругий удар характеризуется тем, что потенциальная энергия упругой деформации не возникает, кинетическая энергия тел полностью или частично превращается во внутреннюю энергию. После удара столкнувшиеся тела либо движутся с одинаковыми скоростями, либо покоятся. При абсолютно неупругом ударе выполняется закон сохранения импульса:

где - скорость тел после взаимодействия.

Закон сохранения импульса (количества движения) применяется, если взаимодействующие тела образуют изолированную механическую систему, то есть такую систему, на которую не действуют внешние силы, либо внешние силы, действующие на каждое из тел, уравновешивают друг друга, либо проекции внешних сил на некоторое направление равны нулю.

При неупругом ударе кинетическая энергии не сохраняется, поскольку часть кинетической энергии снаряда преобразуется во внутреннюю соударяющихся тел но закон сохранения полной механической энергии выполняется и можно записать:

где - приращение внутренней энергии взаимодействующих тел.

4.1 Методика исследования.

Баллистический маятник, который использовался нами, представляет собой деревянный брусок со слоем пластилина. Мишень М подвешена на двух длинных практически нерастяжимых нитях. На мишени укреплена лазерная указка, луч которой при отклонении маятника (после удара снаряда) перемещается вдоль горизонтальной шкалы (рис. 1).

На некотором расстоянии от маятника располагается пушка Гаусса. После удара снаряд массой m застревает в мишени M . Система «снаряд-мишень» изолирована по горизонтальному направлению. Так как длина l нитей много больше линейных размеров мишени, то система «снаряд-мишень» может рассматриваться как математический маятник. После попадания снаряда центр массы системы «снаряд-мишень» поднимается на высоту h .

На основании закона сохранения импульса в проекции на ось x (см. рис. 1) имеем:

Где - скорость снаряда, - скорость снаряда и маятника.

Пренебрегая трением в подвес маятника и силой сопротивления воздуха, на основе закона сохранения энергии можно записать:

где - высота подъёма системы после удара.

Величина h может быть определена из измерений отклонения маятника от положения равновесия после попадания пули в мишень (рис. 2):

где a - угол отклонения маятника от положения равновесия.

Для малых углов отклонения:

где - горизонтальное смещение маятника.

Подставляя последнюю формулу к проекции закона сохранения импульса на ось, находим:

4.2 Результаты измерения.

Массу m снаряда мы определили с помощью взвешивания на механических лабораторных весах:

m = 3 г. = 0, 003 кг.

Масса M мишени со слоем пластилина и лазерной указкой приведены в описании лабораторной установки.

M = 297 г. = 0, 297 кг.

Длины нитей подвеса должны быть одинаковы, а ось вращения строго горизонтальна.

В этой части мы измерили с помощью линейки длины нитей.

l = 147 см = 1,47 м.

После выстрела заряженной снарядом пушки Гаусса факт попадания пули в центр маятника определяется визуально.

Для проведения дальнейших вычислений отмечаем на шкале положения n 0 светового указателя в состоянии равновесия мишени и положения n светового указателя при максимальном отклонении маятника и находим смещение S = (n - n 0) маятника.

Измерения проводились 5 раз. При этом повторные выстрелы осуществлялись только по неподвижной мишени. Результаты измерений приведены ниже:

S ср = = 14 мм = 0, 014 м,

и вычислена скорость ʋ 0 снаряда по формуле.

U 0 = =12,96 км/ч

Определение погрешностей измерений. Определение производится по формуле: , где l₀ - среднее значение длин, Δ l - среднее значение погрешности. Мы уже определили среднее значение длин в предыдущих этапах, поэтому нам остаётся определить среднее значение погрешности. Определять мы его будем по формуле:Δ l = Теперь можем приписать значение длины с погрешностью:Нахождение импульса снаряда. Определение импульса производится по формуле: , где - скорость снаряда.Подставляем значения:

5.Заключение.

Целью нашей работы являлось изучение устройства электромагнитного ускорителя масс (пушки Гаусса), а также принципы его действия и применение, а также изготовление действующей модели Пушки Гаусса и определение скорости полета снаряда. Изложенные нами результаты показывают, что нами была изготовлена экспериментальная действующая модель электромагнитного ускорителя масс (пушки Гаусса). При этом нами были упрощены схемы, имеющиеся в интернете и модель была адаптирована к работе в стандартной промышленной сети переменного тока. Проведённая нами работа позволяет сделать следующие выводы:

1. Собрать работающий прототип электромагнитного ускорителя масс в домашних условиях вполне реально.

2. Использование электромагнитного ускорения масс имеет большие перспективы в будущем.

3. Электромагнитное оружие может стать достойной заменой крупнокалиберному огнестрельному орудию, Особенно это будет возможным при создании компактных источников энергии.

6. Информационные ресурсы :

Википедия http://ru.wikipedia.org

Новое электромагнитное оружие 2010 http://vpk. name/news/40378_novoe_elektromagnitnoe_oruzhie_vyizyivaet_vseobshii_interes. html

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода