Вконтакте Facebook Twitter Лента RSS

Системы трех уравнений с 3 неизвестными. Диофантовое уравнение с тремя неизвестными

Системой линейных уравнений называется совокупность рассматриваемых совместно нескольких линейных уравнений.

В системе может быть любое число уравнений с любым числом неизвестных.

Решением системы уравнений называется совокупность значений неизвестных, удовлетворяющая всем уравнениям системы, то есть обращающая их в тождества.

Система, имеющая решение, называется совместной, в противном случае – несовместной.

Для решения системы применяют различные методы.

Пусть
(число уравнений равно числу неизвестных).

Метод Крамера

Рассмотрим решение системы трёх линейных уравнений с тремя неизвестными:

(7)

Для нахождения неизвестных
применим формулу Крамера:

(8)

где - определитель системы, элементы которого есть коэффициенты при неизвестных:

.

получается путём замены первого столбца определителя столбцом свободных членов:

.

Аналогично:

;
.

Пример 1. Решить систему по формуле Крамера:

.

Решение: Воспользуемся формулами (8):

;

;

;

;

Ответ:
.

Для любой системы линейных уравнений снеизвестными можно утверждать:


Матричный способ решения

Рассмотрим решение системы (7) трёх линейных уравнений с тремя неизвестными матричным способом.

Используя правила умножения матриц, данную систему уравнений можно записать в виде:
, где

.

Пусть матрица невырожденная, т.е.
. Умножая обе части матричного уравнения слева на матрицу
, обратную матрице, получим:
.

Учитывая, что
, имеем

(9)

Пример 2. Решить систему матричным способом:

.

Решение: Введём матрицы:

- из коэффициентов при неизвестных;

- столбец свободных членов.

Тогда систему можно записать матричным уравнением:
.

Воспользуемся формулой (9). Найдём обратную матрицу
по формуле (6):

;

.

Следовательно,

Получили:

.

Ответ:
.

Метод последовательного исключения неизвестных (метод Гаусса)

Основная идея применяемого метода заключается в последовательном исключении неизвестных. Поясним смысл этого метода на системе трёх уравнений с тремя неизвестными:

.

Допустим, что
(если
, то изменим порядок уравнений, выбрав первым уравнением то, в котором коэффициент прине равен нулю).

Первый шаг: а) делим уравнение
на
; б) умножаем полученное уравнение на
и вычитаем из
; в) затем полученное умножаем на
и вычитаем из
. В результате первого шага будем иметь систему:


,


Второй шаг: поступаем с уравнением
и
точно так же, как с уравнениями
.

В итоге исходная система преобразуется к так называемому ступенчатому виду:

Из преобразованной системы все неизвестные определяются последовательно без труда.

Замечание. Практически удобнее приводить к ступенчатому виду не саму систему уравнений, а матрицу из коэффициентов, при неизвестных, и свободных членов.

Пример 3. Решить методом Гаусса систему:

.

Переход от одной матрицы к другой будем записывать при помощи знака эквивалентности ~.

~
~
~
~

~
.

По полученной матрице выписываем преобразованную систему:

.

Ответ:
.

Замечание: Если система имеет единственное решение, то ступенчатая система приводится к треугольной, то есть к такой, в которой последнее уравнение будет содержать одно неизвестное. В случае неопределённой системы, то есть такой, в которой число неизвестных больше числа линейно независимых уравнений, треугольной системы не будет, так как последнее уравнение будет содержать более одного неизвестного (система имеет бесчисленное множество решений). Когда же система несовместна, то, после приведения её к ступенчатому виду, она будет содержать хотя бы одно значение вида
, то есть уравнение, в котором все неизвестные имеют нулевые коэффициенты, а правая часть отлична от нуля (система решений не имеет). Метод Гаусса применим к произвольной системе линейных уравнений (при любых
и).

      Теорема существования решения системы линейных уравнений

При решении системы линейных уравнений методом гаусса ответ на вопрос, совместна или несовместна данная система может быть дан лишь в конце вычислений. Однако часто бывает важно решить вопрос о совместности или несовместности системы уравнений, не находя самих решений. Ответ на этот вопрос даёт следующая теорема Кронекера-Капелли.

Пусть дана система
линейных уравнений снеизвестными:

(10)

Для того, чтобы система (10) была совместной, необходимо и достаточно чтобы ранг матрицы системы

.

был равен рангу её расширенной матрицы

.

Причём, если
, то система (10) имеет единственное решение; если же
, то система имеет бесчисленное множество решений.

Рассмотрим однородную систему (все свободные члены равны нулю) линейных уравнений:

.

Эта система всегда совместна, так как она имеет нулевое решение .

В следующей теореме даны условия, при которых система имеет также решения, отличные от нулевого.

Терема. Для того, чтобы однородная система линейчатых уравнений имела нулевое решение, необходимо и достаточно, чтобы её определитель был равен нулю:

.

Таким образом, если
, то решение- единственное. Если
, то существует бесконечноё множество других ненулевых решений. Укажем один из способов отыскания решений для однородной системы трёх линейных уравнений с тремя неизвестными в случае
.

Можно доказать, что если
, а первое и второе уравнения непропорциональны (линейно независимы), то третье уравнение есть следствие первых двух. Решение однородной системы трёх уравнений с тремя неизвестными сводится к решению двух уравнений с тремя неизвестными. Появляется так называемое свободное неизвестное, которому можно придавать произвольные значения.

Пример 4. Найти все решения системы:

.

Решение. Определитель этой системы

.

Поэтому система имеет нулевые решения. Можно заметить, что первые два уравнения, например, непропорциональны, следовательно, они линейно независимые. Третье является следствием первых двух (получается, если к первому уравнению прибавить удвоенное второе). Отбросив его, получим систему двух уравнений с тремя неизвестными:

.

Полагая, например,
, получим

.

Решая систему двух линейных уравнений, выразим ичерез:
. Следовательно, решение системы можно записать в виде:
, где- произвольное число.

Пример 5. Найти все решения системы:

.

Решение. Нетрудно видеть, что в данной системе только одно независимое уравнение (два других ему пропорциональны). Система из трёх уравнений с тремя неизвестными свелась к одному уравнению с тремя неизвестными. Появляются два свободных неизвестных. Найдя, например, из первого уравнения
при произвольныхи, получим решения данной системы. Общих вид решения можно записать, гдеи- произвольные числа.

      Вопросы для самопроверки

Сформулируйте правило Крамера для решения системы линейных уравнений снеизвестными.

В чём сущность матричного способа решения систем?

В чём заключается метод Гаусса решения системы линейных уравнений?

Сформулируйте теорему Кронекера-Капелли.

Сформулируйте необходимое и достаточноё условие существования ненулевых решений однородной системы линейных уравнений.

      Примеры для самостоятельного решения

Найдите все решения систем:

1.
; 2.
;

3.
; 4.
;

5.
; 6.
;

7.
; 8.
;

9.
; 10.
;

11.
; 12.
;

13.
; 14.
;

15.
.

Определите, при каких значениях исистема уравнений

а) имеет единственное решение;

б) не имеет решения;

в) имеет бесконечно много решений.

16.
; 17.
;

Найти все решения следующих однородных систем:

18.
; 19.
;

20.
; 21.
;

22.
; 23.
;

      Ответы к примерам

1.
; 2.
; 3. Ǿ; 4. Ǿ;

5.
- произвольное число.

6.
, где- произвольное число.

7.
; 8.
; 9. Ǿ; 10. Ǿ;

11.
, где- произвольное число.

12. , гдеи- произвольные числа.

13.
; 14.
гдеи- произвольные числа.

15. Ǿ; 16. а)
; б)
; в)
.

17. а)
; б)
; в)
;

18.
; 19.
; 20., где- произвольное число.

21. , где- произвольное число.

22. , где- произвольное число.

23. , гдеи- произвольные числа.

После того, как автор сайта смог научить своего бота решать линейное диофантово уравнение с двумя переменными , возникло желание научить бота решать подобные уравнения, но уже с тремя неизвестными. Пришлось окунутся в книги.

Вынырнув оттуда через два месяца, автор понял, что он ничего не понял. Зело умные математики, так мудрёно писали алгоритм вывода формул, что мне смертному было стыдно. Опечалился было, но мысль на книжных просторах все таки одну полезную нашел, и с этой мысли пришло понимание как решать диофантовые уравнения с тремя неизвестными.

Итак для всех, кто не математик, но хочет им быть:)

Диофантовое уравнение с тремя неизвестными имеет вот такой вид

где целые числа

Если мы подумаем какое же общее решение может быть у неизвестных, то самое банальное выглядит так

Подставим наше общее решение в уравнение

Какой же от этого прок, спросит нетерпеливый читатель? А вот какой, сгруппируем все по неизвестным,получим

Смотрите, в правой части стоит какое то постоянное число, обозначенное буквой d

Значит, от t (она же переменная, мало ли каким она значением хочет стать) оно не зависит а значит

Логично предположить что и от z оно не зависит а значит

а вот от постоянных значений A 3 и B 3 оно зависит напрямую, то есть

Что же в конечном итоге мы получили? А получили мы три типовых классических диофантовых уравнений с двумя неизвестными , которые решать мы можем легко и непринужденно.

Попробуем решить?

В первых строках поисковых систем нашлось вот такое уравнение

Первое уравнение будет вот такое

корни его

Избавимся от нулей, взяв к примеру k=-1. (Хотите можете взять 2 или 100 или -3) На окончательное решение это не повлияет.

Решаем второе уравнение

и его корни

здесь пусть k=0 (так как X и Y не совпадают уже при нулевых значениях)

И последнее третье уравнение

Корни тут такие

Подставим теперь все найденные значения в общий вид

Вот и все!

Заметьте, что все решается очень легко и прозрачно! Наверняка преподаватели и способные студенты возьмут себе на вооружение эту методику, так как в книгах автор бота её так и нашел.

Еще один пример, уже решенный с помощью бота.

Дополнение: Когда будете решать подобные уравнения с помощью бота, можете столкнуться с тем, что бот Вам выдаст ошибку с просьбой, поменять переменные местами, для другой попытки решить уравнение. Это связано с тем что при промежуточных вычислениях, получается нерешаемое уравнение

Как пример

При попытке решить уравнение

в нашем случае

мы получим ошибку, так как при любых значениях, в левой части будет всегда(!!) чётное число, а в правой части как мы видим нечетное.

Но это не значит что изначальное уравнение нерешаемое. Достаточно поменять слагаемые в другом порядке, например так

и получаем ответ

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Уравнения с тремя неизвестными частое явление в математике. Способов решений данного рода уравнений довольно много и в большинстве случаев львиная их часть дополняется еще 2 уравнениями/условиями. Выбор способа решения напрямую зависит от конкретного уравнения.

Если в вашей системе имеются только 2 неизвестные из 3, то, скорее всего удобным решением данной системы будет выражение одних переменных через другие с их подстановкой в уравнение с 3 неизвестными. Все это делается для того, чтобы преобразовать его в обычное уравнение только с 1 неизвестной, решение которого даст число, которое можно будет подставить на место неизвестного и получить конечный результат по всем остальным неизвестным.

Существуют системы уравнений, решаемых вычитанием из одного уравнения другого. Это возможно в том случае, если есть возможность умножения одного из выражений на переменную/значение, позволяющее при вычитании сократить несколько неизвестных. Однако стоит помнить, что при умножении и вычитании на число нужно выполнять действия с обеими частями выражения.

Где решить уравнение с 3 неизвестными онлайн?

Решить уравнение с тремя неизвестным онлайн решателем вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Система из трех уравнений с тремя неизвестными не во всех случаях имеет решение, несмотря на большое количество уравнений. Как правило, данного рода системы решаются с помощью метода подстановки или с помощью метода Крамера. Второй метод дает возможность определить на первых этапах, имеет ли система решение.

Допустим, нам дана следующая система из трех уравнений с тремя неизвестными:

\[\left\{\begin{matrix} x_1+x_2+2x_3=6\\ 2x_1+3x_2+7x_3=16\\ 5x_1+2x_2+x_3=16& \end{matrix}\right.\]

Можно решить данную неоднородную систему линейных алгебраических уравнений Ах = В методом Крамера:

\[\Delta _A\begin{vmatrix} 1 & 1 & -2\\ 2 & 3 & -7\\ 5 & 2 & 1 \end{vmatrix}=2\]

Определитель системы \ не равен нулю. Найдем вспомогательные определители \ если они не равны нулю, то решений нет, если равны, то решений бесконечное множество

\[\Delta _1\begin{vmatrix} 6 & 1 & -2\\ 16 & 3 & -7\\ 16 & 2 & 1 \end{vmatrix}=6\]

\[\Delta _2\begin{vmatrix} 1 & 6 & -2\\ 2 & 16 & -7\\ 5 & 16 & 1 \end{vmatrix}=2\]

\[\Delta _3\begin{vmatrix} 1 & 1 & 6\\ 2 & 3 & 16\\ 5 & 2 & 16 \end{vmatrix}=-2\]

Система 3 линейных уравнений с 3 неизвестными, определитель которой отличен от нуля, всегда совместна и имеет единственное решение, вычисляемое по формулам:

Ответ: получили решение

\[\left\{\begin{matrix} X_1=3\\ X_2=1\\ X_3=-1\\ \end{matrix}\right.\]

Где можно решить систему уравнений с тремя неизвестными онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто вdести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Системы из трех линейных уравнений с тремя неизвестными

Линейные уравнения (уравнения первой степени) с двумя неизвестными

Определение 1 . Линейным уравнением (уравнением первой степени) с двумя неизвестными x и y называют уравнение, имеющее вид

Решение . Выразим из равенства (2) переменную y через переменную x :

Из формулы (3) следует, что решениями уравнения (2) служат все пары чисел вида

где x – любое число.

Замечание . Как видно из решения примера 1, уравнение (2) имеет бесконечно много решений . Однако важно отметить, что не любая пара чисел (x ; y ) является решением этого уравнения. Для того, чтобы получить какое-нибудь решение уравнения (2), число x можно взять любым, а число y после этого вычислить по формуле (3).

Системы из двух линейных уравнений с двумя неизвестными

Определение 3 . Системой из двух линейных уравнений с двумя неизвестными x и y называют систему уравнений, имеющую вид

где a 1 , b 1 , c 1 , a 2 , b 2 , c 2 – заданные числа.

Определение 4 . В системе уравнений (4) числа a 1 , b 1 , a 2 , b 2 называют , а числа c 1 , c 2 – свободными членами .

Определение 5 . Решением системы уравнений (4) называют пару чисел (x ; y ) , являющуюся решением как одного, так и другого уравнения системы (4).

Определение 6 . Две системы уравнений называют равносильными (эквивалентными) , если все решения первой системы уравнений являются решениями второй системы, и все решения второй системы являются решениями первой системы.

Равносильность систем уравнений обозначают, используя символ «»

Системы линейных уравнений решают с помощью , который мы проиллюстрируем на примерах.

Пример 2 . Решить систему уравнений

Решение . Для того, чтобы решить систему (5) исключим из второго уравнения системы неизвестное х .

С этой целью сначала преобразуем систему (5) к виду, в котором коэффициенты при неизвестном x в первом и втором уравнениях системы станут одинаковыми.

Если первое уравнение системы (5) умножить на коэффициент, стоящий при x во втором уравнении (число 7 ), а второе уравнение умножить на коэффициент, стоящий при x в первом уравнении (число 2 ), то система (5) примет вид

Теперь совершим над системой (6) следующие преобразования:

  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (6) преобразуется в равносильную ей систему

Из второго уравнения находим y = 3 , и, подставив это значение в первое уравнение, получаем

Ответ . (-2 ; 3) .

Пример 3 . Найти все значения параметра p , при которых система уравнений

а ) имеет единственное решение;

б ) имеет бесконечно много решений;

в ) не имеет решений.

Решение . Выражая x через y из второго уравнения системы (7) и подставляя полученное выражение вместо x в первое уравнение системы (7), получим

Исследуем решения системы (8) в зависимости от значений параметра p . Для этого сначала рассмотрим первое уравнение системы (8):

y (2 - p ) (2 + p ) = 2 + p (9)

Если , то уравнение (9) имеет единственное решение

Таким образом, в случае, когда , система (7) имеет единственное решение

Если p = - 2 , то уравнение (9) принимает вид

и его решением является любое число . Поэтому решением системы (7) служит бесконечное множество всех пар чисел

,

где y - любое число.

Если p = 2 , то уравнение (9) принимает вид

и решений не имеет, откуда вытекает, что и система (7) решений не имеет .

Системы из трех линейных уравнений с тремя неизвестными

Определение 7 . Системой из трех линейных уравнений с тремя неизвестными x , y и z называют систему уравнений, имеющую вид

где a 1 , b 1 , c 1 , d 1 , a 2 , b 2 , c 2 , d 2 , a 3 , b 3 , c 3 , d 3 – заданные числа.

Определение 8 . В системе уравнений (10) числа a 1 , b 1 , c 1 , a 2 , b 2 , c 2 , a 3 , b 3 , c 3 называют коэффициентами при неизвестных , а числа d 1 , d 2 , d 3 свободными членами .

Определение 9 . Решением системы уравнений (10) называют тройку чисел (x ; y ; z ) , при подстановке которых в каждое из трех уравнений системы (10) получается верное равенство.

Пример 4 . Решить систему уравнений

Решение . Будем решать систему (11) при помощи метода последовательного исключения неизвестных .

Для этого сначала исключим из второго и третьего уравнений системы неизвестное y , совершив над системой (11) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • ко второму уравнению прибавим первое уравнение и заменим второе уравнение системы на полученную сумму;
  • из третьего уравнения вычтем первое уравнение и заменим третье уравнение системы на полученную разность.

В результате система (11) преобразуется в равносильную ей систему

Теперь исключим из третьего уравнения системы неизвестное x , совершив над системой (12) следующие преобразования:

  • первое и второе уравнения системы оставим без изменений;
  • из третьего уравнения вычтем второе уравнение и заменим третье уравнение системы на полученную разность.

В результате система (12) преобразуется в равносильную ей систему

Из системы (13) последовательно находим

z = - 2 ; x = 1 ; y = 2 .

Ответ . (1 ; 2 ; -2) .

Пример 5 . Решить систему уравнений

Решение . Заметим, что из данной системы можно получить удобное следствие , сложив все три уравнения системы:

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода