Вконтакте Facebook Twitter Лента RSS

Среднее приведенное значение. Московский государственный университет печати

Простая среднеарифметическая величина представляет собой среднее слагаемое, при определении которого общий объем данного признака всовокупности данных поровну распределяется между всеми единицами, входящими в данную совокупность. Так, среднегодовая выработка продукции на одного работающего - это такая величина объема продукции, которая приходилась бы на каждого работника, если бы весь объем выпущенной продукции в одинаковой степени распределялся между всеми сотрудниками организации. Среднеарифметическая простая величина исчисляется по формуле:

Простая средняя арифметическая - Равна отношению суммы индивидуальных значений признака к количеству признаков в совокупности

Пример 1 . Бригада из 6 рабочих получает в месяц 3 3,2 3,3 3,5 3,8 3,1 тыс.руб.

Найти среднюю заработную плату Решение: (3 + 3,2 + 3,3 +3,5 + 3,8 + 3,1) / 6 = 3,32 тыс. руб.

Средняя арифметическая взвешенная

Если объем совокупности данных большой и представляет собой ряд распределения, то исчисляется взвешенная среднеарифметическая величина. Так определяют средневзвешенную цену за единицу продукции: общую стоимость продукции (сумму произведений ее количества на цену единицы продукции) делят на суммарное количество продукции.

Представим это в виде следующей формулы:

Взвешенная средняя арифметическая - равна отношению (суммы произведений значения признака к частоте повторения данного признака) к (сумме частот всех признаков).Используется, когда варианты исследуемой совокупности встречаются неодинаковое количество раз.

Пример 2 . Найти среднюю заработную плату рабочих цеха за месяц

Заработная плата одного рабочего тыс.руб; X

Число рабочих F

Средняя заработная плата может быть получена путем деления общей суммы заработной платы на общее число рабочих:

Ответ: 3,35 тыс.руб.

Средняя арифметическая для интервального ряда

При расчете средней арифметической для интервального вариационного ряда сначала определяют среднюю для каждого интервала, как полусумму верхней и нижней границ, а затем - среднюю всего ряда. В случае открытых интервалов значение нижнего или верхнего интервала определяется по величине интервалов, примыкающих к ним.

Средние, вычисляемые из интервальных рядов являются приближенными.

Пример 3 . Определить средний возраст студентов вечернего отделения.

Возраст в годах!!х??

Число студентов

Среднее значение интервала

Произведение середины интервала (возраст) на число студентов

(18 + 20) / 2 =19 18 в данном случае граница нижнего интервала. Вычисляется как 20 - (22-20)

(20 + 22) / 2 = 21

(22 + 26) / 2 = 24

(26 + 30) / 2 = 28

30 и более

(30 + 34) / 2 = 32

Средние, вычисляемые из интервальных рядов являются приближенными. Степень их приближения зависит от того, в какой мере фактическое распределение единиц совокупности внутри интервала приближается к равномерному.

При расчете средних в качестве весов могут использоваться не только абсолютные, но и относительные величины (частость).

В статистике используют различные виды средних величин, которые делятся на два больших класса:

Степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);

Структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины – средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй – 7, третий – 4, четвертый – 10, пятый– 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для опреде-

ления средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек, возраст которых варьируется от 18 до 22 лет, где xi – варианты осредняемого признака, fi – частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:


Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины – средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как?fi, а время, затраченное на весь путь, – как? fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi – отдельные варианты; n – число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2

Виды степенных средних


Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая – при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где – средняя величина; – индивидуальное значение; n – число единиц изучаемой совокупности; k – показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние – мода (Мо) и медиана (Ме).

Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 – нижняя граница интервала; h – величина интервала; fm – частота интервала; fm_ 1 – частота предшествующего интервала; fm+ 1 – частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой – больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 – нижняя граница интервала; h – величина интервала; fm – частота интервала; f – число членов ряда;

M-1 – сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили – на 10 равных частей. Квартилей насчитывается три, а децилей – девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Начиная рассуждать о средних величинах, чаще всего вспоминают, как заканчивали школу и поступали в учебное заведение. Тогда по аттестату рассчитывался средний балл: все оценки (и хорошие, и не очень) складывали, полученную сумму делили на их количество. Так вычисляется самый простой вид средней, которая называется средняя арифметическая простая. На практике в статистике применяются различные виды средних величин: арифметическая, гармоническая, геометрическая, квадратическая, структурные средние. Тот или иной их вид используется в зависимости от характера данных и целей исследования.

Средняя величина является наиболее распространенным статистическим показателем, с помощью которого дается обобщающая характеристика совокупности однотипных явлений по одному из варьирующих признаков. Она показывает уровень признака в расчете на единицу совокупности. С помощью средних величин проводится сравнение различных совокупностей по варьирующим признакам, изучаются закономерности развития явлений и процессов общественной жизни.

В статистике применяются два класса средних: степенные (аналитические) и структурные. Последние используются для характеристики структуры вариационного ряда и будут рассмотрены далее в гл. 8.

К группе степенных средних относят среднюю арифметическую, гармоническую, геометрическую, квадратическую. Индивидуальные формулы для их вычисления можно привести к виду, общему для всех степенных средних, а именно

где m - показатель степенной средней: при m = 1 получаем формулу для вычисления средней арифметической, при m = 0 - средней геометрической, m = -1 - средней гармонической, при m = 2 - средней квадратической;

x i - варианты (значения, которые принимает признак);

f i - частоты.

Главным условием, при котором можно использовать степенные средние в статистическом анализе, является однородность совокупности, которая не должна содержать исходных данных, резко различающихся по своему количественному значению (в литературе они носят название аномальных наблюдений).

Продемонстрируем важность этого условия на следующем примере.

Пример 6.1. Вычислим среднюю заработную плату сотрудников малого предприятия.

Таблица 6.1. Заработная плата работников
№ п/п Заработная плата, руб. № п/п Заработная плата, руб.
1 5 950 11 7 000
2 6 790 12 5 950
3 6 790 13 6 790
4 5 950 14 5 950
5 7 000 5 6 790
6 6 790 16 7 000
7 5 950 17 6 790
8 7 000 18 7 000
9 6 790 19 7 000
10 6 790 20 5 950

Для расчета среднего размера заработной платы необходимо просуммировать заработную плату, начисленную всем работникам предприятия (т.е. найти фонд заработной платы), и разделить на число работающих:


А теперь добавим в нашу совокупность всего лишь одного человека (директора этого предприятия), но с окладом в 50 000 руб. В таком случае вычисляемая средняя будет совсем другая:

Как видим, она превышает 7000 руб., т.д. она больше всех значений признака за исключением одного-единственного наблюдения.

Для того чтобы таких случаев не происходило на практике, и средняя не теряла бы своего смысла (в примере 6.1 она уже не выполняет роль обобщающей характеристики совокупности, которой должна быть), при расчете средней следует аномальные, резко выделяющиеся наблюдения либо исключить из анализа и тем самым сделать совокупность однородной, либо разбить совокупность на однородные группы и вычислить средние значения по каждой группе и анализировать не общую среднюю, а групповые средние значения.

6.1. Средняя арифметическая и ее свойства

Средняя арифметическая вычисляется либо как простая, либо как взвешенная величина.

При расчете средней заработной платы по данным таблицы примера 6.1 мы сложили все значения признака и поделили на их количество. Ход наших вычислений запишем в виде формулы средней арифметической простой

где х i - варианты (отдельные значения признака);

п - число единиц в совокупности.

Пример 6.2. Теперь сгруппируем наши данные из таблицы примера 6.1, т.д. построим дискретный вариационный ряд распределения работающих по уровню заработной платы. Результаты группировки представлены в таблице.

Запишем выражение для вычисления среднего уровня заработной платы в более компактной форме:

В примере 6.2 была применена формула средней арифметической взвешенной

где f i - частоты, показывающие, сколько раз встречается значение признака х i y единиц совокупности.

Расчет средней арифметической взвешенной удобно проводить в таблице, как это показано ниже (табл. 6.3):

Таблица 6.3. Расчет средней арифметической в дискретном ряду
Исходные данные Расчетный показатель
заработная плата, руб. численность работающих, чел. фонд заработной платы, руб.
x i f i x i f i
5 950 6 35 760
6 790 8 54 320
7 000 6 42 000
Итого 20 132 080

Следует отметить, что средняя арифметическая простая используется в тех случаях, когда данные не сгруппированы или сгруппированы, но все частоты равны между собой.

Часто результаты наблюдения представляют в виде интервального ряда распределения (см. таблицу в примере 6.4). Тогда при расчете средней в качестве x i берут середины интервалов. Если первый и последний интервалы открыты (не имеют одной из границ), то их условно "закрывают", принимая за величины данного интервала величину примыкающего интервала, т.д. первый закрывают исходя из величины второго, а последний - по величине предпоследнего.

Пример 6.3. По результатам выборочного обследования одной из групп населения рассчитаем размер среднедушевого денежного дохода.

В приведенной таблице середина первого интервала равна 500. Действительно, величина второго интервала - 1000 (2000-1000); тогда нижняя граница первого равна 0 (1000-1000), а его середина - 500. Аналогично поступаем с последним интервалом. За его середину принимаем 25 000: величина предпоследнего интервала 10 000 (20 000-10 000), тогда его верхняя граница - 30 000 (20 000 + 10 000), а середина, соответственно, - 25 000.

Таблица 6.4. Расчет средней арифметической в интервальном ряду
Среднедушевой денежный доход, руб. в месяц Численность населения к итогу, % f i Середины интервалов x i x i f i
До 1 000 4,1 500 2 050
1 000-2 000 8,6 1 500 12 900
2 000-4 000 12,9 3 000 38 700
4 000-6 000 13,0 5 000 65 000
6 000-8 000 10,5 7 000 73 500
8 000-10 000 27,8 9 000 250 200
10 000-20 000 12,7 15 000 190 500
20 000 и выше 10,4 25 000 260 000
Итого 100,0 - 892 850

Тогда среднедушевой размер месячного дохода составит

В математике и статистике среднее арифметическое (либо легко среднее ) комплекта чисел - это сумма всех чисел в этом комплекте, поделённая на их число. Среднее арифметическое является особенно всеобщим и самым распространённым представлением средней величины.

Вам понадобится

  • Знания по математике.

Инструкция

1. Пускай дан комплект из четырех чисел. Нужно обнаружить среднее значение этого комплекта. Для этого вначале обнаружим сумму всех этих чисел. Возможен эти числа 1, 3, 8, 7. Их сумма равна S = 1 + 3 + 8 + 7 = 19. Комплект чисел должен состоять из чисел одного знака, в отвратном случае толк в вычислении среднего значения теряется.

2. Среднее значение комплекта чисел равно сумме чисел S, деленной на число этих чисел. То есть получается, что среднее значение равно: 19/4 = 4.75.

3. Для комплекта числе также дозволено обнаружить не только среднее арифметическое, но и среднее геометрическое. Средним геометрическим нескольких правильных вещественных чисел именуется такое число, которым дозволено заменить всякое из этих чисел так, дабы их произведение не изменилось. Среднее геометрическое G ищется по формуле: корень N-ой степени из произведения комплекта чисел, где N – число числе в комплекте. Разглядим тот же комплект чисел: 1, 3, 8, 7. Обнаружим их среднее геометрическое. Для этого посчитаем произведение: 1*3*8*7 = 168. Сейчас из числа 168 нужно извлечь корень 4-ой степени: G = (168)^1/4 = 3.61. Таким образом среднее геометрическое комплекта чисел равно 3.61.

Среднее геометрическое в совокупности применяется реже, чем арифметическое среднее, впрочем оно может быть пригодно при вычислении среднего значения показателей, изменяющихся с течением времени (заработная плата отдельного работника, динамика показателей успеваемости и т.п.).

Вам понадобится

  • Инженерный калькулятор

Инструкция

1. Для того дабы обнаружить среднее геометрическое ряда чисел, для начала надобно перемножить все эти числа. Скажем, вам дан комплект из пяти показателей: 12, 3, 6, 9 и 4. Перемножим все эти числа: 12х3х6х9х4=7776.

2. Сейчас из полученного числа надобно извлечь корень степени, равной числу элементов ряда. В нашем случае из числа 7776 необходимо будет извлечь корень пятой степени при помощи инженерного калькулятора. Полученное позже этой операции число – в данном случае число 6 – будет являться средним геометрическим для начальной группы чисел.

3. Если у вас под рукой нет инженерного калькулятора, то вычислить среднее геометрическое ряда чисел дозволено с поддержкой функции СРГЕОМ в программе Excel либо при помощи одного из онлайн-калькуляторов, намеренно предуготовленных для вычисления средних геометрических значений.

Обратите внимание!
Если понадобится обнаружить среднее геометрическое каждого для 2-х чисел, то инженерный калькулятор вам не потребуется: извлечь корень 2-й степени (квадратный корень) из всякого числа дозволено при помощи самого обыкновенного калькулятора.

Полезный совет
В различие от среднего арифметического, на геометрическое среднее не так мощно влияют огромные отклонения и колебания между отдельными значениями в исследуемом комплекте показателей.

Среднее значение – это одна из колляций комплекта чисел. Представляет собой число, которое не может выходить за пределы диапазона, определяемого наибольшим и наименьшим значениями в этом комплекте чисел. Среднее арифметическое значение – особенно зачастую применяемая разновидность средних.

Инструкция

1. Сложите все числа множества и поделите их на число слагаемых, дабы получить среднее арифметическое значение. В зависимости от определенных условий вычисления изредка бывает проще разделять всякое из чисел на число значений множества и суммировать итог.

2. Используйте, скажем, входящий в состава ОС Windows калькулятор, если вычислить среднее арифметическое значение в уме не представляется допустимым. Открыть его дозволено с поддержкой диалога запуска программ. Для этого нажмите «жгучие клавиши» WIN + R либо щелкните кнопку «Пуск» и выберите в основном меню команду «Исполнить». После этого напечатайте в поле ввода calc и нажмите на клавиатуре Enter либо щелкните кнопку «OK». Это же дозволено сделать через основное меню – раскройте его, перейдите в раздел «Все программы» и в сегменты «Типовые» и выберите строку «Калькулятор».

3. Введите ступенчато все числа множества, нажимая на клавиатуре позже всего из них (помимо последнего) клавишу «Плюс» либо щелкая соответствующую кнопку в интерфейсе калькулятора. Вводить числа тоже дозволено как с клавиатуры, так и щелкая соответствующие кнопки интерфейса.

4. Нажмите клавишу с косой чертой (слэш) либо щелкните данный значок в интерфейсе калькулятора позже ввода последнего значения множества и напечатайте число чисел в последовательности. После этого нажмите знак равенства, и калькулятор рассчитает и покажет среднее арифметическое значение.

5. Дозволено для этой же цели применять табличный редактор Microsoft Excel. В этом случае запустите редактор и введите в соседние ячейки все значения последовательности чисел. Если позже ввода всего числа вы будете нажимать Enter либо клавишу со стрелкой вниз либо вправо, то редактор сам будет перемещать фокус ввода в соседнюю ячейку.

6. Выделите все введенные значения и в левом нижнем углу окна редактора (в строке состояния) увидите среднеарифметическое значение для выделенных ячеек.

7. Щелкните следующую за последним введенным числом ячейку, если вам не довольно только увидеть среднее арифметическое значение. Раскройте выпадающий список с изображением греческой буквы сигма (Σ) в группе команд «Редактирование» на вкладке «Основная». Выберите в нем строку «Среднее » и редактор вставит необходимую формулу для вычисления среднеарифметического значения в выделенную ячейку. Нажмите клавишу Enter, и значение будет рассчитано.

Среднее арифметическое – одна из мер центральной склонности, обширно применяемая в математике и статистических расчетах. Обнаружить среднее арифметическое число для нескольких значений дюже легко, но у всякой задачи есть свои нюансы, знать которые для выполнения правильных расчетов примитивно нужно.

Что такое среднее арифметическое число

Среднее арифметическое число определяет усредненное значение для каждого начального массива чисел. Другими словами, из некоторого множества чисел выбирается всеобщее для всех элементов значение, математическое сопоставление которого со всеми элементами носит приближенно равный нрав. Среднее арифметическое число применяется, предпочтительно, при составлении финансовых и статистических отчетов либо для расчетов количественных итогов проведенных сходственных навыков.

Как обнаружить среднее арифметическое число

Поиск среднего арифметического числа для массива чисел следует начинать с определения алгебраической суммы этих значений. К примеру, если в массиве присутствуют числа 23, 43, 10, 74 и 34, то их алгебраическая сумма будет равна 184. При записи среднее арифметическое обозначается буквой? (мю) либо x (икс с чертой). Дальше алгебраическую сумму следует поделить на число чисел в массиве. В рассматриваемом примере чисел было пять, следственно среднее арифметическое будет равно 184/5 и составит 36,8.

Особенности работы с негативными числами

Если в массиве присутствуют негативные числа, то нахождение среднего арифметического значения происходит по аналогичному алгорифму. Разница имеется только при рассчетах в среде программирования, либо же если в задаче есть добавочные данные. В этих случаях нахождение среднего арифметического чисел с различными знаками сводится к трем действиям:1. Нахождение всеобщего среднего арифметического числа стандартным способом;2. Нахождение среднего арифметического негативным чисел.3. Вычисление среднего арифметического позитивных чисел.Результаты всякого из действий записываются через запятую.

Натуральные и десятичные дроби

Если массив чисел представлен десятичными дробями, решение происходит по способу вычисления среднего арифметического целых чисел, но сокращение итога производится по требованиям задачи к точности результата.При работе с естественными дробями их следует привести к всеобщему знаменателю, тот, что умножается на число чисел в массиве. В числителе результата будет сумма приведенных числителей начальных дробных элементов.

Среднее геометрическое чисел зависит не только от безусловной величины самих чисел, но и от их числа. Невозможно путать среднее геометрическое и среднее арифметическое чисел, от того что они находятся по различным методологиям. При этом среднее геометрическое неизменно поменьше либо равно среднему арифметическому.

Вам понадобится

  • Инженерный калькулятор.

Инструкция

1. Рассматривайте, что в всеобщем случае среднее геометрическое чисел находится путем перемножения этих чисел и извлечения из них корня степени, которая соответствует числу чисел. Скажем, если надобно обнаружить среднее геометрическое пяти чисел, то из произведения необходимо будет извлекать корень пятой степени.

2. Для нахождения среднего геометрического 2-х чисел используйте основное правило. Обнаружьте их произведение, позже чего извлеките из него квадратный корень, от того что числа два, что соответствует степени корня. Скажем, для того дабы обнаружить среднее геометрическое чисел 16 и 4, обнаружьте их произведение 16 4=64. Из получившегося числа извлеките квадратный корень?64=8. Это и будет желанная величина. Обратите внимание на то, что среднее арифметическое этих 2-х чисел огромнее и равно 10. Если корень не извлекается нацело, произведите округление итога до надобного порядка.

3. Дабы обнаружить среднее геометрическое больше чем 2-х чисел, тоже используйте основное правило. Для этого обнаружьте произведение всех чисел, для которых надобно обнаружить среднее геометрическое. Из полученного произведения извлеките корень степени, равной числу чисел. Скажем, дабы обнаружить среднее геометрическое чисел 2, 4 и 64, обнаружьте их произведение. 2 4 64=512. От того что необходимо обнаружить итог среднего геометрического 3 чисел, что из произведения извлеките корень третей степени. Сделать это устно затруднительно, следственно воспользуйтесь инженерным калькулятором. Для этого в нем есть кнопка “x^y”. Наберите число 512, нажмите кнопку “x^y”, позже чего наберите число 3 и нажмите кнопку “1/х”, дабы обнаружить значение 1/3, нажмите кнопку “=”. Получим итог возведения 512 в степень 1/3, что соответствует корню третьей степени. Получите 512^1/3=8. Это и есть среднее геометрическое чисел 2,4 и 64.

4. С поддержкой инженерного калькулятора дозволено обнаружить среднее геометрическое иным методом. Обнаружьте на клавиатуре кнопку log. Позже этого возьмите логарифм для всего из чисел, обнаружьте их сумму и поделите ее на число чисел. Из полученного числа возьмите антилогарифм. Это и будет среднее геометрическое чисел. Скажем, для того дабы обнаружить среднее геометрическое тех же чисел 2, 4 и 64, сделайте на калькуляторе комплект операций. Наберите число 2, позже чего нажмите кнопку log, нажмите кнопку “+”, наберите число 4 и вновь нажмите log и “+”, наберите 64, нажмите log и “=”. Итогом будет число, равное сумме десятичных логарифмов чисел 2, 4 и 64. Полученное число поделите на 3, от того что это число чисел, по которым ищется среднее геометрическое. Из итога возьмите антилогарифм, переключив кнопку регистра, и используйте ту же клавишу log. В итоге получится число 8, это и есть желанное среднее геометрическое.

Обратите внимание!
Среднее значение не может быть огромнее самого большого числа в комплекте и поменьше самого маленького.

Полезный совет
В математической статистике среднее значение величины именуется математическим ожиданием.

По дисциплине: Статистика

Вариант № 2

Средние величины, применяемые в статистике

Введение………………………………………………………………………….3

Теоретическое задание

Средняя величина в статистике, ее сущность и условия применения.

1.1. Сущность средней величины и условия применения………….4

1.2. Виды средних величин……………………………………………8

Практическое задание

Задача 1,2,3………………………………………………………………………14

Заключение……………………………………………………………………….21

Список используемой литературы……………………………………………...23

Введение

Данная контрольная работа состоит из двух частей – теоретической и практической. В теоретической части будет подробно рассмотрена такая важная статистическая категория как средняя величина с целью выявления её сущности и условий применения, а также выделения видов средних и способов их расчёта.

Статистика, как известно, изучает массовые социально-экономические явления. Каждое из этих явлений может иметь различное количественное выражение одного и того же признака. Например, заработная плата одной и той же профессии рабочих или цены на рынке на один и тот же товар и т.д. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Для изучения какой-либо совокупности по варьирующим (количественно изменяющимся) признакам статистика использует средние величины.

Сущность средней величины

Средняя величина - это обобщающая количественная характеристика совокупности однотипных явлений по одному варьирующему признаку. В экономической практике используется широкий круг показателей, вычисленных в виде средних величин.

Важнейшее свойство средней величины заключается в том, что она представляет значение определенного признака во всей совокупности одним числом, несмотря на количественные различия его у отдельных единиц совокупности, и выражает то общее, что присуще всем единицам изучаемой совокупности. Таким образом, через характеристику единицы совокупности она характеризует всю совокупность в целом.

Средние величины связаны с законом больших чисел. Суть этой связи заключается в том, что при осреднении случайные отклонения индивидуальных величин в силу действия закона больших чисел взаимопогашаются и в средней выявляется основная тенденция развития, необходимость, закономерность. Средние величины позволяют сравнивать показатели, относящиеся к совокупностям с различной численностью единиц.

В современных условиях развития рыночных отношений в экономике средние служат инструментом изучения объективных закономерностей социально-экономических явлений. Однако в экономическом анализе нельзя ограничиваться лишь средними показателями, так как за общими благоприятными средними могут скрываться и крупные серьезные недостатки в деятельности отдельных хозяйствующих субъектов, и ростки нового, прогрессивного. Например, распределение населения по доходу позволяет выявлять формирование новых социальных групп. Поэтому наряду со средними статистическими данными необходимо учитывать особенности отдельных единиц совокупности.

Средняя величина являются равнодействующей всех факторов, оказывающих влияние на изучаемое явление. То есть, при расчете средних величин взаимопогашаются влияние случайных (пертурбационных, индивидуальных) факторов и, таким образом, возможно определение закономерности, присущей исследуемому явлению. Адольф Кетле подчеркивал, что значение метода средних величин состоит в возможности перехода от единичного к общему, от случайного к закономерному, и существование средних величин является категорией объективной действительности.

Статистика изучает массовые явления и процессы. Каждое из таких явлений обладает как общими для всей совокупности, так и особенными, индивидуальными свойствами. Различие между индивидуальными явлениями называют вариацией. Другое свойство массовых явлений - присущая им близость характеристик отдельных явлений. Итак, взаимодействие элементов совокупности приводит к ограничению вариации хотя бы части их свойств. Эта тенденция существует объективно. Именно в её объективности заключается причина широчайшего применения средних величин на практике и в теории.

Средней величиной в статистике называется обобщающий показатель, характеризующий типичный уровень явления в конкретных условиях места и времени, отражающий величину варьирующего признака в расчёте на единицу качественно однородной совокупности.

В экономической практике используется широкий круг показателей, вычисленный в виде средних величин.

С помощью метода средних величин статистика решает много задач.

Главное значение средних состоит в их обобщающей функции, то есть замене множества различных индивидуальных значений признака средней величиной, характеризующей всю совокупность явлений.

Если средняя величина обобщает качественно однородные значения признака, то она является типической характеристикой признака в данной совокупности.

Однако неправильно сводить роль средних величин только к характеристике типичных значений признаков в однородных по данному признаку совокупностях. На практике значительно чаще современная статистика использует средние величины, обобщающие явно однородные явления.

Средняя величина национального дохода на душу населения, средняя урожайность зерновых культур по всей стране, среднее потребление разных продуктов питания – это характеристики государства как единой народнохозяйственной системы, это так называемые системные средние.

Системные средние могут характеризовать как пространственные или объектные системы, существующие одномоментно (государство, отрасль, регион, планета Земля и т.д.), так и динамические системы, протяжённые во времени (год, десятилетие, сезон и т.д.).

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные. Например, курс акций корпорации в целом определяется ее финансовым положением. В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам.

Вычисление среднего - один из распространённых приёмов обобщения; средний показатель отражает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости.

Средняя – это сводная характеристика закономерностей процесса в тех условиях, в которых он протекает.

Каждая средняя характеризует изучаемую совокупность по какому-либо одному признаку, но для характеристики любой совокупности, описания её типических черт и качественных особенностей нужна система средних показателей. Поэтому в практике отечественной статистики для изучения социально-экономических явлений, как правило, исчисляется система средних показателей. Так, например, показатель средней заработной платы оцениваются совместно с показателями средней выработки, фондовооружённости и энерговооружённости труда, степенью механизации и автоматизации работ и др.

Средняя должна вычисляться с учётом экономического содержания исследуемого показателя. Поэтому для конкретного показателя, используемого в социально экономическом анализе, можно исчислить только одно истинное значение средней на базе научного способа расчёта.

Средняя величина это один из важнейших обобщающих статистических показателей, характеризующий совокупность однотипных явлений по какому-либо количественно варьирующему признаку. Средние в статистике это обобщающие показатели, числа, выражающие типичные характерные размеры общественных явлений по одному количественно варьирующему признаку.

Виды средних величин

Виды средних величин различаются прежде всего тем, какое свойство, какой параметр исходной варьирующей массы индивидуальных значений признака должен быть сохранен неизменным.

Средняя арифметическая

Средней арифметической величиной называется такое среднее значение признака, при вычислении которого общий объём признака в совокупности остаётся неизменным. Иначе можно сказать, что средняя арифметическая величина – среднее слагаемое. При её вычислении общий объём признака мысленно распределяется поровну между всеми единицами совокупности.

Средняя арифметическая применяется, если известны значения осредняемого признака (х) и количество единиц совокупности с определённым значением признака (f).

Средняя арифметическая бывает простой и взвешенной.

Средняя арифметическая простая

Простая используется, если каждое значение признака х встречается один раз, т.е. для каждого х значение признака f=1, или если исходные данные не упорядочены и неизвестно, сколько единиц имеют определённые значения признака.

Формула средней арифметической простой имеет вид:

где - средняя величина; х – значение осредняемого признака (варианта), - число единиц изучаемой совокупности.

Средняя арифметическая взвешенная

В отличие от простой средней средняя арифметическая взвешенная применяется, если каждое значение признака х встречается несколько раз, т.е. для каждого значения признака f≠1. Данная средняя широко используется при исчислении средней на основании дискретного ряда распределения:

где - число групп, х – значение осредняемого признака, f- вес значения признака (частота, если f – число единиц совокупности; частость, если f- доля единиц с вариантой х в общем объёме совокупности).

Средняя гармоническая

Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной. Применяется она тогда, когда необходимые веса (f i) в исходных данных не заданы непосредственно, а входят сомножителем в одни из имеющихся показателей (т.е. тогда, когда известен числитель исходного соотношения средней, но неизвестен его знаменатель).

Средняя гармоническая взвешенная

Произведение xf даёт объём осредняемого признака х для совокупности единиц и обозначается w. Если в исходных данных имеются значения осредняемого признака х и объём осредняемого признака w, то для расчёта средней применяется гармоническая взвешенная:

где х – значение осредняемого признака х (варианта); w – вес варианты х, объем осредняемого признака.

Средняя гармоническая не взвешенная (простая)

Эта форма средней, используемая значительно реже, имеет следующий вид:

где х – значение осредняемого признака; n – число значений х.

Т.е. это обратная величина средней арифметической простой из обратных значений признака.

На практике средняя гармоническая простая применяется редко, в тех случаях, когда значения w для единиц совокупности равны.

Средняя квадратическая и средняя кубическая

В ряде случаев в экономической практике возникает потребность расчета среднего размера признака, выраженного в квадратных или кубических единицах измерения. Тогда применяется средняя квадратическая (например, для вычисления средней величины стороны и квадратных участков, средних диаметров труб, стволов и т.п.) и средняя кубическая (например, при определении средней длины стороны и кубов).

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной, простой или взвешенной.

Средняя квадратическая простая

Простая используется, если каждое значение признака х встречается один раз, в общем имеет вид:

где - квадрат значений осредняемого признака; - число единиц совокупности.

Средняя квадратическая взвешенная

Средняя квадратическая взвешенная применяется, если каждое значение осредняемого признака х встречается f раз:

,

где f – вес варианты х.

Средняя кубическая простая и взвешенная

Средняя кубическая простая является кубическим корнем из частного от деления суммы кубов отдельных значений признака на их число:

где - значения признака, n- их число.

Средняя кубическая взвешенная:

,

где f-вес варианты х.

Средние квадратическая и кубическая имеют ограниченное применение в практике статистики. Широко пользуется статистика средней квадратической, но не из самих вариантов x, и из их отклонений от средней при расчете показателей вариации.

Средняя может быть вычислена не для всех, а для какой-либо части единиц совокупности. Примером такой средней может быть средняя прогрессивная как одна из частных средних, вычисляемая не для всех, а только для "лучших" (например, для показателей выше или ниже средних индивидуальных).

Средняя геометрическая

Если значения осредняемого признака существенно отстоят друг от друга или заданы коэффициентами (темпы роста, индексы цен), то для расчёта применяют среднюю геометрическую.

Средняя геометрическая исчисляется извлечением корня степени и из произведений отдельных значений - вариантов признака х:

где n - число вариантов; П - знак произведения.

Наиболее широкое применение средняя геометрическая получила для определения средних темпов изменения в рядах динамики, а также в рядах распределения.

Средние величины - это обобщающие показатели, в которых находят выражения действие общих условий, закономерность изучаемого явления. Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного или выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Применение средних должно исходить из диалектического понимания категорий общего и индивидуального, массового и единичного.

Сочетание общих средних с групповыми средними дает возможность ограничить качественно однородные совокупности. Расчленяя массу объектов, составляющих то или иное сложное явления, на внутренне однородные, но качественно различные группы, характеризуя каждую из групп своей средней, можно вскрыть резервы процесс нарождающегося нового качества. Например, распределения населения по доходу позволяет выявить формирование новых социальных групп. В аналитической части мы рассмотрели частный пример использования средней величины. Подводя итог можно сказать, что область применения и использования средних величин в статистике довольно широка.

Практическое задание

Задача №1

Определить средний курс покупки и средний курс продажи одного и $ США

Средний курс покупки

Средний курс продажи

Задача №2

Динамика объема собственной продукции общественного питания Челябинской области за 1996-2004 года представлена в таблице в сопоставимых ценах (млн. руб.)

Произвести смыкание рядов А и В. Для анализа ряда динамики производства готовой продукции вычислить:

1. Абсолютные приросты, темпы роста и прироста цепные и базисные

2. Среднегодовое производство готовой продукции

3. Среднегодовой темп роста и прироста продукции фирмы

4. Произвести аналитическое выравнивание ряда динамики и вычислить прогноз на 2005 год

5. Изобразить графически ряд динамики

6. Сделать вывод по результатам динамики

1) уi Б = уi-у1 уi Ц = уi-у1

y2 Б = 2,175 – 2,04 y2 Ц = 2,175 – 2, 04 = 0,135

y3Б = 2,505 – 2,04 y3 Ц = 2, 505 – 2,175 = 0,33

y4 Б = 2,73 – 2,04 y4 Ц = 2, 73 – 2,505 = 0,225

y5 Б = 1,5 – 2,04 y5 Ц = 1, 5 – 2,73 = 1,23

y6 Б = 3,34 – 2,04 y6 Ц = 3, 34 – 1,5 = 1,84

y7 Б = 3,6 3 – 2,04 y7 Ц = 3, 6 3 – 3,34 = 0,29

y8 Б = 3,96 – 2,04 y8 Ц = 3, 96 – 3,63 = 0,33

y9 Б = 4,41–2,04 y9 Ц = 4, 41 – 3,96 = 0,45

Тр Б2 Тр Ц2

Тр Б3 Тр Ц3

Тр Б4 Тр Ц4

Тр Б5 Тр Ц5

Тр Б6 Тр Ц6

Тр Б7 Тр Ц7

Тр Б8 Тр Ц8

Тр Б9 Тр Ц9

Тр Б = (ТпрБ *100%) – 100%

Тр Б2 = (1,066*100%) – 100% = 6,6%

Тр Ц3 = (1,151*100%) – 100% = 15,1%

2) yмлн.руб. – средняя производительность продукции

2,921 + 0,294*(-4) = 2,921-1,176 = 1,745

2,921 + 0,294*(-3) = 2,921-0,882 = 2,039

(yt-y) = (1,745-2,04) = 0,087

(yt-yt) = (1,745-2,921) = 1,382

(y-yt) = (2,04-2,921) = 0,776

Tp

Бy

y2005=2,921+1,496*4=2,921+5,984=8,905

8,905+2,306*1,496=12,354

8,905-2,306*1,496=5,456

5,456 2005 12,354


Задача №3

Статистические данные оптовых поставок продовольственных и непродовольственных и розничную торговую сеть области в 2003 и 2004 годах представлены в соответствующих графиках.

По данным таблицы 1 и 2 требуется

1. Найти общий индекс оптовой поставки продовольственных товаров в фактических ценах;

2. Найти общий индекс фактического объема поставки продовольственных товаров;

3. Сравнить общие индексы и сделать соответствующий вывод;

4. Найти общий индекс поставки непродовольственных товаров в фактических ценах;

5. Найти общий индекс физического объема поставки непродовольственных товаров;

6. Сравнить полученные индексы и сделать вывод по непродовольственным товарам;

7. Найти сводный общий индексы поставки всей товарной массы в фактических ценах;

8. Найти сводный общий индекс физического объема (по всей товарной массе товаров);

9. Сравнить полученный сводные индексы и сделать соответствующий вывод.

Базисный период

Отчетный период (2004)

Поставки отчетного периода в ценах базисного периода

1,291-0,681=0,61= - 39

Заключение

В заключении подведем итоги. Средние величины - это обобщающие показатели, в которых находят выражения действие общих условий, закономерность изучаемого явления. Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного или выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Применение средних должно исходить из диалектического понимания категорий общего и индивидуального, массового и единичного.

Средняя отражает то общее, что складывается в каждом отдельном, единичном объекте благодаря этому средняя получает большое значение для выявления закономерностей присущих массовым общественным явлениям и незаметных в единичных явлениях.

Отклонение индивидуального от общего - проявление процесса развития. В отдельных единичных случаях могут быть заложены элементы нового, передового. В этом случае именно конкретных фактор, взятые на фоне средних величин, характеризует процесс развития. Поэтому в средней и отражается характерный, типичный, реальный уровень изучаемых явлений. Характеристики этих уровней и их изменений во времени и в пространстве являются одной из главных задач средних величин. Так, через средние проявляется, например, свойственная предприятиям на определенном этапе экономического развития; изменение благосостояния населения находит свое отражение в средних показателях заработной платы, доходов семьи в целом и по отдельным социальным группам, уровня потребления продуктов, товаров и услуг.

Средний показатель - это значение типичное (обычное, нормальное, сложившееся в целом), но таковым оно является по тому, что формируется в нормальных, естественных условиях существования конкретного массового явления, рассматриваемого в целом. Средняя отображает объективное свойство явления. В действительности часто существует только отклоняющиеся явления, и средняя как явления может и не существовать, хотя понятие типичности явления и заимствуется из действительности. Средняя величина является отражения значения изучаемого признака и, следовательно, измеряется в той же размеренности что и этот признак. Однако существуют различные способы приближенного определения уровня распределения численности для сравнения сводных признаков, непосредственно не сравнимых между собой, например средняя численность населения по отношению к территории (средняя плотность населения). В зависимости от того, какой именно фактор нужно элиминировать, будет находиться и содержание средней.

Сочетание общих средних с групповыми средними дает возможность ограничить качественно однородные совокупности. Расчленяя массу объектов, составляющих то или иное сложное явления, на внутренне однородные, но качественно различные группы, характеризуя каждую из групп своей средней, можно вскрыть резервы процесс нарождающегося нового качества. Например, распределения населения по доходу позволяет выявить формирование новых социальных групп. В аналитической части мы рассмотрели частный пример использования средней величины. Подводя итог можно сказать, что область применения и использования средних величин в статистике довольно широка

Список используемой литературы

1. Гусаров, В.М. Теория статистики качеством [Текст]: учеб. пособие / В.М.

Гусаров пособие для вузов. - М.,1998

2. Едронова, Н.Н. Общая теория статистики [Текст]: учебник / Под ред. Н.Н. Едроновой - М.: Финансы и статистика 2001 - 648 с.

3. Елисеева И.И., Юзбашев М.М. Общая теория статистики [Текст]: Учебник / Под ред. чл.-корр. РАН И.И.Елисеевой. – 4-е изд., перераб. и доп. - М.: Финансы и статистика, 1999. - 480с.: ил.

4. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики: [Текст]: Учебник. - М.: ИНФРА-М, 1996. - 416с.

5. Ряузова, Н.Н. Общая теория статистики [Текст]: учебник / Под ред. Н.Н.

Ряузова­ - М.: Финансы и статистика, 1984.


Гусаров В.М. Теория статистики: Учебн. Пособие для вузов. - М.,1998.-С.60.

Елисеева И.И., Юзбашев М.М. Общая теория статистики. - М.,1999.-С.76.

Гусаров В.М. Теория статистики: Учебн. Пособие для вузов. -М.,1998.-С.61.

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода