Вконтакте Facebook Twitter Лента RSS

Что показывает среднеквадратическое отклонение. Дисперсия

Материал из Википедии - свободной энциклопедии

Среднеквадрати́ческое отклоне́ние (синонимы: среднее квадрати́ческое отклоне́ние , среднеквадрати́чное отклоне́ние , квадрати́чное отклоне́ние ; близкие термины: станда́ртное отклоне́ние , станда́ртный разбро́с ) - в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания . При ограниченных массивах выборок значений вместо математического ожидания используется среднее арифметическое совокупности выборок.

Основные сведения

Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического , при построении доверительных интервалов , при статистической проверке гипотез , при измерении линейной взаимосвязи между случайными величинами. Определяется как квадратный корень из дисперсии случайной величины .

Среднеквадратическое отклонение:

\sigma=\sqrt{\frac{1}{n}\sum_{i=1}^n\left(x_i-\bar{x}\right)^2}.

Стандартное отклонение (оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на основе несмещённой оценки её дисперсии) s:

s=\sqrt{\frac{n}{n-1}\sigma^2}=\sqrt{\frac{1}{n-1}\sum_{i=1}^n\left(x_i-\bar{x}\right)^2};

Правило трёх сигм

Правило трёх сигм (3\sigma) - практически все значения нормально распределённой случайной величины лежат в интервале \left(\bar{x}-3\sigma;\bar{x}+3\sigma\right). Более строго - приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале (при условии, что величина \bar{x} истинная, а не полученная в результате обработки выборки).

Если же истинная величина \bar{x} неизвестна, то следует пользоваться не \sigma, а s . Таким образом, правило трёх сигм преобразуется в правило трёх s .

Интерпретация величины среднеквадратического отклонения

Большее значение среднеквадратического отклонения показывает больший разброс значений в представленном множестве со средней величиной множества; меньшее значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

Например, у нас есть три числовых множества: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8}. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения - значения внутри множества сильно расходятся со средним значением.

В общем смысле среднеквадратическое отклонение можно считать мерой неопределённости. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить.

Практическое применение

На практике среднеквадратическое отклонение позволяет оценить, насколько значения из множества могут отличаться от среднего значения.

Экономика и финансы

Среднее квадратическое отклонение доходности портфеля \sigma =\sqrt{D[X]} отождествляется с риском портфеля.

Климат

Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой на равнине. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

Спорт

Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

См. также

Напишите отзыв о статье "Среднеквадратическое отклонение"

Литература

  • Боровиков В. STATISTICA. Искусство анализа данных на компьютере: Для профессионалов / В. Боровиков. - СПб. : Питер, 2003. - 688 с. - ISBN 5-272-00078-1 . .

Отрывок, характеризующий Среднеквадратическое отклонение

И, быстро отворив дверь, он вышел решительными шагами на балкон. Говор вдруг умолк, шапки и картузы снялись, и все глаза поднялись к вышедшему графу.
– Здравствуйте, ребята! – сказал граф быстро и громко. – Спасибо, что пришли. Я сейчас выйду к вам, но прежде всего нам надо управиться с злодеем. Нам надо наказать злодея, от которого погибла Москва. Подождите меня! – И граф так же быстро вернулся в покои, крепко хлопнув дверью.
По толпе пробежал одобрительный ропот удовольствия. «Он, значит, злодеев управит усех! А ты говоришь француз… он тебе всю дистанцию развяжет!» – говорили люди, как будто упрекая друг друга в своем маловерии.
Через несколько минут из парадных дверей поспешно вышел офицер, приказал что то, и драгуны вытянулись. Толпа от балкона жадно подвинулась к крыльцу. Выйдя гневно быстрыми шагами на крыльцо, Растопчин поспешно оглянулся вокруг себя, как бы отыскивая кого то.
– Где он? – сказал граф, и в ту же минуту, как он сказал это, он увидал из за угла дома выходившего между, двух драгун молодого человека с длинной тонкой шеей, с до половины выбритой и заросшей головой. Молодой человек этот был одет в когда то щегольской, крытый синим сукном, потертый лисий тулупчик и в грязные посконные арестантские шаровары, засунутые в нечищеные, стоптанные тонкие сапоги. На тонких, слабых ногах тяжело висели кандалы, затруднявшие нерешительную походку молодого человека.
– А! – сказал Растопчин, поспешно отворачивая свой взгляд от молодого человека в лисьем тулупчике и указывая на нижнюю ступеньку крыльца. – Поставьте его сюда! – Молодой человек, брянча кандалами, тяжело переступил на указываемую ступеньку, придержав пальцем нажимавший воротник тулупчика, повернул два раза длинной шеей и, вздохнув, покорным жестом сложил перед животом тонкие, нерабочие руки.
Несколько секунд, пока молодой человек устанавливался на ступеньке, продолжалось молчание. Только в задних рядах сдавливающихся к одному месту людей слышались кряхтенье, стоны, толчки и топот переставляемых ног.
Растопчин, ожидая того, чтобы он остановился на указанном месте, хмурясь потирал рукою лицо.
– Ребята! – сказал Растопчин металлически звонким голосом, – этот человек, Верещагин – тот самый мерзавец, от которого погибла Москва.
Молодой человек в лисьем тулупчике стоял в покорной позе, сложив кисти рук вместе перед животом и немного согнувшись. Исхудалое, с безнадежным выражением, изуродованное бритою головой молодое лицо его было опущено вниз. При первых словах графа он медленно поднял голову и поглядел снизу на графа, как бы желая что то сказать ему или хоть встретить его взгляд. Но Растопчин не смотрел на него. На длинной тонкой шее молодого человека, как веревка, напружилась и посинела жила за ухом, и вдруг покраснело лицо.
Все глаза были устремлены на него. Он посмотрел на толпу, и, как бы обнадеженный тем выражением, которое он прочел на лицах людей, он печально и робко улыбнулся и, опять опустив голову, поправился ногами на ступеньке.
– Он изменил своему царю и отечеству, он передался Бонапарту, он один из всех русских осрамил имя русского, и от него погибает Москва, – говорил Растопчин ровным, резким голосом; но вдруг быстро взглянул вниз на Верещагина, продолжавшего стоять в той же покорной позе. Как будто взгляд этот взорвал его, он, подняв руку, закричал почти, обращаясь к народу: – Своим судом расправляйтесь с ним! отдаю его вам!
Народ молчал и только все теснее и теснее нажимал друг на друга. Держать друг друга, дышать в этой зараженной духоте, не иметь силы пошевелиться и ждать чего то неизвестного, непонятного и страшного становилось невыносимо. Люди, стоявшие в передних рядах, видевшие и слышавшие все то, что происходило перед ними, все с испуганно широко раскрытыми глазами и разинутыми ртами, напрягая все свои силы, удерживали на своих спинах напор задних.
– Бей его!.. Пускай погибнет изменник и не срамит имя русского! – закричал Растопчин. – Руби! Я приказываю! – Услыхав не слова, но гневные звуки голоса Растопчина, толпа застонала и надвинулась, но опять остановилась.
– Граф!.. – проговорил среди опять наступившей минутной тишины робкий и вместе театральный голос Верещагина. – Граф, один бог над нами… – сказал Верещагин, подняв голову, и опять налилась кровью толстая жила на его тонкой шее, и краска быстро выступила и сбежала с его лица. Он не договорил того, что хотел сказать.
– Руби его! Я приказываю!.. – прокричал Растопчин, вдруг побледнев так же, как Верещагин.
– Сабли вон! – крикнул офицер драгунам, сам вынимая саблю.
Другая еще сильнейшая волна взмыла по народу, и, добежав до передних рядов, волна эта сдвинула переднии, шатая, поднесла к самым ступеням крыльца. Высокий малый, с окаменелым выражением лица и с остановившейся поднятой рукой, стоял рядом с Верещагиным.
– Руби! – прошептал почти офицер драгунам, и один из солдат вдруг с исказившимся злобой лицом ударил Верещагина тупым палашом по голове.
«А!» – коротко и удивленно вскрикнул Верещагин, испуганно оглядываясь и как будто не понимая, зачем это было с ним сделано. Такой же стон удивления и ужаса пробежал по толпе.
«О господи!» – послышалось чье то печальное восклицание.
Но вслед за восклицанием удивления, вырвавшимся У Верещагина, он жалобно вскрикнул от боли, и этот крик погубил его. Та натянутая до высшей степени преграда человеческого чувства, которая держала еще толпу, прорвалось мгновенно. Преступление было начато, необходимо было довершить его. Жалобный стон упрека был заглушен грозным и гневным ревом толпы. Как последний седьмой вал, разбивающий корабли, взмыла из задних рядов эта последняя неудержимая волна, донеслась до передних, сбила их и поглотила все. Ударивший драгун хотел повторить свой удар. Верещагин с криком ужаса, заслонясь руками, бросился к народу. Высокий малый, на которого он наткнулся, вцепился руками в тонкую шею Верещагина и с диким криком, с ним вместе, упал под ноги навалившегося ревущего народа.
Одни били и рвали Верещагина, другие высокого малого. И крики задавленных людей и тех, которые старались спасти высокого малого, только возбуждали ярость толпы. Долго драгуны не могли освободить окровавленного, до полусмерти избитого фабричного. И долго, несмотря на всю горячечную поспешность, с которою толпа старалась довершить раз начатое дело, те люди, которые били, душили и рвали Верещагина, не могли убить его; но толпа давила их со всех сторон, с ними в середине, как одна масса, колыхалась из стороны в сторону и не давала им возможности ни добить, ни бросить его.

Полученные из опыта величины неизбежно содержат погрешности, обусловленные самыми разнообразными причинами. Среди них следует различать погрешности систематические и случайные. Систематические ошибки обусловливаются причинами, действующими вполне определенным образом, и могут быть всегда устранены или достаточно точно учтены. Случайные ошибки вызываются весьма большим числом отдельных причин, не поддающихся точному учету и действующих в каждом отдельном измерении различным образом. Эти ошибки невозможно совершенно исключить; учесть же их можно только в среднем, для чего необходимо знать законы, которым подчиняются случайные ошибки.

Будем обозначать измеряемую величину через А, а случайную ошибку при измерении х. Так как ошибка х может принимать любые значения, то она является непрерывной случайной величиной, которая вполне характеризуется своим законом распределения.

Наиболее простым и достаточно точно отображающим действительность (в подавляющем большинстве случаев) является так называемый нормальный закон распределения ошибок :

Этот закон распределения может быть получен из различных теоретических предпосылок, в частности, из требования, чтобы наиболее вероятным значением неизвестной величины, для которой непосредственным измерением получен ряд значений с одинаковой степенью точности, являлось среднее арифметическое этих значений. Величина 2 называется дисперсией данного нормального закона.

Среднее арифметическое

Определение дисперсии по опытным данным. Если для какой-либо величины А непосредственным измерением получено n значений a i с одинаковой степенью точности и если ошибки величины А подчинены нормальному закону распределения, то наиболее вероятным значением А будет среднее арифметическое :

a - среднее арифметическое,

a i - измеренное значение на i-м шаге.

Отклонение наблюдаемого значения (для каждого наблюдения) a i величины А от среднего арифметического : a i - a.

Для определения дисперсии нормального закона распределения ошибок в этом случае пользуются формулой:

2 - дисперсия,
a - среднее арифметическое,
n - число измерений параметра,

Среднеквадратическое отклонение

Среднеквадратическое отклонение показывает абсолютное отклонение измеренных значений от среднеарифметического . В соответствии с формулой для меры точности линейной комбинации средняя квадратическая ошибка среднего арифметического определяется по формуле:

, где


a - среднее арифметическое,
n - число измерений параметра,
a i - измеренное значение на i-м шаге.

Коэффициент вариации

Коэффициент вариации характеризует относительную меру отклонения измеренных значений от среднеарифметического :

, где

V - коэффициент вариации,
- среднеквадратическое отклонение,
a - среднее арифметическое.

Чем больше значение коэффициента вариации , тем относительно больший разброс и меньшая выравненность исследуемых значений. Если коэффициент вариации меньше 10%, то изменчивость вариационного ряда принято считать незначительной, от 10% до 20% относится к средней, больше 20% и меньше 33% к значительной и если коэффициент вариации превышает 33%, то это говорит о неоднородности информации и необходимости исключения самых больших и самых маленьких значений.

Среднее линейное отклонение

Один из показателей размаха и интенсивности вариации - среднее линейное отклонение (средний модуль отклонения) от среднего арифметического. Среднее линейное отклонение рассчитывается по формуле:

, где

_
a - среднее линейное отклонение,
a - среднее арифметическое,
n - число измерений параметра,
a i - измеренное значение на i-м шаге.

Для проверки соответствия исследуемых значений закону нормального распределения применяют отношение показателя асимметрии к его ошибке и отношение показателя эксцесса к его ошибке.

Показатель асимметрии

Показатель асимметрии (A) и его ошибка (m a) рассчитывается по следующим формулам:

, где

А - показатель асимметрии,
- среднеквадратическое отклонение,
a - среднее арифметическое,
n - число измерений параметра,
a i - измеренное значение на i-м шаге.

Показатель эксцесса

Показатель эксцесса (E) и его ошибка (m e) рассчитывается по следующим формулам:

, где

Стандартное отклонение - классический индикатор изменчивости из описательной статистики.

Стандартное отклонение , среднеквадратичное отклонение, СКО, выборочное стандартное отклонение (англ. standard deviation, STD, STDev) - очень распространенный показатель рассеяния в описательной статистике. Но, т.к. технический анализ сродни статистике, данный показатель можно (и нужно) использовать в техническом анализе для обнаружения степени рассеяния цены анализируемого инструмента во времени. Обозначается греческим символом Сигма «σ».

Спасибо Карлам Гауссу и Пирсону за то, что мы имеем возможность пользоваться стандартным отклонением.

Используя стандартное отклонение в техническом анализе , мы превращаем этот «показатель рассеяния » в «индикатор волатильности «, сохраняя смысл, но меняя термины.

Что представляет собой стандартное отклонение

Но помимо промежуточных вспомогательных вычислений, стандартное отклонение вполне приемлемо для самостоятельного вычисления и применения в техническом анализе. Как отметил активный читатель нашего журнала burdock, «до сих пор не пойму, почему СКО не входит в набор стандартных индикаторов отечественных диллинговых центров «.

Действительно, стандартное отклонение может классическим и «чистым» способом измерить изменчивость инструмента . Но к сожалению, этот индикатор не так распространен в анализе ценных бумаг .

Применение стандартного отклонения

Вручную вычислить стандартное отклонение не очень интересно , но полезно для опыта. Стандартное отклонение можно выразить формулой STD=√[(∑(x-x ) 2)/n] , что звучит как корень из суммы квадратов разниц между элементами выборки и средним, деленной на количество элементов в выборке.

Если количество элементов в выборке превышает 30, то знаменатель дроби под корнем принимает значение n-1. Иначе используется n.

Пошагово вычисление стандартного отклонения :

  1. вычисляем среднее арифметическое выборки данных
  2. отнимаем это среднее от каждого элемента выборки
  3. все полученные разницы возводим в квадрат
  4. суммируем все полученные квадраты
  5. делим полученную сумму на количество элементов в выборке (или на n-1, если n>30)
  6. вычисляем квадратный корень из полученного частного (именуемого дисперсией )

Кроме математического ожидания случайной величины которое. определяет положение центра распределения вероятностей, количественной характеристикой распределения случайной величины является дисперсия случайной величины

Дисперсию будем обозначать D [х] или .

Слово «дисперсиям означает рассеивание. Дисперсия является числовой характеристикой рассеивания, разброса значений случайной величины относительно ее математического ожидания.

Определение 1. Дисперсией случайной величины называется матемйтическое ожидание квадрата разности случайной величины и ее математического ожидания.(т. е. математическое ожидание квадрата соответствующей центрированной, случайной величины):

Дисперсия имеет размерность квадрата случайной величины. Иногда, для характеристики рассеивания, удобнее пользоваться величиной, размерйость которой совпадает с размерностью случайной величины. Такая величина - среднеквадратичное отклонение.

Определение 2. Среднеквадратичным отклонением случайной величины называется корень квадратный из ее дисперсии:

или в развернутом виде

Среднеквадратичное отклонение обозначают также

Замечание 1. При вычислении дисперсии формулу (1) бывает удобно преобразовать так:

т. е. дисперсия равна разности математического ожидания квадрата случайной величины и квадрата математического ожидания случайной величины.

Пример 1. Производится один выстрел по объекту. Вероятность попадания . Определить математическое ожидание, дисперсию и среднеквадратичное отклонение.

Решение. Строим таблицу значений числа попаданий

Следовательно,

Чтобы представить смысл понятия дисперсии и среднеквадратичного отклонения как характеристики рассеивания случайной величины, рассмотрим примеры.

Пример 2. Случайная величина задана следующим законом распределения (см. таблицу и рис. 413):

Пример 3. Случайная величина задана следующим законом распределения (см. таблицу и рис. 414):

Определить: 1) математическое ожидание, 2) дисперсию, 3) среднеквадратичное отклонение.

Рассеивание, разброс случайной величины в первом примере меньше рассеивания случайной величины во втором примере (см. рис. 414 и 415). Дисперсии этих величин соответственно равны 0,6 и 2,4.

Пример 4; Случайная величина задана следующим законом распределения (см. таблицу и рис. 415):

Если случайная величина распределена симметрично относительно центра распределения вероятностей (рис. 411), то очевидно, что ее центральный момент третьего порядка будет равен нулю. Если центральный момент третьего порядка отличен от нуля, то случайная величина не может быть распределена симметрично.

Среднее квадратическое отклонение

Наиболее совершенной характеристикой вариации является среднее квадратическое откложение, ĸᴏᴛᴏᴩᴏᴇ называют стандартом (или стандартным отклонение).Среднее квадратическое отклонение () равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической:

Среднее квадратическое отклонение простое:

Среднее квадратическое отклонение взвешенное применяется для сгруппированных данных:

Между средним квадратическим и средним линœейным отклонениями в условиях нормального распределœения имеет место следующее соотношение: ~ 1,25.

Среднее квадратическое отклонение, являясь основной абсолютной мерой вариации, используется при определœении значений ординат кривой нормального распределœения, в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик, а также при оценке границ вариации признака в однородной совокупности.

18.Дисперсия, ее виды, среднеквадратическое отклонение.

Диспе́рсия случа́йной величины́ - мера разброса данной случайной величины, т. е. её отклонения отматематического ожидания. В статистике часто употребляется обозначение или . Квадратный корень из дисперсии принято называтьсреднеквадрати́чным отклоне́нием , станда́ртным отклоне́нием или стандартным разбросом.

Общая дисперсия (σ 2 ) измеряет вариацию признака во всœей совокупности под влиянием всœех факторов, обусловивших эту вариацию. Вместе с тем, благодаря методу группировок можно выделить и измерить вариацию, обусловленную группировочным признаком, и вариацию, возникающую под влиянием неучтенных факторов.

Межгрупповая дисперсия (σ 2 м.гр ) характеризует систематическую вариацию, т. е. различия в величинœе изучаемого признака, возникающие под влиянием признака – фактора, положенного в основание группировки.

Среднеквадрати́ческое отклоне́ние (синонимы: среднее квадрати́ческое отклоне́ние , среднеквадрати́чное отклоне́ние , квадрати́чное отклоне́ние ; близкие термины:станда́ртное отклоне́ние , станда́ртный разбро́с ) - в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величиныотносительно её математического ожидания. При ограниченных массивах выборок значений вместо математического ожидания используется среднее арифметическоесовокупности выборок.

Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линœейной взаимосвязи между случайными величинами. Определяется какквадратный корень из дисперсии случайной величины.

Среднеквадратическое отклонение:

Стандартное отклонение (оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на базе несмещённой оценки её дисперсии):

где - дисперсия; - i -й элемент выборки; - объём выборки; - среднее арифметическое выборки:

Следует отметить, что обе оценки являются смещёнными. В общем случае несмещённую оценку построить невозможно. При этом оценка на базе оценки несмещённой дисперсии является состоятельной.

19.Сущность, область применения и порядок определœения моды и медианы.

Кроме степенных средних в статистике для относительной характеристики величины варьирующего признака и внутреннего строения рядов распределœения пользуются структурными средними, которые представлены,в основном, модой и медианой .

Мода - это наиболее часто встречающийся вариант ряда. Мода применяется, к примеру, при определœении размера одежды, обуви, пользующейся наибольшим спросом у покупателœей. Модой для дискретного ряда является варианта͵ обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда крайне важно сначала определить модальный интервал (по максимальной частоте), а затем - значение модальной величины признака по формуле:

§ - значение моды

§ - нижняя граница модального интервала

§ - величина интервала

§ - частота модального интервала

§ - частота интервала, предшествующего модальному

§ - частота интервала, следующего за модальным

Медиана - это значение признака, ĸᴏᴛᴏᴩᴏᴇ лежит в базе ранжированного ряда и делит данный ряд на две равные по численности части.

Для определœения медианы в дискретном ряду при наличии частот сначала вычисляют полусумму частот , а затем определяют, какое значение варианта приходится на нее. (В случае если отсортированный ряд содержит нечетное число признаков, то номер медианы вычисляют по формуле:

М е = (n (число признаков в совокупности) + 1)/2,

в случае четного числа признаков медиана будет равна средней из двух признаков находящихся в серединœе ряда).

При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем - значение медианы по формуле:

§ - искомая медиана

§ - нижняя граница интервала, который содержит медиану

§ - величина интервала

§ - сумма частот или число членов ряда

§ - сумма накопленных частот интервалов, предшествующих медианному

§ - частота медианного интервала

Пример . Найти моду и медиану.

Решение : В данном примере модальный интервал находится в пределах возрастной группы 25-30 лет, так как на данный интервал приходится наибольшая частота (1054).

Рассчитаем величину моды:

Это значит что модальный возраст студентов равен 27 годам.

Вычислим медиану. Медианный интервал находится в возрастной группе 25-30 лет, так как в пределах этого интервала расположена варианта͵ которая делит совокупность на две равные части (Σf i /2 = 3462/2 = 1731). Далее подставляем в формулу необходимые числовые данные и получаем значение медианы:

Это значит что одна половина студентов имеет возраст до 27,4 года, а другая свыше 27,4 года.

Кроме моды и медианы бывают использованы такие показатели, как квартили, делящие ранжированный ряд на 4 равные части, децили -10 частей и перцентили - на 100 частей.

20.Понятие выборочного наблюдения и область его применения.

Выборочное наблюдение применяется, когда применение сплошного наблюдения физически невозможно из-за большого массива данных или экономически нецелœесообразно . Физическая невозможность имеет место, к примеру, при изучении пассажиропотоков, рыночных цен, семейных бюджетов. Экономическая нецелœесообразность имеет место при оценке качества товаров, связанной с их уничтожением, к примеру, дегустация, испытание кирпичей на прочность и т.п.

Статистические единицы, отобранные для наблюдения, составляют выборочную совокупность или выборку , а весь их массив - генеральную совокупность (ГС). При этом число единиц в выборке обозначают n , а во всœей ГС - N . Отношение n/N принято называть относительный размер или доля выборки .

Качество результатов выборочного наблюдения зависит от репрезентативности выборки , то есть от того, насколько она представительна в ГС. Для обеспечения репрезентативности выборки крайне важно соблюдать принцип случайности отбора единиц , который предполагает, что на включение единицы ГС в выборку не может повлиять какой-либо иной фактор кроме случая.

Существует 4 способа случайного отбора в выборку:

  1. Собственно случайный отбор или ʼʼметод лотоʼʼ, когда статистическим величинам присваиваются порядковые номера, заносимые на определœенные предметы (к примеру, бочонки), которые затем перемешиваются в некоторой емкости (к примеру, в мешке) и выбираются наугад. На практике данный способ осуществляют с помощью генератора случайных чисел или математических таблиц случайных чисел.
  2. Механический отбор, согласно которому отбирается каждая (N/n )-я величина генеральной совокупности. К примеру, в случае если она содержит 100 000 величин, а требуется выбрать 1 000, то в выборку попадет каждая 100 000 / 1000 = 100-я величина. Причем, в случае если они не ранжированы, то первая выбирается наугад из первой сотни, а номера других будут на сотню больше. К примеру, в случае если первой оказалась единица № 19, то следующей должна быть № 119, затем № 219, затем № 319 и т.д. В случае если единицы генеральной совокупности ранжированы, то первой выбирается № 50, затем № 150, затем № 250 и так далее.
  3. Отбор величин из неоднородного массива данных ведется стратифицированным (расслоенным) способом, когда генеральная совокупность предварительно разбивается на однородные группы, к которым применяется случайный или механический отбор.
  4. Особый способ составления выборки представляет собой серийный отбор, при котором случайно или механически выбирают не отдельные величины, а их серии (последовательности с какого-то номера по какой-то подряд), внутри которых ведут сплошное наблюдение.

Качество выборочных наблюдений зависит и от типа выборки : повторная или бесповторная. При повторном отборе попавшие в выборку статистические величины или их серии после использования возвращаются в генеральную совокупность, имея шанс попасть в новую выборку. При этом у всœех величин генеральной совокупности одинаковая вероятность включения в выборку. Бесповторный отбор означает, что попавшие в выборку статистические величины или их серии после использования не возвращаются в генеральную совокупность, а потому для остальных величин последней повышается вероятность попадания в следующую выборку.

Бесповторный отбор дает более точные результаты, в связи с этим применяется чаще. Но есть ситуации, когда его применить нельзя (изучение пассажиропотоков, потребительского спроса и т.п.) и тогда ведется повторный отбор.

21.Предельная ошибка выборки наблюдения, средняя ошибка выборки, порядок их расчета.

Рассмотрим подробно перечисленные выше способы формирования выборочной совокупности и возникающие при этом ошибки репрезентативности. Собственно-случайная выборка основывается на отборе единиц из генеральной совокупности наугад без каких-либо элементов системности. Технически собственно-случайный отбор проводят методом жеребьевки (к примеру, розыгрыши лотерей) или по таблице случайных чисел.

Собственно-случайный отбор ʼʼв чистом видеʼʼ в практике выборочного наблюдения применяется редко, но он является исходным среди других видов отбора, в нем реализуются основные принципы выборочного наблюдения. Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Ошибка выборочного наблюдения - ϶ᴛᴏ разность между величиной параметра в генеральной совокупности, и его величиной, вычисленной по результатам выборочного наблюдения. Важно заметить, что для средней количественного признака ошибка выборки определяется

Показатель принято называть предельной ошибкой выборки. Выборочная средняя является случайной величиной, которая может принимать различные значения исходя из того, какие единицы попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. По этой причине определяют среднюю из возможных ошибок – среднюю ошибку выборки , которая зависит от:

· объёма выборки: чем больше численность, тем меньше величина средней ошибки;

· степени изменения изучаемого признака: чем меньше вариация признака, а, следовательно, и дисперсия, тем меньше средняя ошибка выборки.

При случайном повторном отборе средняя ошибка рассчитывается . Практически генеральная дисперсия точно не известна, но в теории вероятности доказано, что . Так как величина при достаточно больших n близка к 1, можно считать, что . Тогда средняя ошибка выборки должна быть рассчитана: . Но в случаях малой выборки (при n<30) коэффициент крайне важно учитывать, и среднюю ошибку малой выборки рассчитывать по формуле .

При случайной бесповторной выборке приведенные формулы корректируются на величину . Тогда средняя ошибка бесповторной выборки: и . Т.к. всœегда меньше , то множитель () всœегда меньше 1. Это значит, что средняя ошибка при бесповторном отборе всœегда меньше, чем при повторном. Механическая выборка применяется, когда генеральная совокупность каким-либо способом упорядочена (к примеру, списки избирателœей по алфавиту, телœефонные номера, номера домов, квартир). Отбор единиц осуществляется через определœенный интервал, который равен обратному значению процента выборки. Так при 2% выборке отбирается каждая 50 единица =1/0,02 , при 5% каждая 1/0,05=20 единица генеральной совокупности.

Начало отсчета выбирается разными способами: случайным образом, из середины интервала, со сменой начала отсчета. Главное при этом – избежать систематической ошибки. К примеру, при 5% выборке, в случае если первой единицей выбрана 13-я, то следующие 33, 53, 73 и т.д.

По точности механический отбор близок к собственно-случайной выборке. По этой причине для определœения средней ошибки механической выборки используют формулы собственно-случайного отбора.

При типическом отборе обследуемая совокупность предварительно разбивается на однородные, однотипные группы. К примеру, при обследовании предприятий это бывают отрасли, подотрасли, при изучении населœения – районы, социальные или возрастные группы. Далее осуществляется независимый выбор из каждой группы механическим или собственно-случайным способом.

Типическая выборка дает более точные результаты по сравнению с другими способами. Типизация генеральной совокупности обеспечивает представительство в выборке каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки. Следовательно, при нахождении ошибки типической выборки согласно правилу сложения дисперсий () крайне важно учесть лишь среднюю из групповых дисперсий. Тогда средняя ошибка выборки: при повторном отборе , при бесповторном отборе , где – средняя из внутригрупповых дисперсий в выборке.

Серийный (или гнездовой) отбор применяется в случае, когда генеральная совокупность разбита на серии или группы до начала выборочного обследования. Этими сериями бывают упаковки готовой продукции, студенческие группы, бригады. Серии для обследования выбираются механическим или собственно-случайным способом, а внутри серии производится сплошное обследование единиц. По этой причине средняя ошибка выборки зависит только от межгрупповой (межсерийной) дисперсии, которая вычисляется по формуле: где r – число отобранных серий; – средняя і-той серии. Средняя ошибка серийной выборки рассчитывается: при повторном отборе , при бесповторном отборе , где R – общее число серий. Комбинированный отбор представляет собой сочетание рассмотренных способов отбора.

Средняя ошибка выборки при любом способе отбора зависит главным образом от абсолютной численности выборки и в меньшей степени – от процента выборки. Предположим, что проводится 225 наблюдений в первом случае из генеральной совокупности в 4500 единиц и во втором – в 225000 единиц. Дисперсии в обоих случаях равны 25. Тогда в первом случае при 5 %-ном отборе ошибка выборки составит: Во втором случае при 0,1 %-ном отборе она будет равна:

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, при уменьшении процента выборки в 50 раз, ошибка выборки увеличилась незначительно, так как численность выборки не изменилась. Предположим, что численность выборки увеличили до 625 наблюдений. В этом случае ошибка выборки равна: Увеличение выборки в 2,8 раза при одной и той же численности генеральной совокупности снижает размеры ошибки выборки более чем в 1,6 раза.

22.Методы и способы формирования выборочной совокупности.

В статистике применяются различные способы формирования выборочных совокупностей, что обусловливается задачами исследования и зависит от специфики объекта изучения.

Основным условием проведения выборочного обследования является предупреждение возникновения систематических ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы генеральной совокупности. Предупреждение систематических ошибок достигается в результате применения научно обоснованных способов формирования выборочной совокупности.

Существуют следующие способы отбора единиц из генеральной совокупности: 1) индивидуальный отбор - в выборку отбираются отдельные единицы; 2) групповой отбор - в выборку попадают качественно однородные группы или серии изучаемых единиц; 3) комбинированный отбор - это комбинация индивидуального и группового отбора. Способы отбора определяются правилами формирования выборочной совокупности.

Выборка должна быть:

  • собственно-случайная состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки. Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N, ᴛ.ᴇ.
  • механическая состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величинœе доли выборки. Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке - каждая 20-я единица (1:0,05) и т.д. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица.
  • типическая – при которойгенеральная совокупность вначале расчленяется на однородные типические группы. Далее из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность. Важной особенностью типической выборки является то, что она дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность;
  • серийная - при которой генеральную совокупность делят на одинаковые по объёму группы - серии. В выборочную совокупность отбираются серии. Внутри серий производится сплошное наблюдение единиц, попавших в серию;
  • комбинированная - выборка должна быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Далее производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.

В статистике различают следующие способы отбора единиц в выборочную совокупность:

  • одноступенчатая выборка - каждая отобранная единица сразу же подвергается изучению по заданному признаку (собственно-случайная и серийная выборки);
  • многоступенчатая выборка - производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы (типическая выборка с механическим способом отбора единиц в выборочную совокупность).

Кроме того различают :

  • повторный отбор – по схеме возвращенного шара. При этом каждая попавшая в выборку единица иди серия возвращается в генеральную совокупность и в связи с этим имеет шанс снова попасть в выборку;
  • бесповторный отбор – по схеме невозвращенного шара. Он имеет более точные результаты при одном и том же объёме выборки.

23.Определœение крайне важно го объёма выборки (использование таблицы Стьюдента).

Одним из научных принципов в теории выборочного метода является обеспечение достаточного числа отобранных единиц. Теоретически крайне важно сть соблюдения этого принципа представлена в доказательствах предельных теорем теории вероятностей, которые позволяют установить, какой объём единиц следует выбрать из генеральной совокупности, чтобы он был достаточным и обеспечивал репрезентативность выборки.

Уменьшение стандартной ошибки выборки, а следовательно, увеличение точности оценки всœегда связано с увеличением объёма выборки, в связи с этим уже на стадии организации выборочного наблюдения приходится решать вопрос о том, каков должен быть объём выборочной совокупности, чтобы была обеспечена требуемая точность результатов наблюдений. Расчет крайне важно го объёма выборки строится с помощью формул, выведенных из формул предельных ошибок выборки (А), соответствующих тому или иному виду и способу отбора. Так, для случайного повторного объёма выборки (n) имеем:

Суть этой формулы – в том, что при случайном повторном отборе крайне важно й численности объём выборки прямо пропорционален квадрату коэффициента доверия (t2) и дисперсии вариационного признака (?2) и обратно пропорционален квадрату предельной ошибки выборки (?2). В частности, с увеличением предельной ошибки в два раза необходимая численность выборки должна быть уменьшена в четыре раза. Из трех параметров два (t и?) задаются исследователœем. При этом исследователь исходя из цели

и задач выборочного обследования должен решить вопрос: в каком количественном сочетании лучше включить эти параметры для обеспечения оптимального варианта? В одном случае его может больше устраивать надежность полученных результатов (t), нежели мера точности (?), в другом – наоборот. Сложнее решить вопрос в отношении величины предельной ошибки выборки, так как этим показателœем исследователь на стадии проектировки выборочного наблюдения не располагает, в связи с этим в практике принято задавать величину предельной ошибки выборки, как правило, в пределах до 10 % предполагаемого среднего уровня признака. К установлению предполагаемого среднего уровня можно подходить по разному: использовать данные подобных ранее проведенных обследований или же воспользоваться данными основы выборки и произвести небольшую пробную выборку.

Наиболее сложно установить при проектировании выборочного наблюдения третий параметр в формуле (5.2) – дисперсию выборочной совокупности. В этом случае крайне важно использовать всю информацию, имеющуюся в распоряжении исследователя, полученную в ранее проведенных подобных и пробных обследованиях.

Вопрос об определœении крайне важно й численности выборки усложняется, в случае если выборочное обследование предполагает изучение нескольких признаков единиц отбора. В этом случае средние уровни каждого из признаков и их вариация, как правило, различны, и в связи с этим решить вопрос о том, дисперсии какого из признаков отдать предпочтение, возможно лишь с учетом цели и задач обследования.

При проектировании выборочного наблюдения предполагаются заранее заданная величина допустимой ошибки выборки в соответствии с задачами конкретного исследования и вероятность выводов по результатам наблюдения.

В целом формула предельной ошибки выборочной средней величины позволяет определять:

‣‣‣ величину возможных отклонений показателœей генеральной совокупности от показателœей выборочной совокупности;

‣‣‣ необходимую численность выборки, обеспечивающую требуемую точность, при которой пределы возможной ошибки не превысят некоторой заданной величины;

‣‣‣ вероятность того, что в проведенной выборке ошибка будет иметь заданный предел.

Распределœе́ние Стью́дента в теории вероятностей - это однопараметрическое семейство абсолютно непрерывных распределœений.

24.Ряды динамики (интервальные, моментные), смыкание рядов динамики.

Ряды динамики - это значения статистических показателœей, которые представлены в определœенной хронологической последовательности.

Каждый динамический ряд содержит две составляющие:

1) показатели периодов времени (годы, кварталы, месяцы, дни или даты);

2) показатели, характеризующие исследуемый объект за временные периоды или на соответствующие даты, которые называют уровнями ряда .

Уровни ряда выражаются как абсолютными, так и средними или относительными величинами. Учитывая зависимость отхарактера показателœей строят динамические ряды абсолютных, относительных и средних величин. Ряды динамики из относительных и средних величин строят на базе производных рядов абсолютных величин. Различают интервальные и моментные ряды динамики.

Динамический интервальный ряд содержит значения показателœей за определœенные периоды времени. В интервальном ряду уровни можно суммировать, получая объём явления за более длительный период, или так называемые накопленные итоги.

Динамический моментный ряд отражает значения показателœей на определœенный момент времени (дату времени). В моментных рядах исследователя может интересовать только разность явлений, отражающая изменение уровня ряда между определœенными датами, поскольку сумма уровней здесь не имеет реального содержания. Накопленные итоги здесь не рассчитываются.

Важнейшим условием правильного построения динамических рядов является сопоставимость уровней рядов , относящихся к различным периодам. Уровни должны быть представлены в однородных величинах, должна иметь место одинаковая полнота охвата различных частей явления.

Для того, чтобы избежать искажения реальной динамики, в статистическом исследовании проводятся предварительные расчёты (смыкание рядов динамики), которые предшествуют статистическому анализу динамических рядов. Под смыканием рядов динамики принято понимать объединœение в один ряд двух и более рядов, уровни которых рассчитаны по разной методологии или не соответствуют территориальным границам и т.д. Смыкание рядов динамики может предполагать также приведение абсолютных уровней рядов динамики к общему основанию, что нивелирует несопоставимость уровней рядов динамики.

25.Понятие сопоставимости рядов динамики, коэффициенты, темпы роста и прироста.

Ряды динамики - это ряды статистических показателœей, характеризующих развитие явлений природы и общества во времени. Публикуемые Госкомстатом России статистические сборники содержат большое количество рядов динамики в табличной форме. Ряды динамики позволяют выявить закономерности развития изучаемых явлений.

Ряды динамики содержат два вида показателœей. Показатели времени (годы, кварталы, месяцы и др.) или моменты времени (на начало года, на начало каждого месяца и т.п.). Показатели уровней ряда . Показатели уровней рядов динамики бывают выражены абсолютными величинами (производство продукта в тоннах или рублях), относительными величинами (удельный вес городского населœения в %) и средними величинами (средняя зарплата работников отрасли по годам и т. п.). В табличной форме ряд динамики содержит два столбца или две строки.

Правильное построение рядов динамики предполагает выполнение ряда требований:

  1. всœе показатели ряда динамики должны быть научно обоснованными, достоверными;
  2. показатели ряда динамики должны быть сопоставимы по времени, ᴛ.ᴇ. должны быть исчислены за одинаковые периоды времени или на одинаковые даты;
  3. показатели ряда динамики должны быть сопоставимы по территории;
  4. показатели ряда динамики должны быть сопоставимы по содержанию, ᴛ.ᴇ. исчислены по единой методологии, одинаковым способом;
  5. показатели ряда динамики должны быть сопоставимы по кругу учитываемых хозяйств. Все показатели ряда динамики должны быть приведены в одних и тех же единицах измерения.

Статистические показатели могут характеризовать либо результаты изучаемого процесса за период времени, либо состояние изучаемого явления на определœенный момент времени, ᴛ.ᴇ. показатели бывают интервальными (периодическими) и моментными. Соответственно первоначально ряды динамики бывают либо интервальными, либо моментными. Моментные ряды динамики в свою очередь бывают с равными и неравными промежутками времени.

Первоначальные ряды динамики бывают преобразованы в ряд средних величин и ряд относительных величин (цепной и базисный). Такие ряды динамики называют производными рядами динамики.

Методика расчета среднего уровня в рядах динамики различна, обусловлена видом ряда динамики. На примерах рассмотрим виды рядов динамики и формулы для расчета среднего уровня.

Абсолютные приросты (Δy ) показывают, на сколько единиц изменился последующий уровень ряда по сравнению с предыдущим (гр.3. - цепные абсолютные приросты) или по сравнению с начальным уровнем (гр.4. - базисные абсолютные приросты). Формулы расчета можно записать следующим образом:

При уменьшении абсолютных значений ряда будет соответственно "уменьшение", "снижение".

Показатели абсолютного прироста свидетельствуют о том, что, к примеру, в 1998 ᴦ. производство продукта "А" увеличилось по сравнению с 1997 ᴦ. на 4 тыс. т, а по сравнению с 1994 ᴦ. - на 34 тыс. т.; по остальным годам см. табл. 11.5 гр.
Размещено на реф.рф
3 и 4.

Коэффициент роста показывает, во сколько раз изменился уровень ряда по сравнению с предыдущим (гр.5 - цепные коэффициенты роста или снижения) или по сравнению с начальным уровнем (гр.6 - базисные коэффициенты роста или снижения). Формулы расчета можно записать следующим образом:

Темпы роста показывают, сколько процентов составляет последующий уровень ряда по сравнению с предыдущим (гр.7 - цепные темпы роста) или по сравнению с начальным уровнем (гр.8 - базисные темпы роста). Формулы расчета можно записать следующим образом:

Так, к примеру, в 1997 ᴦ. объём производства продукта "А" по сравнению с 1996 ᴦ. составил 105,5 % (

Темпы прироста показывают, на сколько процентов увеличился уровень отчетного периода по сравнению с предыдущим (гр.9- цепные темпы прироста) или по сравнению с начальным уровнем (гр.10- базисные темпы прироста). Формулы расчета можно записать следующим образом:

Т пр = Т р - 100% или Т пр = абсолютный прирост / уровень предшествующего периода * 100%

Так, к примеру, в 1996 ᴦ. по сравнению с 1995 ᴦ. продукта "А" произведено больше на 3,8 % (103,8 %- 100%) или (8:210)х100%, а по сравнению с 1994 ᴦ. - на 9% (109% - 100%).

В случае если абсолютные уровни в ряду уменьшаются, то темп будет меньше 100% и соответственно будет темп снижения (темп прироста со знаком минус).

Абсолютное значение 1% прироста (гр.
Размещено на реф.рф
11) показывает, сколько единиц нужно произвести в данном периоде, чтобы уровень предыдущего периода возрос на 1 %. В нашем примере, в 1995 ᴦ. нужно было произвести 2,0 тыс. т., а в 1998 ᴦ. - 2,3 тыс. т., ᴛ.ᴇ. значительно больше.

Определить величину абсолютного значения 1% прироста можно двумя способами:

§ уровень предшествующего периода разделить на 100;

§ цепные абсолютные приросты разделить на соответствующие цепные темпы прироста.

Абсолютное значение 1% прироста =

В динамике, особенно за длительный период, важен совместный анализ темпов прироста с содержанием каждого процента прироста или снижения.

Заметим, что рассмотренная методика анализа рядов динамики применима как для рядов динамики, уровни которых выражены абсолютными величинами (т, тыс. руб., число работников и т.д.), так и для рядов динамики, уровни которых выражены относительными показателями (% брака, % зольности угля и др.) или средними величинами (средняя урожайность в ц/га, средняя зарплата и т.п.).

Наряду с рассмотренными аналитическими показателями, исчисляемыми за каждый год в сравнении с предшествующим или начальным уровнем, при анализе рядов динамики крайне важно исчислить средние за период аналитические показатели: средний уровень ряда, средний годовой абсолютный прирост (уменьшение) и средний годовой темп роста и темп прироста.

Методы расчета среднего уровня ряда динамики были рассмотрены выше. В рассматриваемом нами интервальном ряду динамики средний уровень ряда исчисляется по формуле средней арифметической простой:

Среднегодовой объём производства продукта за 1994- 1998 гᴦ. составил 218,4 тыс. т.

Среднегодовой абсолютный прирост исчисляется также по формуле средней арифметической

Среднее квадратическое отклонение - понятие и виды. Классификация и особенности категории "Среднее квадратическое отклонение" 2017, 2018.

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода