Вконтакте Facebook Twitter Лента RSS

История появления стали. Когда и почему в ссср стали выпускать докторскую колбасу

*информация размещена в ознакомительных целях, чтобы поблагодарить нас, поделитесь ссылкой на страницу с друзьями. Вы можете прислать интересный нашим читателям материал. Мы будем рады ответить на все ваши вопросы и предложения, а также услышать критику и пожелания по адресу [email protected]

Первое упоминание о стали уходит в далекие 8-12 века до нашей эры. Уже тогда войска индийского царя Пора имели оружие прочное и острое. Индийским мастерам удалось получить высокоуглеродистую сталь, названую булатом. Изготовление ее было сложным и секрет производства остался нераскрытым.

Сталь - это сплав железа с углеродом. Благодаря углероду сталь становится твердой и прочной, вязкость и пластичность железа снижается. Процент содержания углерода до 2,14.

В далекие времена люди находили металлы в природе. Сначала они были лишь украшением. Затем появились медные наконечники для копий и стрел. Железо же было на вес золота до тех пор, пока человек не научился выплавлять его из руды в печах, положив начало железному веку. Уже многими годами позже сумели выпускать нержавеющую сталь и металлопрокат, узнать о стоимости которого вы сможете перейдя по ссылке http://www.allmetal.ru/ .

Еще древние металлурги заметили, что свойства металла зависят от состава и его обработки. Тогда было замечено, если нагреть докрасна железо, а затем охладить в воде, то твердость металла повышалась. Такая закалка и сейчас применяется в обработке стали. Тогда каждый мастер имел свой секрет закалки стали, но объяснения, почему металл становился прочнее, не было.

Древние алхимики пытались описать процесс металлургии в теории. В 13 веке н.э. алхимик Магнус внес свой вклад, сделав записи о превращении железа в сталь путем дистилляции водянистой части и закалке. Он утверждал, что сталь становится белее за счет отделения примесей, а также отметил, что слишком крепкий металл в итоге рассыпается под молотом.

Ученые следующих веков продолжали искать разгадку происходящих в металле явлений. В частности, в Германии была издана книга, где описывались свойства стали, делающие ее незаменимой для режущих инструментов и орудий. Замечено, что при разгорячении и медленном охлаждении сталь становилась мягкой. А при быстром охлаждении в жидкости металл становился крайне твердым и утрачивал хрупкость. Англичане долго хранили тайну закалки стали в расплавленном свинце или олове.

История получения стали - это история опытов над металлами, понимание трансформации железа. Ученые долго разгадывали тайну превращения железа в прочный сплав. Многочисленные опыты давали то прочный, но хрупкий металл, то мягкий, гнущийся и быстро тупящийся. 10 лет понадобилось русскому ученому Аносову П.П. для обоснования производства прочной качественной стали. Путем проб и ошибок Аносов пытался раскрыть тайну булатной стали.

Продолжателем его идей стал Чернов Д.К., который описал превращение руды в сталь с научной точки зрения. Он сумел отлить брусок высококачественной стали и изготовить из него булатные кинжалы, описал процесс в научном труде. Важным его открытием стало открытие критических точек стали.

Сейчас железную руду выплавляют в огромных доменных печах на металлургических заводах. Руда превращается сначала в чугун. Затем он плавится в мартенах, превращаясь в сталь. За этим процессом наблюдают квалифицированные специалисты.

-Срок обучения в школах сокращается, дисциплина падает, философия, история, языки упразднены . Английскому языку и орфографии уделяется всё меньше и меньше времени, и наконец эти предметы заброшены совсем . Жизнь коротка. Что тебе нужно? Прежде всего работа, а после работы развлечения, а их кругом сколько угодно, на каждом шагу, наслаждайтесь ! Так зачем же учиться чему-нибудь, кроме умения нажимать кнопки, включать рубильники, завинчивать гайки, пригонять болты ?

Жизнь превращается в сплошную карусель, Монтэг. Всё визжит, кричит, грохочет ! Бац, бах, трах!

— Трах! — воскликнула Милдред, дёргая подушку.

— Да оставь же меня наконец в покое! — в отчаянии воскликнул Монтэг.

Битти удивлённо поднял брови. Рука Милдред застыла за подушкой. Пальцы её ощупывали переплёт книги, и по мере того, как она начала понимать, что это такое, лицо её стало менять выражение — сперва любопытство, потом изумление… Губы её раскрылись… Сейчас спросит…

— Долой драму, пусть в театре останется одна клоунада, а в комнатах сделайте стеклянные стены, и пусть на них взлетают цветные фейерверки, пусть переливаются краски, как рой конфетти, или как кровь, или херес, или сотерн . Вы, конечно, любите бейсбол, Монтэг?

Бейсбол — хорошая игра.

— Что это? — почти с восторгом воскликнула Милдред. Монтэг тяжело навалился на её руку. — Что это?

— Сядь! — резко выкрикнул он. Милдред отскочила. Руки её были пусты. — Не видишь, что ли, что мы разговариваем?

Битти продолжал, как ни в чём не бывало:

— А кегли любите?

— А гольф?

— Гольф — прекрасная игра.

— Баскетбол?

— Великолепная.

— Биллиард, футбол?

— Хорошие игры. Все хорошие.

Как можно больше спорта, игр, увеселений — пусть человек всегда будет в толпе, тогда ему не надо думать. Организуйте же, организуйте всё новые и новые виды спорта, сверхорганизуйте сверхспорт! Больше книг с картинками. Больше фильмов. А пищи для ума всё меньше. В результате неудовлетворённость . Какое-то беспокойство. Дороги запружены людьми, все стремятся куда-то, всё равно куда. Бензиновые беженцы. Города превратились в туристские лагери, люди — в орды кочевников, которые стихийно влекутся то туда, то сюда, как море во время прилива и отлива, — и вот сегодня он ночует в этой комнате, а перед тем ночевали вы, а накануне — я.

— Но при чём тут пожарные? — спросил Монтэг.

— А, — Битти наклонился вперёд, окружённый лёгким облаком табачного дыма. — Ну, это очень просто. Когда школы стали выпускать всё больше и больше бегунов, прыгунов, скакунов, пловцов, любителей ковыряться в моторах, лётчиков, автогонщиков вместо исследователей, критиков, учёных и людей искусства, слово «интеллектуальный» стало бранным словом, каким ему и надлежит быть. Человек не терпит того, что выходит за рамки обычного. Вспомните-ка, в школе в одном классе с вами был, наверное, какой-нибудь особо одарённый малыш? Он лучше всех читал вслух и чаще всех отвечал на уроках, а другие сидели, как истуканы, и ненавидели его от всего сердца? И кого же вы колотили и всячески истязали после уроков, как не этого мальчишку? Мы все должны быть одинаковыми. Не свободными и равными от рождения, как сказано в конституции, а просто мы все должны стать одинаковыми. Пусть люди станут похожи друг на друга как две капли воды, тогда все будут счастливы, ибо не будет великанов, рядом с которыми другие почувствуют своё ничтожество. Вот! А книга — это заряженное ружьё в доме соседа. Сжечь её! Разрядить ружьё! Надо обуздать человеческий разум. Почём знать, кто завтра станет очередной мишенью для начитанного человека? Может быть, я? Но я не выношу эту публику! И вот, когда дома во всём мире стали строить из несгораемых материалов и отпала необходимость в той работе, которую раньше выполняли


До н.э. в Европе уже повсюду производили кованое железо. Многие великолепные Греческие и Римские здания были построены из камня с применением железных инструментов в форме бабочки, покрытых свинцом. В 500 году до н. э. этруски, жившие на западном побережье Италии производили более 4,5 тысячи килограмм железа в год. Ковку железа осуществляли в кузнице, а для поддержания огня использовали древесный уголь. Огонь раздували при помощи специальных мехов, сшитых из шкур животных. Позже маленькие каменные печи разобрали, и начали массовую выплавку железа. Руду к печам доставляли на парусных судах. В связи с тем, что метод обработки руды, который использовали этруски, был малоэффективен, ее запасы быстро истощились. К тому же производство древесного угля резко сократило количество лесов на западе Италии.

Первая сталь была создана кельтами около 200 года н. э. Они резали кованое железо на тонкие полоски и складывали их в контейнер с обожженными костями и углем, после чего все это нагревали в печи в течение 10-12 часов на очень сильном огне. В результате поверхность металла обогащалась углеродом. Затем они эти полоски сваривали между собой посредством ковки и таким образом создавали ножи. Эти ножи стали предшественниками клинков, которые мы ошибочно называем дамасскими. Кельтский процесс производства стали в 1050 году был скопирован викингами и немцами. С тех пор в этих странах производили стальные клинки, метод изготовления которых, был строго засекречен. Дамасскую сталь производили в Пакистане и в виде булатных заготовок отправляли в Сирию, где изготавливали знаменитые дамасские клинки. Процесс производства дамасской стали очень сложный, поскольку ее необходимо было нагревать до очень высокой температуры, и если температуру превысить, то материал мог разрушиться.

Со временем температура плавления железа в печах становилась все выше, поэтому полученное железо, содержало 3-4% углерода. Оно было хрупким и подходило только для литья. Из него нельзя было делать ножи и детали для транспорта. К тому же к этому времени огромная часть лесов в Европе была вырублена для строительных целей и производства древесного угля. Тогда король Англии издал указ о том, что леса вырубать больше нельзя, и производителям стали пришлось придумать способ переработки угля в кокс. В Англии разработали метод лужения стали, при этом они смешивали расплавленное железо, с силикатом железа и оксидом железа. Силикат железа является одним из компонентов кованого железа.

Печи, работающие на угле, назвались кричным горном. Один работник должен был помешивать полученную смесь, в результате чего образовывался диоксид углерода, поэтому температура плавления железа становилась выше, и начинался процесс лужения. Внутрь помещались крупные куски весом от 90 кг до 130 кг. Другой работник с помощью пары больших щипцов брал эти куски и помещал под пресс, чтоб из них выдавить силикат железа. После пресса куски помещали в прокатный стан, где из них формировались полоски кричного железа. Эти полоски нарезали на короткие кусочки и соединяли между собой, после чего помещали их в углубление, заполненное углеродом, и нагревали до температуры сварки. После этого полоски кричного железа снова отправляли в прокатный стан и получали сортовое железо. Этот способ использовали не только в Европе, но на востоке Соединенных Штатов.

Чтоб получить сталь, тонкий сортовой прокат помещали в углубление, заполненное углеродом, полученным в результате сожжения костей, и нагревали при высокой температуре в течение нескольких дней. Углерод поглощался железом, и в результате получалась пузырчатая сталь. Пузырчатой называли цементную сталь или томленку. Это понятие появилось благодаря внешнему виду полосок, извлеченных из углеродной ямы, которые были покрыты пузырями. После этого полоски складывали вместе и ковали, затем снова складывали и ковали, таким способом получали сталь высокого качества.

Англия нуждалась в высококачественной стали, чтоб создать флот, который смог бы пресечь океан. Один предприимчивый англичанин заметил, что стеклодувы в своих печах могут получать очень высокую температуру. Он взял полоски пузырчатой стали и поместил их в керамический тигель, после чего поставил емкость в печь стеклодувов. В результате сталь расплавилась, силикат железа испарился, а углерод остался, и получилась сталь очень высокого качества. На тот момент за процессом наблюдало много людей, и он не смог сохранить его в секрете. Таким способом получали литую сталь, из которой в США было сделано большое количество старых инструментов, с маркировкой «литая сталь». Многие ошибочно считают их литыми, что следует из названия.

Новый импульс производство стали получило, когда был изобретен Бессемеровский процесс производства стали. Такую сталь применяли для строительства крупных объектов, таких как плотина Гранд-Кули, потому как она не подвержена действию коррозии. В начале 20 века приступили к производству различных сплавов. Тогда в газовых мартеновых печах к железу стали добавлять марганец, хром, никель и другие элементы. Во время Второй мировой войны, когда потребность в металле возросла, производство сплавов получило новый мощный толчок. С тех пор был сделан огромный шаг в производстве и совершенствовании различных сталей.

Сталь имеет более высокие физико-механические свойства по сравнению с чугуном: ее можно ковать, прокатывать, она имеет высокую прочность и значительную пластичность, хорошо обрабатывается резанием. В расплавленном состоянии сталь обладает достаточной жидкотекучестью для получения отливок.

Мягкая сталь с содержанием углерода менее 0,25% обладает высокой пластичностью, способностью хорошо свариваться, легко куется и прокатывается в горячем и холодном состояниях. Поэтому такая сталь является основным материалом для современного машиностроения, транспорта и других отраслей народного хозяйства страны.

В древности мягкую сталь (техническое железо) получали непосредственно из руд в тестообразном состоянии. Позднее научились получать сталь из чугуна в кирпичном горне, также в тестообразном состоянии. В 1740 г. в Англии стал применяться способ получения жидкой стали в тиглях, задолго до того известный на Востоке. С 1784 г. начали применять пудлингование - получение стали в тестообразном состоянии из чугуна окислением его примесей на поду пламенной печи. Все эти способы были мало производительны, требовали больших затрат топлива и труда.

Бурный рост промышленности и железнодорожного транспорта во второй половине XIX в. потребовал громадного количества стали, а старые способы ее получения не могли удовлетворить эту потребность. Были созданы новые, более производительные способы плавки стали. В 1856 г. появился бессемеровский способ (названный по имени его изобретателя Г. Бессемера), а в 1878 г. - томасовский способ (предложенный С. Томасом) получения литой стали из жидкого чугуна в конвертерах. В 1857 г. крупный русский металлург П. М. Обухов получил привилегию на изобретенный им способ производства орудийной стали путем сплавления чугуна и мягкой стали. Орудийная сталь П. М. Обухова по качеству превосходила лучшие заграничные стали. С 1864 г. применяется мартеновский способ получения стали в пламенных печах (названный по имени его изобретателя П. Мартена), а с 1899 г. - способ производства стали в электропечах, основанный на применении явления электрической дуги, открытой в 1802 г. акад. В. В. Петровым.

Задача передела чугуна в сталь состоит в том, чтобы из чугуна удалить избыток углерода, кремния, марганца и других примесей. Особенно важно при этом удалить вредные примеси серы и фосфора . Углерод чугуна, соединяясь с кислородом, превращается в газ (окись углерода СО), который улетучивается. Другие примеси переводятся в окислы и другие соединения, нерастворимые или мало растворимые в металле; эти соединения вместе с флюсами образуют на поверхности металла шлак. При сгорании марганец и кремний образуют нерастворимые в металле окислы MnO и SiO 2 . При сгорании фосфора образуется его окись Р 2 О 5 , которая хорошо растворяется в металле. Чтобы удалить фосфор из металла, наводят шлак с избытком извести (состоящей преимущественно из СаО), которая и связывает Р2О5 в прочное соединение (СаО)4 Р2О5, нерастворимое в металле.

Сера растворена в чугуне в составе соединения FeS; ее удаляют из металла с помощью марганца или извести, которые образуют с ней или плохо растворимое в металле соединение MnS или нерастворимое соединение CaS.

В настоящее время в металлургии страны применяются следующие способы получения стали: конвертерный, мартеновский и электроплавка.

Электроплавка применяется, главным образом, для получения высококачественной стали и за последние годы усиленно развивается.

Технический прогресс в сталеплавильном производстве характеризуется интенсивным наращиванием мощностей плавильных агрегатов, широким применением кислородно-конверторного процесса и непрерывной разливки стали, повышением качества металла.

— важнейший продукт металлургии железа, представляющий собой сплав железа с углеродом. Уже в VII веке до нашей эры кельты научились получать железо из железной руды. Руду нагревали в открытой печи, используя пламя древесного угля. В результате получался твердый чугун. Однако из-за высокого содержания углерода чугун был хрупкий и непригодный для ковки. Если уменьшить процентное содержание углерода до 2,14%, то получится твердый и крепкий сплав, которому можно придавать различные формы путем ковки и штамповки. Это и была сталь, из которой стали производить инструменты, все виды оружия и различные детали машин. Для снижения содержания углерода и прочих ненужных примесей чугун вновь нагревается до жидкого состояния и подвергается фришеванию. Качества стали улучшаются с добавлением легирующих элементов. Сплав железа (не менее 45%), углерода и легирующих элементов называют легированной сталью.

Но прежде, чем получить стальные изделия, следовало совершить множество трудоемких операций. Вначале из железной руды выплавляли чугун, который превращали в мягкое железо. Полученную железную крицу подвергали длительной проковке, в результате получали нужную стальную деталь, либо только заготовку, которую окончательно обрабатывали на металлорежущих станках. Изначально избыточное количество углерода удаляли из чугуна путем кричного передела. Процесс происходил в открытой печи (кричном горне). На горящий древесный уголь помещали чушки чугуна. Путем вдувания горячего воздуха очищали расплавленный чугун от излишнего углерода. Расплавленный металл собирался на поду горна. Происходило дополнительное удаление углерода путем окисления железистого шлака. Образовавшуюся кашицу (крицу) подвергали ковке для удаления шлака.

Кричный передел существовал с XIV века, в 1784 году английским металлургом Г. Кортом была предложена новая технология получения стали — пудлингование. Согласно этой технологии, чугун плавился в специальной пудлинговой печи без контакта с топливом. Пудлинговая печь позволила заменить дорогостоящий древесный уголь на менее дорогой — каменный. Расплавленный чугун доводили до тестообразного состояния. С целью увеличения доступа кислорода расплавленную массу перемешивали металлическими штангами. Дальше тестообразную крицу проковывали. Правда, процесс получения стали таким методом был трудоемким, медленным и дорогим.

Бессемер усовершенствовал этот процесс и в 1856 году продемонстрировал конвертер, предназначенный для получения жидкой стали. Выходящий из доменной печи чугун поступал в конвертер — резервуар, на дне которого имелись отверстия для подачи воздуха. Благодаря подвижным опорам конвертер можно было свободно перемещать из горизонтального положения в вертикальное, когда он будет наполнен. Кислород воздуха, вдуваемый через нижние отверстия, соединяется с углеродом, выделяемым при нагревании из чугуна. Когда процесс закончен, конвертер занимает горизонтальное положение и в нем образуется железо, в которое добавляют примеси. Получается сталь, содержащая низкий процент кислорода. Весь процесс занимал мало времени, за 20 минут получалось столько же стали, сколько бы пудлинговая печь выдала за целый день.

В 1864 году был изобретен мартеновский способ выплавки стали, основанный на сходном принципе. Оба способа получили широкое распространение и позволили получать сталь в неограниченных количествах. Однако они не позволяли получить руду высокого качества из руды, которая содержала фосфор и серу. В 1878 году С. Томас решил эту проблему, добавив в конвертер 10-15% извести. Образовывающиеся шлаки удерживали фосфор и он выгорал с другими ненужными примесями. Полученная сталь была очень высокого качества. Уже в первые несколько лет после применения бессемеровского и мартеновского способов получения высококачественной стали ее выпуск вырос во всем мире на 60%.

Сталь является одним из самых распространенных материалов на сегодняшний день. Она представляет собой сочетание железа и углерода в определенном процентном соотношении. Существует огромное количество разновидностей этого материала, так как даже незначительное изменение химического состава приводит к изменению физико-механических качеств. Сырье для производства стали сегодня представлено отработанными стальными изделиями. Также было налажено производство конструкционной стали из чугуна. Страны-лидеры в металлургической промышленности проводят выпуск заготовок согласно стандартам, установленным в ГОСТ. Рассмотрим особенности производства стали, а также применяемые методы и то, как проводится маркировка полученных изделий.

Особенности процесса производства стали

В производстве чугуна и стали применяются разные технологии, несмотря на достаточно близкий химический состав и некоторые физико-механические свойства. Отличия заключаются в том, что сталь содержит меньшее количество вредных примесей и углерода, за счет чего достигаются высокие эксплуатационные качества. В процессе плавки все примеси и лишний углерод, который становится причиной повышения хрупкости материала, уходят в шлаки. Технология производства стали предусматривает принудительное окисление основных элементов за счет взаимодействия железа с кислородом.

Рассматривая процесс производства углеродистой и других видов стали, следует выделить несколько основных этапов процесса:

  1. Расплавление породы. Сырье, которое используется для производства металла, называют шихтой. На данном этапе при окислении железа происходит раскисление и примесей. Уделяется много внимания тому, чтобы происходило уменьшение концентрации вредных примесей, к которым можно отнести фосфор. Для обеспечения наиболее подходящих условий для окисления вредных примесей изначально выдерживается относительно невысокая температура. Формирование железного шлака происходит за счет добавления железной руды. После выделения вредных примесей на поверхности сплава они удаляются, проводится добавление новой порции оксида кальция.
  2. Кипение полученной массы. Ванны расплавленного металла после предварительного этапа очистки состава нагреваются до высокой температуры, сплав начинает кипеть. За счет кипения углерод, находящийся в составе, начинает активно окисляться. Как ранее было отмечено, чугун отличается от стали слишком высокой концентрацией углерода, за счет чего материал становится хрупким и приобретает другие свойства. Решить подобную проблему можно путем вдувания чистого кислорода, за счет чего процесс окисления будет проходить с большой скоростью. При кипении образуются пузырьки оксида углерода, к которым также прилипают другие примеси, за счет чего происходит очистка состава. На данной стадии производства с состава удаляется сера, относящаяся к вредным примесям.
  3. Раскисление состава. С одной стороны, добавление в состав кислорода обеспечивает удаление вредных примесей, с другой, приводит к ухудшению основных эксплуатационных качеств. Именно поэтому зачастую для очистки состава от вредных примесей проводится диффузионное раскисление, которое основано на введении специального расплавленного металла. В этом материале содержатся вещества, которые оказывают примерно такое же воздействие на расплавленный сплав, как и кислород.

Кроме этого, в зависимости от особенностей применяемой технологии могут быть получены материалы двух типов:

  1. Спокойные, которые прошли процесс раскисления до конца.
  2. Полуспокойные, которые имеют состояние, находящееся между спокойными и кипящими сталями.

При производстве материала в состав могут добавляться чистые металлы и ферросплавы. За счет этого получаются легированные составы, которые обладают своими определенными свойствами.

Способы производства стали

Существует несколько методов производства стали, каждый обладает своими определенными достоинствами и недостатками. От выбранного способа зависит то, с какими свойствами можно получить материал. Основные способы производства стали:

  1. Мартеновский метод. Данная технология предусматривает применение специальных печей, которые способны нагревать сырье для температуры около 2000 градусов Цельсия. Рассматривая способы производства легированных сталей, отметим, что этот метод также позволяет проводить добавление различных примесей, за счет чего получаются необычные по составу стали. Мартеновский метод основан на применении специальных печей.
  2. Электросталеплавильный метод. Для того чтобы получить материал высокого качества проводится производство стали в электропечах. За счет применения электрической энергии для нагрева сырья можно точно контролировать прохождение процесса окисления и выделения шлаков. В данном случае важно обеспечить появление шлаков. Они являются передатчиком кислорода и тепла. Данная технология позволяет снизить концентрацию вредных веществ, к примеру, фосфора и серы. Электрическая плавка может проходить в самой различной среде: избыточного давления, вакуума, при определенной атмосфере. Проводимые исследования указывают на то, что электросталь обладает самым высоким качеством. Применяется технология для производства качественных высоколегированных, коррозионностойких, жаропрочных и других видов стали. Для преобразования электрической энергии в тепловую применяется дуговая печь цилиндрической формы с днищем сферического типа. Для обеспечения наиболее благоприятных условий плавки внутреннее пространство отделывается при использовании жаропрочного металла. Работа устройства возможна только при подключении к трехфазной сети. Стоит учитывать, что сеть электрического снабжения должна выдерживать существенную нагрузку. Источником тепловой энергии становится электрическая дуга, возникающая между электродом и расплавленным металлом. Температура может быть более 2000 градусов Цельсия.
  3. Кислородно-конверторный. Непрерывная разливка стали в данном случае сопровождается с активным вдуванием кислорода, за счет чего существенно ускоряется процесс окисления. Применяется этот метод изготовления и для получения чугуна. Считается, что данная технология обладает наибольшей универсальностью, позволяет получать металлы с различными свойствами.

Способы производства оцинкованной стали не сильно отличаются от рассматриваемых. Это связано с тем, что изменение качеств поверхностного слоя проходит путем химико-термической обработки.

Существуют и другие технологии производства стали, которые обладают высокой эффективностью. Например, методы, основанные на применении вакуумных индукционных печей, а также плазменно-дуговой сварки.

Мартеновский способ

Суть данной технологии заключается в переработке чугуна и другого металлолома при применении отражательной печи. Производство различной стали в мартеновских печах можно охарактеризовать тем, что на шихту оказывается большая температура. Для подачи высокой температуры проводится сжигание различного топлива.

Рассматривая мартеновский способ производства стали, отметим нижеприведенные моменты:

  1. Мартеновские печи оборудованы системой, которая обеспечивает подачу тепла и отвода продуктов горения.
  2. Топливо подается в камеру сгорания поочередно, то с правой, то с левой стороны. За счет этого обеспечивается образование факела, который и приводит к повышению температуры рабочей среды и ее выдерживание на протяжении длительного периода.
  3. На момент загрузки шихты в камеру сгорания попадает достаточно большое количество кислорода, который и необходим для окисления железа.

При получении стали мартеновским способом время выдержки шихты составляет 8-16 часов. На протяжении всего периода печь работает непрерывно. С каждым годом конструкция печи совершенствуется, что позволяет упростить процесс производства стали и получить металлы различного качества.

В кислородных конвертерах

Сегодня проводится производство различной стали в кислородных конвертерах. Данная технология предусматривает продувку жидкого чугуна в конвертере. Для этого проводится подача чистого кислорода. К особенностям этой технологии можно отнести нижеприведенные моменты:

  1. Конвертор – специальное оборудование, которое представлено стальным сосудом грушевидной формы. Вместительность подобного устройства составляет 100-350 тонн. С внутренней стороны конструкция выкладывается огнеупорным кирпичом.
  2. Конструкция верхней части предполагает горловину, которая необходима для загрузки шихты и жидкого чугуна. Кроме этого, через горловину происходит удаление газов, образующихся в процессе плавления сырья.
  3. Заливка чугуна и добавление другой шихты проводится при температуре около 1400 градусов Цельсия. Для того чтобы обеспечить активное окисление железа чистый кислород подается под давлением около 1,4 МПа.
  4. При подаче большого количества кислорода чугун и другая шихта окисляется, что становится причиной выделения большого количества тепла. За счет сильного нагрева происходит расплавка всего шихтового материала.
  5. В тот момент, когда из состава удаляется излишек углерода, продувка прекращается, фурма извлекается из конвертора. Как правило, продувка продолжается в течение 20 минут.
  6. На данном этапе полученный состав содержит большое количество кислорода. Именно поэтому для повышения эксплуатационных качеств в состав добавляют различные раскислители и легирующие элементы. Образующийся шлак удаляется в специальный шлаковый ковш.
  7. Время конверторного плавления может меняться, как правило, оно составляет 35-60 минут. Время выдержки зависит от типа применяемой шихты и объема получаемой стали.

Стоит учитывать, что производительно подобного оборудования составляет порядка 1,5 миллионов тонн при вместительности 250 тонн. Применяется данная технология для получения углеродистых, низкоуглеродистых, а также легированных сталей. Кислородно-конвертерный способ производства стали был разработан довольно давно, но сегодня все равно пользуется большой популярностью. Это связано с тем, что при применении этой технологии можно получить качественные металлы, а производительность технологии весьма высока.

В заключение отметим, что в домашних условиях провести производство стали практически невозможно. Это связано с необходимостью нагрева шихты до достаточно высокой температуры. При этом процесс окисления железа весьма сложен, как и удаления вредных примесей

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода