Вконтакте Facebook Twitter Лента RSS

История создания генетически модифицированных организмов и продуктов. Методы создания гмо

1. Получение изолированного гена.

2. Введение гена в вектор для переноса в организм.

3. Перенос вектора с геном в модифицируемый организм.

4. Преобразование клеток организма.

5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды).

Чтобы встроить ген в вектор , используют ферменты - рестриктазы и лигазы . Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации . В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК , плазмидами . Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки. Для введения готового гена в наследственный аппарат клеток растений и животных используется процесс трансфекции .

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование , то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детёныши с изменённым или неизменным генотипом , среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение.

В исследованиях. В настоящее время генетически модифицированные организмы широко используются в фундаментальных и прикладных научных исследованиях. С помощью ГМО исследуются закономерности развития некоторых заболеваний (болезнь Альцгеймера , рак ), процессы старения и регенерации , изучается функционирование нервной системы , решается ряд других актуальных проблем биологии и современной медицины.

В медицине.Генетически модифицированные организмы используются в прикладной медицине с 1982 года . В этом году зарегистрирован в качестве лекарства генно-инженерный человеческий инсулин , получаемый с помощью генетически модифицированных бактерий.

Ведутся работы по созданию генетически модифицированных растений, продуцирующих компоненты вакцин и лекарств против опасных инфекций (чумы , ВИЧ ). На стадии клинических испытаний находится проинсулин, полученный из генетически модифицированного сафлора . Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз.

Бурно развивается новая отрасль медицины - генотерапия . В её основе лежат принципы создания ГМО, но в качестве объекта модификации выступает геном соматических клеток человека. В настоящее время генотерапия - один из главных методов лечения некоторых заболеваний. Так, уже в 1999 году каждый четвёртый ребёнок, страдающий SCID (severe combined immune deficiency), лечился с помощью генной терапии. Генотерапию, кроме использования в лечении, предлагают также использовать для замедления процессов старения .

Другие направления . Разрабатываются генетически модифицированные бактерии, способные производить экологически чистое топливо. В 2003 году на рынке появилась GloFish - первый генетически модифицированный организм, созданный с эстетическими целями, и первое домашнее животное такого рода. Благодаря генной инженерии популярная аквариумная рыбка Данио рерио получила несколько ярких флуоресцентных цветов. В 2009 году выходит в продажу ГМ-сорт розы «Applause» с цветами синего цвета.

Таким образом, сбылась многовековая мечта селекционеров, безуспешно пытавшихся вывести «синие розы»

Исследования безопасности генетически модифицированных организмов . Появившаяся в начале 1970-х годов технология рекомбинантных ДНК (en:Recombinant DNA ) открыла возможность получения организмов, содержащих инородные гены (генетически модифицированных организмов). Это вызвало обеспокоенность общественности и положило начало дискуссии о безопасности подобных манипуляций.

В 1974 году в США была создана комиссия из ведущих исследователей в области молекулярной биологии для исследования этого вопроса. В трёх наиболее известных научных журналах (Science , Nature , Proceedings of the National Academy of Sciences) было опубликовано так называемое «письмо Брега», которое призывало учёных временно воздержаться от экспериментов в этой области.

В 1975 году прошла Асиломарская конференция , на которой биологами обсуждались возможные риски, связанные с созданием ГМО.

В 1976 году Национальным институтом здоровья (США) была разработана система правил, строго регламентировавшая проведение работ с рекомбинантными ДНК. К началу 1980-х годов правила были пересмотрены в сторону смягчения.

В начале 1980-х годов в США были получены первые линии ГМО, предназначенные для коммерческого использования. Правительственными организациями, такими как NIH (Национальный институт здоровья, англ. National Institutes of Health ) и FDA (Управление по контролю за качеством пищевых продуктов, медикаментов и косметических средств, англ. Food and Drug Administration ), была проведена всесторонняя проверка этих линий. После того, как была доказана безопасность их применения, эти линии организмов получили допуск на рынок.

В настоящее время специалистами получены научные данные об отсутствии повышенной опасности продуктов из генетически модифицированных организмов в сравнении с продуктами, полученными из организмов, выведенных традиционными методами.

Главный вывод, вытекающий из усилий более чем 130 научно-исследовательских проектов, охватывающих 25 лет исследований и проведённых с участием более чем 500 независимых исследовательских групп, состоит в том, что биотехнологии и, в частности, ГМО как таковые не более опасны, чем, например, традиционные технологии селекции растений

КОНТРОЛЬНЫЕ ВОПРОСЫ ПО ТЕМЕ ЗАНЯТИЯ

    Понятие ГМО и ГМП.

    Цели создания ГМО.

    Техника создания ГМО и ГМП.

Животные избегают ГМ продуктов, может и нам пора?
Даже будучи голодными, такие животные как: лоси, олени, свиньи, коровы, гуси, белки и крысы не станут питаться генетически модифицированными продуктами. Многократные случаи очевидцев со всех соединенных штатов Америки подтверждают этот факт, утверждается в недавнем отчете «Американской академии гигиены окружающей среды» (AAEM).

Это дает повод задуматься и людям, а стоит ли питаться ГМ продуктами, если братья наши меньшие им не доверяют? Ведь, химический состав ГМ растений от «настоящих» можно отличить только на уровне ДНК, а большинству тестов это не под силу.

AAEM недавно опубликовала свое официальную позицию, относительно ГМ продуктов, в которой она заявляет, что они опасны для человеческого здоровья. «Генетически модифицированная пища представляет собой серьезный риск для здоровья» – написано в документе академии. Также она настаивает на моратории ГМ продуктов, и призывает начать долгосрочное тестирование ГМО продукции на ее безвредность для человеческого организма.

До сих пор, остается открытым вопрос насколько ГМ продукты не безопасны. На что академия отвечает, что единственный эксперимент который проводился над человеком – это способность ГМ продукта находится в человеческом желудке. Дальнейших исследований не проводилось. Тогда как, тестирования влияния ГМ продуктов на животных, все-таки, имели быть.

И результаты нельзя назвать радужными. У животных, вскормленных на ГМ продуктах появлялся: потенциальный пред раковый рост клеток; повреждался иммунитет; уменьшался объем мозга, печени, мужских половых желез; частичная атрофия; ложная беременность; высокий уровень смертности и другие аномалии.

Индустрия биотехнологии твердо заявляет, что ГМ продукты не влияют негативно на человеческое здоровье, ссылаясь на то, что миллионы людей уже давно питаются этим видом продуктов. Однако, AAEM приводит доводы тому, что это ложное утверждение. После того, как генетически модифицированную сою завезли в Великобританию, случаев аллергии на нее возросла на 50%. Американский «Центр по контролю заболеваний» констатировал, что в 2001 году 50% всех заболеваний в США напрямую зависели от пищи, по сравнению с 1994 годом. Увеличение заболеваний происходило постепенно и примерно в то же время, когда Америка начала питаться ГМ продуктами. Но, академия все-таки подчеркивает, что без дальнейших исследований нельзя быть абсолютно уверенными в том, что генетическая инженерия стала причиной всех этих заболеваний. А выяснение этих причин будет требовать много времени.

Имеется в американской истории здравоохранения официально задокументированный случай, когда ГМ продукты стали причиной массового заболевания.

Эпидемия «EMS» стала широко распространятся в 1980-х годах. Она унесла жизни 100 американцев, и стала причиной инвалидности и болезней других людей, по примерным подсчетам цифра составила от 5,000-10,000 человек. Причина эпидемии скрывалась в генетически модифицированной пищевой добавке – L-триптофане.

Академия также советует особенно внимательно отнестись к питанию детей, так как они очень чувствительны к ГМ продуктам. Причины те же, что и для других неестественных компонентов: растущие тела находятся под большим влиянием поступающих в них строительных материалов; они сильнее реагируют на аллергии; они более чувствительны к проблемам питания и больше рискуют заразится заболеванием, которое восприимчиво к антибиотикам.

5. Экономический риск использования ГМО

Перечень экономических рисков, возникающих в связи с использованием ГМО в производстве продуктов питания и сельском хозяйстве для России, будет расти по мере ее интеграции в глобальное экономическое пространство.

Основной удар может быть нанесен по имиджу России как производителя натуральных продуктов. Известно, что в мире спрос на экологически чистую продукцию неуклонно растет. В частности, в 2002 г. Россию посетила делегация Министерства сельского хозяйства и защиты прав потребителей Германии. На встречах с производителями было не раз заявлено, что Германия планирует в будущем наладить импорт ряда наименований сельскохозяйственной продукции из России, при условии отсутствия в ней ГМО и минимальном содержании химикатов. Россия имеет большой потенциал в этой области, но массовое выращмвание ГМО навсегда исключит подобную перспективу.

ГМ-растения рекламируются как панацея от сельскохозяйственных вредителей и болезней, но на деле это оказывается не так. ГМ-культуры уже разорили не одно поколение индийских фермеров. За последние несколько лет тысячи фермеров в Индии покончили жизнь самоубийством, другие, пытаясь расплатиться с долгами, продают свои органы.

Причина – колоссальные убытки из-за выращивания ГМ-хлопка. Вопреки обещаниям компании «Монсанто», растения оказались подвержены большому количеству болезней и не дали фактически никакого урожая, при этом цена, которую фермеры заплатили за семена компаниям, в среднем была в 4 раза выше, по сравнению со стоимостью обычного хлопка. Однако представители «Монсанто» считают, что беды, постигшие фермеров, связаны не с плохим качеством трансгенного хлопка, а с нарушением технологии его выращивания.

Существует и другая проблема, связанная с экономическими особенностями выращивания ГМО. Все генные вставки, встраиваемые в геном растения для получения ГМО, являются объектом интеллектуальной собственности, следовательно, их использование платно. Но кроме регулярных платежей, которые должны платить фермеры компаниям за использование трансгенных ГМ-семян, значительные финансовые потери могут понести фермеры и даже обыкновенные дачники, специально не выращивающие ГМ-растения.

В 2004 г. «Монсанто» изобличила в незаконном использовании запатентованных компанией семян 500 фермеров. Не все из них были привлечены к ответственности, однако неизвестно, действительно ли фермеры высадили семена, не заплатив, или эти семена принесло на поля ветром, или произошло переопыление, как это случилось в случае канадского фермера Перси Шмайзера. Его громкое дело обошло страницы мировых газет: заподозрив, что на соседнем поле выращивают ГМ-рапс, он проверил свои посевы и обнаружил трансгенные растения. Однако потребовать возмещения ему вреда, как производителю органического рапса, Шмайзер не успел, так как «Монсанто» сама подала на него в суд, и обернула дело в свою пользу, а фермер вынужден был выплатить многотысячный штраф.

Недовольны и фермеры, сознательно выращивающие ГМО. Некоторым фермерам кажется, что выращивать ГМ-сою выгодно, поскольку гербицид «Раундап» хорошо защищает поля от сорняков и стоит не очень дорого, но другие считают это лишь очередной уловкой корпораций. Фермер Вернон Гансебом из штата Небраска, США, в интервью газете Omaha World Herald в 2004 г. заявил следующее: «Они снижают цены на «Раундап», но повышают цены на семена. Да, патенты обходятся недешево, но цены растут в геометрической прогрессии. Не я один обеспокоен этим».

Возникает вопрос, почему американские фермеры активно выращивают ГМО? Кроме государственных дотаций и иной помощи со стороны государства, этому есть еще одно очень простое объяснение. Последние 10 лет фермеры США сталкиваются с уменьшением прибыли. В частности, цена метрической тонны сои в 1998 г. упала на 62% по сравнению с 1990 г., и землевладельцам пришлось увеличивать площади посевов, чтобы остаться в бизнесе. В такой ситуации любая технология, предполагающая использование больших площадей, а ГМ-культуры нацелены именно на использование в крупных хозяйствах и отдачу в виде однородного массового продукта, оказывается крайне востребована. Тем более в условиях постоянного поощрения со стороны государства возделывания ГМ-растений.

Выращивание трансгенных культур выгодно во всех отношениях только компаниям, которые создают их под определенные маркетинговые задачи. Все коммерчески уже используемые или планируемые к использованию трансгенные растения (генные вставки в них) принадлежат корпорациям-разработчикам. Тем же корпорациям выгодно продавать гербициды, поэтому большинство ГМ-растений, которые они производят, имеют ген устойчивости к таким гербицидам. Если это в конечном итоге окажется неприбыльным и негативные последствия будут слишком велики, компании просто переключатся на другое производство. А что станет со странами и хозяйствами, перешедшими на трансгенные культуры и целиком зависимыми от биотехнологических компаний? В США разорившиеся фермеры, скорее всего, получат новые дотации, а что станет с остальными?

Очень популярен тезис о том, что ГМ-культуры решат проблему голода. Сегодня в мире ежедневно от отсутствия еды страдают 800 млн. человек, 320 млн. из которых проживают в Индии. Однако в 2002 г. страна уничтожила около 60 млн. тонн зерна (оно сгнило или было сожжено), так как покупательная способность посредников и населения настолько низка, что приобрести эти семена попросту было некому. Индийские эксперты сомневаются в том, что ГМО как-то изменит эту ситуацию, так как корень проблемы лежит не в отсутствии продовольствия, а в отсутствии доступа к материальным благам и ресурсам.

Замбийские фермеры, чье правительство также неоднократно отказывалось даже от гуманитарной помощи, содержащей ГМ-зерно, также не уверены в необходимости трансгенов для голодающих стран Африки. ГМ-кукуруза, которую упорно навязывают Африке международные организации и США, не нужна местному населению хотя бы потому, что кукуруза никогда не являлась традиционной для континента культурой, она не приспособлена для африканского климата и почвы. Для Замбии, например, характерно выращивание маниока, сорго и проса. Эта одна из беднейших стран Африки, но там ежегодно гниют тонны невостребованного зерна. По данным Национальной Ассоциации крестьян и малоземельных фермеров Замбии в 2003 г. в северном и северо-западном регионах страны на складах пропадало 300 тыс. тонн маниока, так как никто не мог их купить.

































6. Биобезопасность и биотерроризм

Биологическая опасность (биоопасность) - новый термин, который не найдешь в медицинском словаре. Чаще всего биоопасность определяют как опасность для здоровья и жизни человека, связанную с воздействием на него агентов (патогенов) биологической природы. Можно встретить и более широкую трактовку этого понятия.

В словаре терминов и понятий по биоопасности фигурируют не только «патогенные биологические агенты (ПБА)» и «патогены», но и «ценные биологические материалы» - т.е. материалы, требующие административного управления, контроля, защитных и наблюдательных мер в лабораториях и биологических центрах. Это довольно широкое понятие, включающее в себя не только патогены и токсины, но и материалы, представляющие большое значение в научном, историческом и экономическом плане. В перечне наименее контролируемых и наиболее опасных угроз человечеству подавляющее число экспертов называют биотерроризм и «экологические войны» (изменение климата и др.).

Биологический терроризм официально признан одной из главных потенциальных угроз международной безопасности в результате уже совершенных террористических акций и анализа развития биологической науки и биотехнологии.

В XX веке было зарегистрировано более 100 подтверждённых случаев незаконного использования биологических агентов, из которых 19 представляли собой террористические акты. На вторую половину века приходится 66 преступлений с использованием биологических агентов. Однако ни одна из попыток их применения с целью массового поражения, к счастью, не оказалась успешной. Всего 8 преступлений, связанных с использованием биологического оружия, привели к жертвам среди гражданского населения (29 умерло и 31 человек пострадал).

В 1984 году религиозные сектанты использовали микробы сальмонеллы (Salmonella typhimurium ) в ресторанах городов округа Дэйлс (штат Орегон), что вызвало пищевые отравления 751 человека, но не привело к летальным исходам. Тем не менее, число подобных инцидентов резко возросло в последние годы. По данным ФБР, было возбуждено 267 уголовных дел до 2000 г. (в 187 случаях биологические агенты в той или иной форме использовались), в 2000 г. - возбуждено 257 дел (в 115 случаях установлены попытки использовать биологическое оружие).

В 2001 г. США подверглись биологической атаке с использованием возбудителя сибирской язвы, приведшей к ряду смертельных исходов. До настоящего времени на основные вопросы "кто, каким образом, почему?" нет точного ответа. Несмотря на то, что американское правительство сосредоточило своё внимание на расследовании деятельности американского вирусолога, работавшего в Американском институте военной медицины по исследованию инфекционных заболеваний (Форт-Дэтрик, шт. Мэриленд), до сих пор неясно, были ли эти события связаны с атаками 11 сентября 2001 года. Вирусолог работал частным образом в качестве руководителя контрактов по биологической защите. По своей работе он был тесно связан с одним из оставшихся профессионалов, игравшим значительную роль в программе по разработке биологического оружия до 1969 г. Активная деятельность подозреваемого вирусолога и его взаимоотношения с профессионалом обеспечили ему доступ к секретной информации, касающейся технологии производства препаратов. Он также имел доступ к государственному предприятию, работающему со штаммом AMES, возбудителем сибирской язвы, и продуцирующему сухой порошок спор сибирской язвы.

Согласно фактам, собранным американским Центром по контролю и профилактике заболеваний, из почтового ящика находящегося в Принстоне (Нью-Джерси) ушло 18 писем, содержащих споры сибирской язвы. Ещё 4 случая произошли в последующие восемь недель. Качество приготовленных и распространяемых болезнетворных спор было различным. Некоторые образцы были приготовлены грубо, но те, которые попали к сенаторам Дэшлу и Лихи, были высокодисперсны, поэтому легко распространялись воздушно-капельным путем. Именно в этих пакетах споры имели самую высокую концентрацию и микробиологическую чистоту. Предварительные исследования показали, что во всех конвертах содержался один из вариантов известного штамма AMES. Этот штамм в начале 1980-х годов был использован в США в программе биологической защиты. Благодаря своей биологической активности, именно он стал стандартом для использования в модельных экспериментах в животноводстве при получении новых вакцин против сибирской язвы. Известно, что с этим штаммом работали 15-20 лабораторий Великобритании, США, Канады и, возможно, Израиля. Сейчас перед генетиками-микробиологами стоит задача определить слабые различия в геномах культур, полученных в этих лабораториях, и идентифицировать культуру, хотя бы отдалённо похожую на использованную террористами.

Спектр организаций и отдельных личностей, способных использовать биологические агенты в качестве инструмента террора, различающихся по составу групп, источникам финансирования, идеологии, мотивациям и используемым методам, очень разнообразен. В него входят крупные, хорошо финансируемые организации, оппозиционные повстанческие группы, религиозные и культовые секты, пропагандирующие идеологию "конца света", разного рода националистические группы, отдельные расколовшиеся политические движения и группировки, а также террористы-одиночки.

По данным, приведённым в сборнике "Новый террор: перед лицом угрозы использования биологического и химического оружия", в 17% случаев применения террористами такого оружия оно распространялось воздушным путём, в 11% - через воду, в 15% - через пищу или напитки, в 13% - с помощью инъекций или иного контакта, в 16% - через лекарства. К сожалению, в 28% случаев способ распространения установить не удалось. К странам, "возможно распространяющим химическое и биологическое оружие", США сегодня относят Египет, Израиль, Ирак, Иран, Китай, Ливию, КНДР и Тайвань.

Идея использования биологических агентов в качестве оружия вряд ли является новой. На протяжении длительного исторического времени известны случаи использования биологических агентов для нанесения ущерба противнику. Однако возможность их применения зависела от уровня научной осведомлённости общества об инфекционных болезнях. До появления теории микробного природы инфекционных болезней считалось, что болезни вызываются загрязнёнными запахами, заражение происходит путём распространения "миазмов", т. е. "плохих паров". В древних цивилизациях (эллинской, римской, персидской) известны случаи загрязнения запасов питьевой воды своих противников с помощью полуразложившихся мёртвых животных. Подобный же способ был использован в Италии в XII веке Барбароссой. Отравление питьевых запасов трупами животных применялось также в XIX веке в США во время гражданской войны.

Концепция применения различных предметов (вещей, книг) в качестве распространения заразных болезней среди неприятеля разрабатывалась также и в XVIII веке. В 1763 году Сэр Джефри Амхерст (Jeffrey Amherst), командующий британскими войсками в Северной Америке, был обеспокоен активностью не симпатизировавших британцам аборигенов вдоль западной границы от Пенсильвании до Детройта. Когда он узнал, что в британских войсках в форте Питт возникла оспа, он решил использовать инфекцию в качестве биологического оружия против коренных американцев. По его плану враждебным племенам передавались одеяла и носовые платки больных оспой. Эпидемия оспы возникла среди племён коренных американцев, но трудно точно определить, явилась ли эта вспышка инфекции результатом военной биологической активности британцев. Коренные американцы не имели иммунологической защиты против многих инфекций, привнесённых из Старого Света, и поэтому могло существовать много различных способов заражения этой инфекцией от других европейских поселенцев.

С развитием теории микробной природы многих инфекций в XIX веке наступил новый этап в создании биологического оружия. Теперь патогенные микроорганизмы могли быть выделены и выращены в достаточном количестве в чистой культуре в лабораторных условиях. Поэтому результаты научных микробиологических исследований и новое технологическое оснащение могло одновременно применяться и для осуществления военных целей.

Особое развитие идея биологического оружия получила в ХХ веке. Во время первой мировой войны Германия имела намерение применить патогены (возбудители) холеры и чумы против человека, а патогены сибирской язвы и сапа против сельскохозяйственных животных. Однако применение биологического оружия во время первой мировой войны не вышло за рамки намерений. В то время внимание было сконцентрировано на эффектах применения химического оружия. Реакция на использование этого оружия привела к появлению в июне 1925 года Женевского протокола (Протокол о запрещении применения на войне удушливых, ядовитых или других подобных газов и бактериологических средств). 133 страны подписали этот протокол, одна страна (Сальвадор) подписала, но не ратифицировала. В протоколе содержится заявление, что стороны соглашаются считать себя связанными по отношению друг к другу запрещением применения на войне этого оружия. Договор запрещал применение химического и биологического оружия, но не мог ограничить или отрегулировать его разработку и производство.

В период между первой и второй мировыми войнами ряд стран ускорили выполнение своих исследовательских программ по развитию биологического оружия. Усилия японских исследователей и военных в этом были наиболее успешными. До конца второй мировой войны работы по создания биологического оружия велись во многих военных подразделениях. Наиболее известным был Отряд 731, возглавлявшийся с 1937 по 1941 гг. военным физиком-микробиологом Исии Сиро (Ishii Shiro). Отряд дислоцировался на территории Маньчжурии, оккупированной Японией. В самом разгаре своей деятельности персонал подразделения насчитывал около 3000 человек и располагался в 150 зданиях. Было проведено, по крайней мере, пять вспомогательных операций, в каждой из которых участвовало от 300 до 500 человек. Такие военно-научные группировки были ответственны за экстенсивную разработку и исследование биологического метода ведения войны, с использованием заключённых (обычно военнопленных, уголовников или политических диссидентов) и животных.

По некоторым оценкам в течение 13 лет биологических военных исследований в Маньчжурии и Китае погибло около 10 000 человек. Результатом этой деятельности явилось создание к началу сороковых годов меню инфекционных болезней, вызываемых бактериями, вирусами и риккетсиями. Японцы провели также десятки полевых экспериментов в Маньчжурии и Китае, в которых осуществлялось заражение водных и пищевых запасов, воздушное опрыскивание и применение небольших бомб, содержащих блох с возбудителями чумы. Локальные вспышки инфекций чумы, холеры и тифа произошли благодаря проводимым исследованиям.

Военная биологическая активность других стран за этот период была минимальной по сравнению с Японией. Усилия Германии были направлены преимущественно на разработку защитных микробиологических средств, вакцин и антимикробных препаратов. В этой работе в качестве экспериментального материала использовались заключённые концентрационных лагерей. В то же время были созданы бомбы с возбудителями сибирской язвы, которые были опробованы на острове в Северном море недалеко от побережья Шотландии. Этот остров был сильно загрязнён патогенами вплоть до 1980-х годов, когда было проведено успешное обеззараживание с помощью морской воды и формальдегида.

Опасность биотерроризма определяется рядом предпосылок:


  1. Применение террористами различных видов биологического оружия способно в короткие сроки вызвать эпидемию, ведущую к гибели огромного количества людей, животных и сельскохозяйственных культур. По оценкам, распыление 100 кг спор сибирской язвы во много раз превышает последствия взрыва мегатонной ядерной бомбы.

  2. В мире существует значительное количество потенциальных источников биологического оружия. Развитие медицины в целом и профилактики и лечения инфекционных заболеваний в частности, требует выделения, а затем и хранения бактериальных штаммов, служащих для создания различных вакцин и прививок. Однако потенциально эти штаммы также остаются источниками всех тех заболеваний, для лечения которых они предназначены. По приблизительным подсчётам, в 67 странах сосредоточено 453 коллекций различных бактериальных штаммов, принадлежащих различным организациям, 54 медицинских центра имеют возбудителя сибирской язвы, 18 - чумы. Количество источников смертоносных бактерий и не всегда адекватная охрана мест их хранения, могут сделать медицинские и биологические центры вольным или невольным источником снабжения террористов биологическим оружием. По американским данным, по крайней мере, 10 стран обладает биологическим оружием или проводит работы по его исследованию. Пример России наглядно демонстрирует, что само юридическое определение того, что является биологическим оружием, а что не является таковым отражает опасность использования биологического материала как во благо человечества, так и для его уничтожения.

  3. Производство некоторых видов биологического оружия не требует какого-либо специального оборудования и относительно несложно. В природе уже имеется большое количество потенциально опасных для человека микроорганизмов, а исходные материалы для их производства часто являются продуктом хозяйственной деятельности человека.

  4. Биологическое оружие легко транспортируется и достаточно сложно выявляется при проверках.

  5. Практически каждая инфекция, а перечень микроорганизмов, которые могут быть потенциально использованы террористами, насчитывает 48 организмов (25 вирусов, 13 бактерий, 10 токсинов), требует своих методов лечения и профилактики, что значительно затрудняет возможность подготовки к отражению потенциального нападения.

  6. Из-за неизвестности того, когда и где может быть предпринята попытка биотерроризма, и какие биологические агенты могут быть использованы в качестве инструмента террора, угроза или попытки применения биологического оружия сохраняются всегда. Инфекционные заболевания, которые могут развиться в результате биологической атаки, имеют неспецифические клинические симптомы, например лихорадка, особенно в первые часы и сутки с момента их развития. Поэтому необходимо знать определённые дифференциально-диагностические признаки, чтобы ещё до применения специальных методов идентификации предположить круг наиболее вероятных возбудителей. Существуют некоторые трудности быстрой микробиологической диагностики, особенно лёгочных форм инфекционных заболеваний. Из-за этого всем лицам с клинической картиной предполагаемой инфекции соответствующая антибактериальная терапия должна быть начата немедленно.

  7. Генно-инженерные эксперименты с различными организмами, в том числе, с болезнетворными бактериями и вирусами, создают дополнительную мощную биологическую угрозу. Сегодня особенно необходимо обратить внимание на эксперименты в области генной инженерии. Это так называемая векторная технология, которая используется для переноса генов из одного организма в другой, и высокоинфекционный материал для встраивания чужого гена в абсолютно другой организм. Риск использования векторов для создания генно-инженерных организмов не оценивался. К тому же, сами по себе генетически измененные организмы, как абсолютно новые для биосферы организмы, могут воздействовать на неё самым неожиданным образом. Сама неизвестность подобного воздействия почему-то воспринимается как доказательство безопасности. По всей видимости, пришло время подумать о более строгом контроле за биологическим материалом и разработать более строгий комплекс в области биобезопасности. Биологической угрозе может противостоять только сильная система биологического контроля и здравоохранения.

Привлекательность биологического оружия для террористов обусловлена следующими причинами:


  • биологическое оружие легкодоступно, возбудителей опасных заболеваний можно найти в природе (за исключением черной оспы);

  • биологическое оружие просто в изготовлении;

  • во всех странах есть медицинские микробиологические лаборатории, микробиологические предприятия, которые можно переоборудовать для производства биологического оружия;

  • биологическое оружие удобно для хранения и транспортировки по сравнению с химическим или радиологическим оружием.
Важными критериями определения пригодности биологических агентов для применения в террористических целях являются:

  • высокая инфекциозность и контагиозность;

  • необходимая поражающая эффективность (предсказуемые клинические проявления болезни, определенный уровень заболеваемости и смертности);

  • значительная устойчивость в окружающей среде;

  • способность к широкому эпидемическому распространению;

  • доступность и простота в производстве рецептурных форм;

  • легкость в применении и распространении патогена;

  • сложность индикации и идентификации агента в объектах окружающей среды после применения;

  • отсутствие или недостаточная эффективность имеющихся в данное время средств иммуно- и экстренной профилактики, средств лечения заболевания.

По мнению ведущих специалистов в отрасли биологической опасности, наибольшая угроза видится в возможностях создания биологического оружия нового поколения - третьего, то есть «постгеномного», так называемого молекулярного оружия. В международной литературе оно обозначается как ABW - Advanced Biological Warfare. Это совершенно новые, уже открытые и еще неоткрытые регуляторы биохимических процессов, часто состоящие всего лишь из нескольких десятков нуклеотидных оснований и поэтому легко проникающие через клеточные мембраны и активно влияющие на различные биохимические процессы. Они представляют гораздо большую опасность, нежели традиционные патогены - чума, оспа, сибирская язва т др.













7. Контроль над использованием и распространением ГМО.

К ГМО сейчас самое пристальное внимание. В Европе и в России разработана специальная маркировка для продуктов, которая показывает, что в них не содержатся трансгенные добавки. В Евросоюзе даже создают экологические зоны, свободные от трансгенных организмов, и вводят мораторий на использование их в продуктах детского питания.

Все трансгенные организмы перед выходом на рынок проходят тщательную проверку на безопасность для человека и экологии в целом.

В России, как и в странах Европейского Союза (ЕС) и во многих других странах применение ГМ технологии, последующий выпуск ГМО в окружающую среду, их применение в сельском хозяйстве, производстве и продаже продуктов питания строго регламентированы. Наиболее динамично соответствующее законодательство развивается в ЕС и пересматривается Европарламентом практически каждый год. В настоящий момент применение ГМО в ЕС в основном регламентировано директивой 65/2004/EC и постановлениями 1829/2003 и 1830/2003.

В законодательстве ЕС по-разному определены правила применения ГМО в сельском хозяйстве, и в производстве продуктов питания. Если для продуктов питания определена минимальная граница допустимого содержания в продуктах питания генетически модифицированных источников (ГМИ), то для семян/посевного материала она не предусмотрена. Этот норматив позволяет в случаях, когда содержание ГМИ в продукте не достигает порогового значения (относительная концентрация 0,9% для ЕС), не маркировать данный продукт как содержащий ГМИ. При этом норматив максимально допустимого содержания ГМИ действует на уровне ингредиента, и порог 0,9% установлен для каждого ингредиента, входящего в состав пищевого продукта. Таким образом, если в результате скрининговой качественной диагностики ГМИ были обнаружены в продукте питания, соответствующие ингредиенты должны быть исследованы и установлено содержание ГМИ в каждом из них.

В соответствии с санитарными нормами, действующими в России, пороговое значение вначале было установлено в 5%, причем в данном случае подразумевается абсолютная концентрация ГМИ в продукте питания. В настоящий момент этот уровень в Российской Федерации установлен в 0,9%. Как показывает опыт, большинство диагностических методов позволяют достоверно оценить относительную концентрацию ГМИ, в то время как определить абсолютное содержание растительного ингредиента в сложном продукте питания, прошедшем переработку, в высшей степени затруднительно. Таким образом, несовершенство нормативной базы в России до настоящего времени в значительной степени ограничивает область применения количественной диагностики ГМИ сырьевыми материалами и лишает смысла измерение количественного содержания ГМИ в продуктах питания.

Обнаружение и идентификация ДНК и/или белков может быть значительно затруднена при исследовании прошедших глубокую переработку или очистку ингредиентов, таких как крахмал, сахар или растительные масла. Более того, ряд обработок может приводить к невозможности выявления или идентификации ГМИ в продукте. Предыдущей директивой ЕС был утвержден специальный список продуктов (в т.ч. сахар и растительные масла), которые могли быть не маркированы даже в случае, если они были изготовлены из ГМ-сырья. Настоящее законодательство ЕС обязывает производителя проводить маркировку даже в тех случаях, когда современные методы диагностики не позволяют определить происхождение продукта питания. Для этого введена специальная процедура учета применения ГМО на каждом из этапов - выращивания, сбора урожая, хранения, перевозки, переработки и т.д. Требования ЕС обязывают организации, имевшие отношение к производству или применению ГМО, хранить соответствующую документацию 5 лет, что позволит при необходимости проследить пути распространения ГМО и выяснить потенциальные источники контаминации.

Необходимость мониторинга, качественного и количественного исследования присутствия ГМО в сельскохозяйственных культурах и произведенных из них продуктах питания обусловила потребность в аналитических методах, способных обнаруживать, идентифицировать ГМО и определять их количественное содержание в исследуемом образце. Как правило, эти методы основаны на анализе ДНК или белка, как базовых составляющих ГМО. В некоторых случаях, для определенных типов пищевых продуктов, произведенных из ГМИ, таких, как растительные масла, отличающиеся измененным профилем содержания жирных кислот и низким содержанием ДНК и белков, в качестве дополнительных или альтернативных методов могут быть применены хроматография или спектроскопия в ближней инфракрасной области.

Диагностика ГМИ должна также учитывать особенности конструирования конкретных ГМО и биологическую вариабельность. Необходимы методы, позволяющие различить ГМО, при создании которых были использованы одни и те же генно-инженерные конструкции, а также ГМО, несущие одну, две или более конструкций или их копий.

Сертифицированные методы, с помощью которых проводят маркировку ГМО-содержащих продуктов, как правило, основаны на детекции специфичных фрагментов ДНК при помощи полимеразной цепной реакции (ПЦР) и/или детекции белка энзим-связанным иммуносорбентным методом (ELISA).

Процесс диагностики ГМИ в продуктах питания в общих чертах укладывается в следующую схему:

1. Скрининговая качественная диагностика. На этом этапе исследуют присутствие ГМИ в составе продукта питания или сельскохозяйственного сырья. Необходимо применение высокочувствительных и надежных аналитических методов, обеспечивающих точную и надежную диагностику во всех контролирующих лабораториях, что может быть обеспечено только путем проведения межлабораторных поверок и интеркалибраций.

2. Идентификация. На этом этапе идентифицируют, какие именно ГМИ представлены в тестируемом продукте, а также разрешены ли они к применению.

3. Количественная диагностика. Результаты количественных измерений, проведенные при помощи ПЦР или ELISA, позволяют определить содержание ГМИ и установить, подлежит ли данный продукт обязательной маркировке, уведомляющей о присутствии ГМИ. Для четкого проведения количественных исследований желательно располагать информацией о видах обработок, которым подвергался тестируемый материал, чтобы учесть прошедшую деградацию ДНК/белка и оценить точность измерений.

В настоящее время наиболее развиты и наиболее широко применяются на всех этапах диагностики методы, основанные на использовании разных видов ПЦР. Однако и другие аналитические технологии - в частности, ДНК-чипы и масс-спектрометрия, могут быть с успехом использованы для целей диагностики ГМИ.


































Список литературы


  1. А.А. Жученко Роль генетической инженерии в адаптивной системе селекции растений // С.-х. биология. 2003. №1. С. 3.33.

  1. В.Кащьяп Пестициды и трансгенные растения как международная агроэкологическая проблема. М.: Изд-во РУДН, 1998. 167 с.

  1. В.В. Кузнецов, А.М.Куликов, И.А.Митрохин, В.Д. Цыдендамбаев. ГМО и биологическая безопасность // Экос-информ. 2004. №10. С. 1.64.

  1. А.М. Куликов. ГМО и риски их использования // Физиология растений. 2005. Т. 52. С. 115.128.

  1. В.В.Кузнецов, А.М. Куликов. Генетически модифицированные риски и полученные из них продукты: реальные и потенциальные риски. Российский химический журнал, 2005. 69 (4). С. 70-83.

  1. В.В.Кузнецов, А.М.Куликов, И.А. Митрохин, В.Д. Цыдендамбаев. «Генетически модифицированные организмы и биологическая безопасность». Экоинформ, №10, 2004.

  1. О.А. Монастырский. Продовольственная безопасность России: вчера, сегодня, завтра // Экос-информ. 2004. №4. C. 1.64.

  1. Е.Г. Семенюк. Агроэкологические аспекты использования генетически модифицированных сельскохозяйственных культур // Агрохимия. 2001. №1. С. 80.93.

  1. Е.Г. Семенюк. Проблемы оценки риска трансгенных растений // Агрохимия. 2001. Т. 10. С. 85.96.

  1. М.С. Соколов, А.И. Марченко. Потенциальный риск возделывания трансгенных растений и потребления их урожая // С.-х. биология. 2002. №5. С. 3.22.

Начало всему этому положил человек, родившийся 30 июня 1926 года. Итак, знакомьтесь: Пол Берг.

Пол Наим Берг. Родился 30 июня 1926 г. в Бруклине (Нью-Йорк), США. Лауреат Нобелевской премии по химии 1980 года (1/2 премии, по 1/4 присуждено Уолтеру Гилберту и Фредерику Сенгеру за создание метода секвенирования ДНК).

В 1926 году случилось два знаменательных события в истории биологии и биохимии. Второе, менее важное (возможно!) - это рождение нашего героя, одного из трех сыновей производителя одежды Гарри Берга и домохозяйки Сары Бродски. Первое же событие имело, наверное, даже большее значение, чем рождение отца генной инженерии. 36-летний американский микробиолог из Мичигана Поль Генри де Крюи (иногда у нас его называли «де Кройф» и даже «де Крайф») написал книжку, которая стала, пожалуй, первым научно-популярным бестселлером.

Даже в СССР/России эта книга выдержала, наверное, не менее десятка изданий (рис. 1). И популярна до сих пор. «Охотники за микробами» Крюи с 1920-х и по сей день приводят в науку всё новых и новых людей: по меньшей мере, я знаю биохимиков младше меня, в детстве зачарованно читавших эту книжку, а нынче публикующих замечательные статьи в Nature.

Одно из многих русскоязычных изданий «Охотников за микробами» П. де Крюи (СССР, изд-во «Молодая гвардия», 1957 г.)

Наш герой в детстве тоже зачитывался сравнительно недавним бестселлером. Так что его судьба была предопределена сразу же - микробы, вирусы, их биохимия.

Но для начала нужно было пройти стандартный путь - школу и университет. Берг закончил школу Авраама Линкольна в январе 1943 года. К тому времени США уже участвовали во Второй мировой, и как только ему исполнилось 17 лет (июнь 1943), Берг пошел во флот. Он должен был стать летчиком палубной авиации, а этому нужно было учиться. Чтобы не терять времени в простом ожидании, Берг поступил в Пенн Стейт (Pennsylvania State University). Правда, летчиком Пол так и не стал: программу сократили, и ему пришлось служить по прямо противоположной специальности - на подводной лодке. В 1946 году Берг демобилизовался и уже в 1948 стал бакалавром в своем университете, а в 1952 его ждала докторская степень по биохимии в Западном резервном университете Кейза (Case Western Reserve University). В своей диссертации он показал роль фолиевой кислоты и витамина B12 в синтезе метионина.

С тех пор (так уж случилось) Берг работает только с лучшими. К примеру, в 1954 году Берг перешел на кафедру микробиологии в Медицинскую школу университета Вашингтона (WUSM), где начал работать с Артуром Корнбергом - первым человеком, синтезировавшим ДНК, и нобелевским лауреатом 1959 года за это достижение (рис. 2).


Артур Корнберг (1918-2007). Лауреат Нобелевской премии по физиологии и медицине 1959 года.

В лаборатории Корнберга (уже в Стэнфорде, куда Корнберг с командой ушел в 1959 году) Берг изучает механизм, по которому аминокислоты собираются в белки. Собственно говоря, именно Берг установил, как транспортные рибонуклеиновые кислоты (тРНК) переносят аминокислоты в место синтеза белка.

Примерно к середине 1960-х годов работа генов в клетках становится понятнее. В первую очередь - благодаря бактериофагам, которые могут встраивать свою ДНК в геном бактерий. Как всегда, главные открытия были сделаны на «лабораторной мыши» микробиологов - кишечной палочке E. coli - и заражающем ее бактериофаге лямбда. Вирусы применялись для анализа работы генов, тогда же биохимики и генетики научились при помощи вирусов манипулировать генами. Бергу очень хотелось делать то же самое с генами многоклеточных организмов.

В 1967 году Берг взял в Стэнфорде отпуск на год. Впрочем, «отпуск» в его случае не означал отсутствие работы. Он поехал в Солковский (не путать со Сколковским!!!) институт к еще одному будущему нобелиату - Ренато Дульбекко (рис. 3). Дульбекко незадолго до того открыл полиомавирус, вызывающий опухоли у мышей. Главной целью Берга было освоение работы с культурами клеток, однако ДНК-вирус его заинтересовал.


Ренато Дульбекко (1914-2012). Лауреат Нобелевской премии по физиологии и медицине 1975 года.

Когда Берг вернулся в Стэнфорд, он продолжил эксперименты с полиомавирусами, взяв в работу полиомавирус SV40 (рис. 4). Берг понял, что можно использовать SV40 как вектор для введения в обычную клетку другой генетической информации. И запланировал очень изящный эксперимент, по-хорошему, ставший началом всей генной инженерии.


Электронные фотографии вирионов полиомавируса SV40 и его ДНК. Иллюстрация из нобелевской лекции Пола Берга

В обычных условиях SV40 не взаимодействует с кишечной палочкой. Поэтому Берг использовал набор ферментов, выделенных Корнбергом, чтобы разрезать ДНК SV40 и бактериофага лямбда и затем «собрать» из кусочков химерную, или, как принято говорить, рекомбинантную ДНК. В итоге получилась плазмида - кольцевая молекула, состоящая из ДНК вируса SV40 и ДНК бактериофага лямбда с «заимствованным» у кишечной палочки галактозным опероном (последовательностью генов, кодирующих метаболизм галактозы) (рис. 5).

Схема эксперимента Берга. Иллюстрация из нобелевской лекции Пола Берга

Чем хорошо писать о нобелиатах последних 30 лет? Во-первых, многие из них живы по сей день. А во-вторых, легко можно найти видео, где они сами рассказывают о своих работах.

Давайте послушаем самого Берга:

Успех пришел в 1972 году, а за успехом пришел испуг. Ну ладно, не испуг - нормальная и правильная предосторожность: об онкогенности вирусов тогда было известно (из работ Дульбекко в частности), причем полиомавирус SV40 был способен вызывать рак у некоторых животных. Поэтому Берг задумался - вдруг искусственные вирусы будут порождать новые, онкогенные бактерии?

В 1974 году он написал письмо в крупнейшие научные журналы (Nature, Science и другие), в котором призвал ввести годичный мораторий на операции с рекомбинантными ДНК. И начал готовить конференцию для обсуждения потенциальной опасности. В 1975 году в Калифорнии прошла знаменитая Асиломарская конференция по рекомбинантной ДНК. Впрочем, достаточно быстро стало понятно, что опасность была преувеличена - и работы с рекомбинантной ДНК были продолжены.

Началась эпоха генной инженерии, а пять лет спустя - в 1980 году - Берг был удостоен Нобелевской премии по химии. Наш герой получил половину премии, вторую часть поделили между собой личности не менее легендарные - Уолтер Гилберт (вообще начинавший в физике элементарных частиц и работавший у Абдуса Салама) и Фредерик Сенгер (уже получавший химического «нобеля» в 1958 году за расшифровку структуры инсулина). Эти двое создали метод установления первичной структуры ДНК - секвенирование. Право выступить на нобелевском банкете от всех троих получил Берг. В своей речи Берг привел ставшую классической метафору другого нобелевского лауреата, Питера Брайена Медавара: «Если мы представим развитие живых организмов сжатым в год космического времени, то развитие человека заняло только день. Только в течение последних 10–15 минут длится наша жизнь, совсем не сомнительная. Мы - всё еще новички и можем надеяться стать лучше. Высмеивать надежду на прогресс - окончательная глупость, последнее слово бедности духа и подлости ума».

В своём интервью на сайте Нобелевского комитета Берг говорит: «Не совсем корректно называть меня отцом генной инженерии. Мы сделали лишь первый шаг на пути к ней».

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода