Вконтакте Facebook Twitter Лента RSS

Изменение температуры воздуха с высотой. Как изменяется температура воздуха с высотой? Почему с высотой понижается температура в горах

Температура воздуха в целом в тропосфере уменьшается в среднем на 0,6 °С на каждые 100 м высоты. Однако в нижнем слое (до 100-150 м) распределение температуры может быть различным: она может увеличиваться, оставаться постоянной или уменьшаться.

Когда температура с удалением от деятельной поверхности уменьшается, такое распределение, как отмечалось в разд. 3.4, называется инсоляцией. В воздухе над сушей это бывает в теплое время года в дневные часы при ясной погоде. При инсоляции создаются благоприятные условия для развития тепловой конвекции (см. разд. 4.1) и образования облаков.

Когда температура воздуха с высотой не меняется, такое состояние называется «изотермия». Изотермия температуры наблюдается в пасмурную тихую погоду.

Если температура воздуха увеличивается с удалением от поверхности, такое распределение температуры называют инверсией.

В зависимости от условий образования инверсий в приземном слое атмосферы их подразделяют на радиационные и адвективные.

Радиационные инверсии возникают при радиационном выхолаживании деятельной поверхности. Такие инверсии в теплый период года образуются ночью, а зимой наблюдаются также и днем. Поэтому радиационные инверсии подразделяют на ночные (летние) и зимние.

Ночные инверсии устанавливаются при ясной тихой погоде после перехода радиационного баланса через ноль за 1,0... 1,5 ч до захода Солнца. В течение ночи они усиливаются и перед восходом Солнца достигают наибольшей мощности. После восхода Солнца деятельная поверхность и воздух прогреваются, что разрушает инверсию. Высота слоя инверсии чаще всего составляет несколько десятков метров, но при определенных условиях (например, в замкнутых долинах, окруженных значительными возвышениями) может достигать 200 м и более. Этому способствует сток охлажденного воздуха со склонов в долину. Облачность ослабляет инверсию, а ветер скоростью более

2,5...3,0 м/с разрушает ее. Под пологом густого травостоя, посева, а также сада летом инверсии наблюдаются и днем (рис. 4.4, б).

Ночные радиационные инверсии весной и осенью, а местами и летом могут вызывать снижение температуры поверхности почвы и воздуха до отрицательных значений (заморозки), что вызывает повреждение культурных растений.

Зимние инверсии возникают в ясную тихую погоду в условиях короткого дня, когда охлаждение деятельной поверхности непрерывно

Рис. 4.4.

1 - ночью; 2 - днем увеличивается с каждым днем. Они могут сохраняться несколько недель, немного ослабевая днем и снова усиливаясь ночью.

Особенно усиливаются радиационные инверсии при резко неоднородном рельефе местности. Охлаждающийся воздух стекает в низины и котловины, где ослабленное турбулентное перемешивание способствует его дальнейшему охлаждению. Радиационные инверсии, связанные с особенностями рельефа местности, принято называть орографическими. Они опасны для плодовых деревьев и ягодных кустарников, так как температура воздуха при таких инверсиях может понижаться до критической.

Адвективные инверсии образуются при адвекции теплого воздуха на холодную подстилающую поверхность, которая охлаждает прилегающие к ней слои надвигающегося воздуха. К этим инверсиям относят также и снежные инверсии. Они возникают при адвекции воздуха, имеющего температуру выше О °С, на поверхность, покрытую снегом. Понижение температуры в самом нижнем слое в этом случае связано с затратами тепла на таяние снега.

Вопрос 1. От чего зависит распределение тепла по поверхности Земли?

Распределение температуры воздуха над поверхностью Земли зависит от следующих четырех основных факторов: 1) широты, 2) высоты поверхности суши, 3) типа поверхности, в особенности от расположения суши и моря, 4) переноса тепла ветрами и течениями.

Вопрос 2. В каких единицах измеряется температура?

В метеорологии и в быту в качестве единицы измерения температуры используется шкала Цельсия или градусы Цельсия.

Вопрос 3. Как называется прибор для измерения температуры?

Термометр - прибор для измерения температуры воздуха.

Вопрос 4. Как изменяется температура воздуха в течение суток, в течение года?

Изменение температуры зависит от вращения Земли вокруг оси и соответственно от изменения количества солнечного тепла. Поэтому температура воздуха повышается или понижается в зависимости от расположения Солнца на небе. Изменение температуры воздуха в течение года зависит от положения Земли на орбите при вращении вокруг Солнца. Летом земная поверхность хорошо нагревается из-за прямого падения солнечных лучей.

Вопрос 5. При каких условиях в конкретной точке на поверхности Земли температура воздуха будет оставаться всегда постоянной?

Если Земля не будет вращаться вокруг солнца и своей оси и не будет переноса воздуха ветрами.

Вопрос 6. По какой закономерности меняется температура воздуха с высотой?

При подъёме над поверхностью Земли температура воздуха в тропосфере понижается на 6 С на каждом километре подъёма.

Вопрос 7. Какая существует связь между температурой воздуха и географической широтой места?

Количество света и тепла, получаемое земной поверхностью, постепенно убывает в направлении от экватора к полюсам из-за изменения угла падения солнечных лучей.

Вопрос 8. Как и почему меняется температура воздуха в течение суток?

Солнце встаёт на востоке, поднимается всё выше и выше, а затем начинает опускаться, пока не зайдёт за горизонт до следующего утра. Суточное вращение Земли приводит к тому, что угол падения солнечных лучей на поверхность Земли меняется. А значит, меняется и уровень нагрева этой поверхности. В свою очередь, и воздух, который нагревается от поверхности Земли, получает в течение дня разное количество тепла. А ночью количество тепла, получаемое атмосферой, ещё меньше. Вот в чём причина суточной изменчивости. В течение суток температура воздуха повышается с рассвета до двух часов дня, а потом начинает понижаться и достигает минимума за час до рассвета.

Вопрос 9. Что такое амплитуда температур?

Разность самой высокой и самой низкой температуры воздуха за какой-либо промежуток времени называется амплитудой температур.

Вопрос 11. Почему самая высокая температура наблюдается в 14 ч, а самая низкая - в «предрассветный час»?

Потому что в 14 часов Солнце максимально нагревает землю, а в предрассветный час Солнце еще не взошло, а за ночь температура все время опускалась.

Вопрос 12. Всегда ли можно ограничиться знаниями только о средних значениях температуры?

Нет, так как в определенных ситуациях необходимо знать точную температуру.

Вопрос 13. Для каких широт и почему характерны самые низкие средние значения температуры воздуха?

Для полярных широт, поскольку солнечные лучи доходят до поверхности под наименьшим углом.

Вопрос 14. Для каких широт и почему характерны самые высокие средние значения температуры воздуха?

Самые высокие средние значения температуры воздуха характерны для тропиков и экватора, так как там самый большой угол падения солнечных лучей.

Вопрос 15. Почему температура воздуха с высотой уменьшается?

Потому, что воздух прогревается от поверхности Земли, когда она имеет плюсовую температуру и получается чем выше воздушный слой, тем меньше он прогревается.

Вопрос 16. Как вы думаете, какой месяц года отличается минимальными средними температурами воздуха в Северном полушарии? В Южном полушарии?

Январь в среднем, самый холодный месяц года на большей части Северного полушария Земли, и самый теплый месяц года на большей части Южного полушария. Июнь в среднем, самый холодный месяц года на большей части Южного полушария.

Вопрос 17. На какой из перечисленных параллелей высота полуденного солнца будет наибольшей: 20° с. ш., 50° ю. ш., 80 с. ш.?

Вопрос 18. Определите температуру воздуха на высоте 3 км, если у поверхности Земли она составляет +24 °С?

tн=24-6,5*3=4,5 ºС

Вопрос 19. Рассчитайте среднее значение температуры по данным, представленным в таблице.

(5+0+3+4+7+10+5) : 6 = 4,86; (-3 + -1) : 2 = -2; 4,86 - 2 = 2,86

Ответ: средняя температура = 2,86 градусов.

Вопрос 20. Используя приведённые в задании 2 табличные данные, определите амплитуду температур за указанный период.

Амплитуда температур за указанный период составит 13 градусов.

  • 9. Поглощение и рассеивание солнечной радиации в атмосфере
  • 10. Суммарная радиация. Распределение суммарной солнечной радиации на земной поверхности. Отраженная и поглощенная радиации. Альбедо.
  • 11. Радиационный баланс земной поверхности. Тепловое излучение земной поверхности.
  • 12. Тепловой баланс атмосферы.
  • 13. Изменение температуры воздуха с высотой.
  • 17. Характеристики влажности воздуха. Суточный и годовой ход парциального давления водяного пара и относительной влажности.
  • 21. …Мгла. Условия образования туманов. Туманы охлаждения и испарения.
  • 22. Образование осадков: конденсация, сублимация и коагуляция. Классификация осадков по агрегатному состоянию и характеру выпадения (ливневые, обложные, моросящие).
  • 23. Типы годового хода осадков.
  • 24. Географическое распределение осадков. Коэффициент увлажнения.
  • 23. Вертикальный барический градиенты. Годовой ход атмосферного давления.
  • 27. Ветер, его скорость и направление. Роза ветров.
  • 28. Силы, действующие на ветер: барический градиент, Кориолиса, трения, центробежная. Геострофический и градиентный ветер.
  • 29. Воздушные массы. Классификация воздушных масс. Фронты в атмосфере. Климатологические фронты.
  • 30. Типы фронтов: теплый, холодный, фронты окклюзии
  • 31. Модель оца: полярное, умеренное, тропическое звено.
  • 32. Географическое распределение атмосферного давления. Центры действия атмосферы: постоянные, сезонные.
  • 33. Циркуляция в тропиках. Пассаты. Внутритропическая зона конвергенции. Тропические циклоны, их возникновение и распространение.
  • 34. Циркуляция внетропических широт. Циклоны и антициклоны, их возникновение, эволюция, перемещение. Погода в циклонах и антициклонах.
  • 35. Муссоны. Тропические и внетропические муссоны.
  • 36. Местные ветра: бризы, горно-долинные, фен, бора, ледниковые, стоковые.
  • 37. Прогноз погоды: кратко-, средне- и долгосрочный.
  • 38. Понятие о климате. Макро-, мезо- и микроклимат. Климатообразующие процессы (теплооборот, влагооборот, атмосферная циркуляция) и географические факторы климата.
  • 39. Влияние географической широты, распределения суши и моря, океанических течений на климат. Феномен Эль-Ниньо.
  • 40. Влияние рельефа, растительного и снежного покрова на климат.(в 39 вопросе) Воздействие человека на климат: климат города.
  • 41. Классификации климатов Земли. Классификация климата согласно Кеппена-Треверта.
  • 42. Характеристика типов климата экваториального и субэкваториального поясов (согласно классификации б.П.Алисова).
  • 43. Характеристика типов климата тропического и субтропического поясов (согласно классификации б.П.Алисова).
  • 44. Характеристика типов климата экваториального и субэкваториального поясов (согласно классификации б.П.Алисова).
  • 45. Характеристика типов климата умеренного, субполярных и полярных поясов (согласно классификации б.П.Алисова).
  • 46. Климат Беларуси: солнечная радиация, циркуляция атмосферы, распределение температуры и осадков. Времена года.
  • 47. Климатические области Беларуси. Агроклиматическое районирование (по а.Х. Шкляру).
  • 48. Причины изменения климата. Методы исследований климата прошлого. Палеоклиматология.
  • 49. Изменение климата в геологической истории Земли: докембрии, фанерозое, плейстоцене и голоцене.
  • 50. Антропогенные изменения климата. Социально-экономические последствия потепления климата.
  • 13. Изменение температуры воздуха с высотой.

    Распределение температуры в атмосфере по вертикали положено в основу разделения атмосферы на пять основных слоев. Для сельскохозяйственной метеорологии наибольший интерес представляют закономерности изменения температуры в тропосфере, особенно в ее приземном слое.

    Вертикальный градиент температуры

    Изменение температуры воздуха на 100 м высоты называется вертикальным градиентом температуры (ВГТ зависит от ряда факторов: времени года (зимой он меньше, летом больше), времени суток (ночью меньше, днем больше), расположения воздушных масс (если на каких-либо высотах над холодным слоем воздуха располагается слой более теплого воздуха, то ВГТ меняет знак на обратный). Среднее значение ВГТ в тропосфере составляет около 0,б°С/100 м.

    В приземном слое атмосферы ВГТ зависит от времени суток, погоды и от характера подстилающей поверхности. Днем ВГТ почти всегда положителен, особенно летом над сушей, но при ясной погоде он в десятки раз больше, чем при пасмурной. В ясный полдень летом температура воздуха у поверхности почвы может на 10 °С и более превышать температуру на высоте 2 м. Вследствие этого ВГТ в данном двухметровом слое в пересчете на 100 м составляет более 500°С/100 м. Ветер уменьшает ВГТ, поскольку при перемешивании воздуха его температура на разных высотах выравнивается. Уменьшают ВГТ облачность и осадки. При влажной почве резко снижается ВГТ в приземном слое атмосферы. Над оголенной почвой (паровое поле) ВГТ больше, чем над развитым посевом или лугом. Зимой над снежным покровом ВГТ в приземном слое атмосферы невелик и нередко отрицателен.

    С высотой влияние подстилающей поверхности и погоды на ВГТ ослабевает и ВГТ уменьшается по сравнению с его значениями в приземном слое воздуха. Выше 500 м затухает влияние суточного хода температуры воздуха. На высотах от 1,5 до 5-6км ВГТ находится в пределах 0,5-0,6° С/100 м. На высоте 6-9км ВГТ возрастает и составляет 0,65-0,75° С/100 м. В верхнем слое тропосферы ВГТ снова уменьшается до 0,5-0,2° С/100 м.

    Данные о ВГТ в различных слоях атмосферы используют при составлении прогнозов погоды, при метеорологическом обслуживании реактивных самолетов и при выводе спутников на орбиту, а также при определении условий выброса и распространения промышленных отходов в атмосфере. Отрицательный ВГТ в приземном слое воздуха ночью весной и осенью указывает на возможность заморозка.

    17. Характеристики влажности воздуха. Суточный и годовой ход парциального давления водяного пара и относительной влажности.

    Упругость водяного пара в атмосфере - парциальное давление водяного пара, находящегося в воздухе

    В атмосфере Земли содержится около 14 тыс. км 3 водяного пара. Вода попадает в атмосферу в результате испарения с подстилающей поверхности. В атмосфере влага конденсируется, перемещается воздушными течениями и вновь выпадает в виде разнообразных осадков на поверхность Земли, совершая, таким образом, постоянный круговорот воды. Круговорот воды возможен, благодаря, способности воды находится в трёх состояниях (жидком, твердом, газообразном (парообразном)) и легко переходить из одного состояния в другое. Влагооборот является одним из важнейших циклов климатообразования.

    Для количественного выражения содержания водяного пара в атмосфере употребляют различные характеристики влажности воздуха. Основные характеристики влажности воздуха – упругость водяного пара и относительная влажность.

    Упругость (фактическая) водяного пара (е) – давление водяного пара находящегося в атмосфере выражается в мм.рт.ст. или в миллибарах (мб). Численно почти совпадает с абсолютной влажностью (содержанием водяного пара в воздухе в г/м 3), поэтому упругость часто называют абсолютной влажностью. Упругость насыщения (максимальная упругость) (Е) – предел содержания водяного пара в воздухе при данной температуре. Значение упругости насыщения зависит от температуры воздуха, чем выше температура, тем больше он может содержать водяного пара.

    Суточный ход влажности (абсолютной) может быть простым и двойным. Первый совпадает с суточным ходом температуры, имеет один максимум и один минимум и характерен для мест с достаточным количеством влаги. Он наблюдается над океанами, а зимой и осенью – над сушей.

    Двойной ход имеет два максимума и два минимума и характерен для летнего сезона на суше: максимумы в 9 и 20-21 часа, а минимумы в 6 и в 16 часов.

    Утренний минимум перед восходом Солнца объясняется слабым испарением в ночные часы. С увеличением лучистой энергии испарение растет, упругость водяного пара достигает максимума около 9 часов.

    В результате разогрева поверхности развивается конвекция воздуха, перенос влаги происходит быстрее, чем поступление ее с испаряющейся поверхности, поэтому около 16 часов возникает второй минимум. К вечеру конвекция прекращается, а испарение с нагретой поверхности еще достаточно интенсивно и в нижних слоях накапливается влага, обеспечивая второй максимум около 20-21 часа.

    Годовой ход упругости водяного пара соответствует годовому ходу температуры. Летом упругость водяного пара больше, зимой – меньше.

    Суточный и годовой ход относительной влажности почти всюду противоположен ходу температуры, т. к. максимальное влагосодержание с повышением температуры растет быстрее упругости водяного пара. Суточный максимум относительной влажности наступает перед восходом Солнца, минимум – в 15-16 часов.

    В течение года максимум относительной влажности, как правило, приходится на самый холодный месяц, минимум – на самый теплый месяц. Исключение составляют регионы, в которых летом дуют влажные ветры с моря, а зимой – сухие с материка.

    Абсолютная влажность = количество воды в данном объеме воздуха, измеряется в (г/м³)

    Относительная влажность = процент фактического количества воды (давления водяного пара) к давлению паров воды при этой температуре в условиях насыщения. Выражается в процентах. Т.е. 40% влажность означает, что при этой температуре всего воды может испариться еще 60 %.

    В тропосфере температура воздуха с высотой понижается, как отмечалось, в среднем на 0,6 "С на каждые 100 м высоты. Одна­ко в приземном слое распределение температуры может быть различным: она может и уменьшаться, и увеличиваться, и оста­ваться постоянной. Представление о распределении температу­ры с высотой дает вертикальный градиент температуры (ВГТ):

    ВГТ = (/„ - / B )/(ZB -

    где /н - /в - разность температур на нижнем и верхнем уровнях, °С; ZB - ZH- раз­ность высот, м. Обычно ВГТ рассчитывают на 100 м высоты.

    В приземном слое атмосферы ВГТ может в 1000 раз превы­шать средний для тропосфер

    Значение ВГТ в приземном слое зависит от погодных условий (в ясную погоду он больше, чем в пасмурную), времени года (ле­том больше, чем зимой) и времени суток (днем больше, чем но­чью). Ветер уменьшает ВГТ, поскольку при перемешивании воз­духа его температура на разных высотах выравнивается. Над влажной почвой резко снижается ВГТ в приземном слое, а над оголенной почвой (паровое поле) ВГТ больше, чем над густым по­севом или лугом. Это обусловлено различиями в температурном режиме этих поверхностей (см. гл. 3).

    В результате определенного сочетания этих факторов ВГТ вблизи поверхности в пересчете на 100 м высоты может состав­лять более 100 °С/100 м. В таких случаях и возникает тепловая конвекция.

    Изменение температуры воздуха с высотой определяет знак ВГТ: если ВГТ > 0, то температура уменьшается с удалением от деятельной поверхности, что обычно бывает днем и летом (рис. 4.4); если ВГТ = 0, то температура с высотой не меняется; если ВГТ < 0, то температура увеличивается с высотой и такое рас­пределение температуры называют инверсией.


    В зависимости от условий образования инверсий в призем­ном слое атмосферы их подразделяют на радиационные и адвек­тивные.

    1. Радиационные инверсии возникают при радиационном выхолаживании земной поверхности. Такие инверсии в теплый период года образуются ночью, а зимой наблюдаются также и днем. Поэтому радиационные инверсии подразделяют на ноч­ные (летние) и зимние.

    Ночные инверсии устанавливаются при ясной тихой погоде после перехода радиационного баланса через 0 за 1,0...1,5 ч до захода Солнца. В течение ночи они усиливаются и перед восхо­дом Солнца достигают наибольшей мощности. После восхода Солнца деятельная поверхность и воздух прогреваются, что раз­рушает инверсию. Высота слоя инверсии чаще всего составляет несколько десятков метров, но при определенных условиях (на­пример, в замкнутых долинах, окруженных значительными воз­вышениями) может достигать 200 м и более. Этому способствует сток охлажденного воздуха со склонов в долину. Облачность ос­лабляет инверсию, а ветер скоростью более 2,5...3,0 м/с разру­шает ее. Под пологом густого травостоя, посева, а также леса ле­том инверсии наблюдаются и днем.

    Ночные радиационные инверсии весной и осенью, а местами и летом могут вызывать снижение температуры поверхности по­чвы и воздуха до отрицательных значений (заморозки), что вы­зывает повреждение многих культурных растений.

    Зимние инверсии возникают в ясную тихую погоду в условиях короткого дня, когда охлаждение деятельной поверхности не­прерывно увеличивается с каждым днем; они могут сохраняться несколько недель, немного ослабевая днем и снова усиливаясь ночью.

    Особенно усиливаются радиационные инверсии при резко неоднородном рельефе местности. Охлаждающийся воздух сте­кает в низины и котловины, где ослабленное турбулентное пере­мешивание способствует его дальнейшему охлаждению. Радиационные инверсии, связанные с особенностями рельефа мест­ности, принято называть орографическими.

    2. Адвективные инверсии образуются при адвекции (переме­щении) теплого воздуха на холодную подстилающую поверх­ность, которая охлаждает прилегающие к ней слои надвигающе­гося воздуха. К этим инверсиям относят также и снежные ин­версии. Они возникают при адвекции воздуха, имеющего темпе­ратуру выше О "С, на поверхность, покрытую снегом. Понижение температуры в самом нижнем слое в этом случае связано с затратами тепла на таяние снега.

    ПОКАЗАТЕЛИ ТЕМПЕРАТУРНОГО РЕЖИМА В ДАННОЙ МЕСТНОСТИ И ПОТРЕБНОСТИ РАСТЕНИЙ В ТЕПЛЕ

    При оценке температурного режима большой территории или отдельного пункта применяют характеристики температуры за год или за отдельные периоды (вегетационный период, сезон, месяц, декада и сутки). Основные из этих показателей следую­щие.

    Средняя суточная температура - среднее арифметическое из температур, измеренных во все сроки наблюдений. На метеоро­логических станциях Российской Федерации температуру возду­ха измеряют восемь раз в сутки. Суммируя результаты этих из­мерений и деля сумму на 8, получают среднюю суточную темпе­ратуру воздуха.

    Средняя месячная температура - среднее арифметическое из средних суточных температур за все сутки месяца.


    Средняя годовая температура - это среднее арифметическое из средних суточных (или средних месячных) температур за весь год.

    Средняя кодовая температура воздуха дает лишь общее пред­ставление о количестве тепла, она не характеризует годовой ход температуры. Так, средняя годовая температура на юге Ирлан­дии и в степях Калмыкии , расположенных на одной широте, близка (9°С). Но в Ирландии средняя температура января составляет 5...8 "С, и всю зиму здесь зеленеют луга, а в степях Калмыкии средняя температура января -5...-8 °С. Летом же в Ирландии прохладно: 14°С, а средняя температура июля в Калмыкии - 23...26 °С.

    Поэтому для более полной характеристики годового хода тем­пературы в данном месте используют данные о средней темпе­ратуре самого холодного (январь) и самого теплого (июль) меся­цев.

    Однако все осредненные характеристики не дают точного представления о суточном и годовом ходе температуры, т. е. как раз об условиях, особенно важных для сельскохозяйственного производства. Дополнением к средним температурам являются максимальные и минимальные температуры, амплитуда. Напри­мер, зная минимальную температуру в зимние месяцы, можно судить об условиях перезимовки озимых культур и плодово-ягодных насаждений. Данные о максимальной температуре по­казывают зимой частоту оттепелей и их интенсивность, а ле­том - число жарких дней, когда возможно повреждение зерна в период налива и т. д.

    В экстремальных температурах выделяют: абсолютный макси­мум (минимум) - самая высокая (низкая) температура за весь пе­риод наблюдений; средний из абсолютных максимумов (миниму­мов) - среднее арифметическое из абсолютных экстремумов; средний максимум (минимум) - среднее арифметическое из всех экстремальных температур, например, за месяц, сезон, год. При этом их можно рассчитать как за многолетний период наблюде­ний, так и за фактический месяц, год и т. д.

    Амплитуда суточного и годового хода температуры характери­зует степень континентальное™ климата: чем больше амплиту­да, тем климат континентальнее.

    Характеристикой температурного режима в данной местнос­ти за определенный период служат также суммы среднесуточных температур выше или ниже определенного предела. Например, в климатических справочниках и атласах приводят суммы темпе­ратур выше 0, 5, 10 и 15 °С, а также ниже -5 и -10 "С.

    Наглядное представление о географическом распределении показателей температурного режима дают карты, на которых проведены изотермы - линии равных значений температуры или сумм температур (рис. 4.7). Карты, например, сумм тем­ператур используют для обоснования размещения посевов (по­садок) различных по требованиям к теплу культурных расте­ний.

    Для уточнения термических условий, необходимых расте­ниям, используют также суммы дневных и ночных темпера­тур, так как среднесуточная температура и ее суммы нивели­руют термические различия в суточном ходе температуры воз­духа.

    Изучение термического режима раздельно для дня и ночи имеет глубокое физиологическое значение. Известно, что все процессы, происходящие в растительном и животном мире, подвержены природным ритмам, определяемым внешними ус­ловиями, т. е. подчинены закону так называемых «биологичес­ких» часов. Например, по данным (1964), для опти­мальных условий роста тропических растений разница между дневными и ночными температурами должна составлять 3...5°С, для растений умеренного пояса -5...7, а для растений пустынь - 8 °С и более. Изучение дневных и ночных температур приобретает особый смысл для повышения продуктивности сельскохозяйственных растений, которая определяется соотно­шением двух процессов - ассимиляции и дыхания, происходя­щих в качественно разные для растений светлые и темные часы суток.

    В средних дневных и ночных температурах и их суммах кос­венно учитывается широтная изменчивость длины дня и ночи, а также изменение континентальности климата и влияние различ­ных форм рельефа на температурный режим.

    Суммы среднесуточных температур воздуха, близкие для пары метеостанций, размещенных примерно на одной широте, но значительно различающиеся по долготе, т. е. находящиеся в различных условиях континентальности климата, приведены в таблице 4.1.

    В более континентальных восточных районах суммы дневных температур на 200...500 °С больше, а суммы ночных температур на 300°С меньше, чем в западных и особенно морских районах, что объясняет давно известный факт - ускорение раз­вития сельскохозяйственных культур в условиях резко конти­нентального климата.

    Потребность растений в тепле выражают суммами активных и эффективных температур. В сельскохозяйственной метеороло­гии активная температура - это среднесуточная температура воздуха (или почвы) выше биологического минимума развития культуры. Эффективная температура - это среднесуточная тем­пература воздуха (или почвы), уменьшенная на значение биоло­гического минимум.

    Растения развиваются только в том случае, если среднесуточ­ная температура превышает их биологический минимум, кото­рый составляет, например, для яровой пшеницы 5 °С, для куку­рузы - 10, для хлопчатника - 13 °С (для южных сортов хлопчат­ника - 15 °С). Суммы активных и эффективных температур ус­тановлены как для отдельных межфазных периодов, так и для всего периода вегетации многих сортов и гибридов основных сельскохозяйственных культур (табл. 11.1).

    Через суммы активных и эффективных температур выражают и потребность в тепле пойкилотермных (холоднокровных) орга­низмов как за онтогенетический период, так и за ве. сь биологи­ческий цикл.

    При расчете сумм среднесуточных температур, характеризую­щих потребность растений и пойкилотермных организмов в тепле, необходимо вводить поправку на балластные температуры, не"ускоряющие рост и развитие, т. е. учитывать и верхний тем­пературный уровень для культур и организмов. Для большинства растений и вредителей умеренной зоны это будет среднесуточ­ная температура, превышающая 20...25 "С.

    Как изменяется температура с высотой? В данной статье будет размещена информация, которая будет содержать ответы на этот и подобные вопросы.

    Как изменяется температура воздуха на высоте?

    При подъеме вверх температура воздуха в тропосфере понижается на 1 км — 6 °С. Поэтому высоко в горах лежит снег

    Атмосфера делится на 5 основных слоев: тропосфера, стратосфера, верхние слои атмосферы. Для сельскохозяйственной метеорологии наибольший интерес представляют закономерности изменения температуры в тропосфере, особенно в ее приземном слое.

    Что такое вертикальный градиент температуры?

    Вертикальный градиент температуры — это изменение температуры воздуха на высоте каждые 100 м. Вертикальный градиент зависит от нескольких факторов, таких как: время года (зимой температура ниже, летом — выше); время суток (ночью холоднее, чем днем) и др. Среднее значение градиента температуры составляет около 0,6 ° С / 100 м.

    В приземном слое атмосферы градиент зависит от погоды, времени суток и от характера подстилающей поверхности. Днем ВГТ почти всегда положительный, особенно летом, при ясной погоде он в 10 раз больше, чем во время мрачной. В обед летом температура воздуха у поверхности почвы может быть на 10-15 ° С превышать температуру воздуха на высоте 2-х м. Из-за этого ВГТ в данном двухметровом слое в пересчете на 100 м составляет более 500 ° С / 100 м. Ветер уменьшает ВГТ, поскольку при перемешивании воздуха его температура на разных высотах выравнивается. Уменьшают вертикальный градиент температуры облачность и осадки. При влажной почве резко снижается ВГТ в приземном слое атмосферы. Над обнаженной почвой (паровое поле) ВГТ больше, чем над развитым посевом или щелочью. Зимой над снежным покровом ВГТ в приземном слое атмосферы невелик и обычно отрицательный.

    С высотой влияние подстилающей поверхности и погоды на ВГТ ослабевает и он уменьшается по сравнению с его значениями в приземном слое воздуха. Выше 500м затухает влияние суточного хода температуры воздуха. На высотах от 1,5 до 5-6км ВГТ находится в пределах 0,5-0,6 ° С / 100м. На высоте 6-9км градиент температуры растет и составляет 0,65-0,75 ° С / 100м. В верхнем слое тропосферы ВГТ снова уменьшается до 0,5-0,2 ° С / 100м.

    Данные о вертикальном градиенте температуры в различных слоях атмосферы используют при составлении прогнозов погоды, при метеорологическом обслуживании реактивных самолетов и при выводе спутников на орбиту, а также при определении условий выброса и распространения промышленных отходов в атмосфере. Отрицательный ВГТ в приземном слое воздуха ночью весной и осенью указывает на возможность заморозков.

    Итак, надеемся, что в данной статье, Вы нашли не только полезную и познавательную информацию, но и ответ на вопрос «как изменяется температура воздуха с высотой».

    Партнеры
    © 2020 Женские секреты. Отношения, красота, дети, мода