Вконтакте Facebook Twitter Лента RSS

Понятие сплава, их классификация и свойства. Классификация алюминиевых сплавов

Министерство образования и науки Украины

Донбасский государственный технический университет

Институт повышения квалификации

КОНТРОЛЬНАЯ РАБОТА

по Металловедению

«Классификация металлов»

Алчевск 2009


1. Металлы

Металлическое состояние объясняется электронным строением. Элементы металла, вступая в химическую реакцию с элементами, являющимися неметаллами, отдают им свои внешние, так называемые валентные электроны. Это является следствием того, что у металлов внешние электроны непрочно связаны с ядром; кроме того, на наружных электронных оболочках немного (всего 1–2), тогда как у неметаллов электронов много (5–8).

Все элементы, расположенные левее галлииндия и таллия – металлы, а правее мышьяка, сурьмы и висмута – неметаллы.

В технике под неметаллом понимают вещества, обладающие «металлическим блеском» и пластичностью – характерные свойства.

Кроме этого все металлы обладают высокой электропроводностью и теплопроводностью.

Особенность строения металлических веществ заключается в том, что все они построены в основном из легких атомов, у которых внешние электроны слабо связаны с ядром. Это обуславливает особый характер взаимодействия атомов металла и металлические свойства. Металлы являются хорошими проводниками электрического тока.

Из известных (к 1985 г.) 106 химических элементов 83 – металлы.

2. Классификация металлов

Каждый металл отличается строением и свойствами от другого, тем не менее, по некоторым признакам их можно объединить в группы.

Данная классификация разработана русским ученым Гуляевым А.П. и может не совпадать с общепринятой.

Все металлы можно разделить на две большие группы – черные и цветные металлы.

Черные металлы чаще всего имеют темно-серый цвет, большую плотность (кроме щелочно-земельных), высокую температуру плавления, относительно высокую твердость. Наиболее типичным металлом этой группы является железо.

Цветные металлы чаще всего имеют характерную окраску: красную, желтую и белую. Обладают большой пластичностью, малой твердостью, относительно низкой температурой плавления. Наиболее типичным элементом этой группы является медь.

Черные металлы в свою очередь можно подразделить следующим образом:

1. Железные металлы – железо, кобальт, никель (так называемые ферромагнетики) и близкий к ним по свойствам марганец. Co, Ni, Mu часто применяют как добавки к сплавам железа, а также в качестве основы для соответствующих сплавов, похожих по своим свойствам на высоколегированные стали.

2. Тугоплавкие металлы , температура плавления которых выше, чем железа (т.е. выше 1539С). Применяют как добавки к легированным сталям, а также в качестве основы для соответствующих сплавов. К ним относят: Ti, V, Cr, Zr, Nb, Mo, Tc (технеций), Hf (гафий), Ta(тантал), W, Re (рений).

3. Урановые металлы – актиниды, имеющие преимущественное применение в сплавах для атомной энергетики. К ним относят: Ас(актиний), Th(торий), U(уран), Np(нептуний), Pu(плутоний), Bk(берклий), Cf (калифорний), Md(менделевий), No(нобелий) и др.

4. Редкоземельные металлы (РЗМ) – La(лантан), Ce(церий), Nd(неодим), Sm(санарий), Eu(европий), Dy(диспрозий), Lu(лютеций), Y(иттрий), Sc(сландий) и др., объединяемые под названием лантаноидов. Эти металлы обладают весьма близкими химическими свойствами, но довольно различными физическими (Тип. и др.). Их применяют как присадки к сплавам других элементов. В природных условиях они встречаются вместе и трудно разделимы на отдельные элементы. Обычно используется смешанный сплав – 40–45% Се (церий) и 40–45% всех других РЗМ.

5. Щелочноземельные металлы – в свободном металлическом состоянии не применяются, за исключением особых случаев, например, теплоносители в атомных реакторах. Li(литий), Na, K(калий), Rb(рубидий), Cs(цезий), Fr(франций), Ca(кальций), Sr(стронций), Ba(барий), Ra(радий).

Цветные металлы подразделяются на:

1. Легкие металлы – Ве(берилий), Mg(магний), Al(аллюминий), обладающие малой плотностью.

2. Благородные металлы – Ag(серебро), Pt(платина), Au(золото), Pd(палладий), Os(осмий), Ir(иридий), и др. Сu – полублагородный металл. Обладают высокой устойчивостью против коррозии.

3. Легкоплавкие металлы – Zn(цинк), Cd(кадмий), Hg(ртуть), Sn(олово), Bi(висмут), Sb(сурьма), Pb(свинец), As(мышьяк), In(индий) и т.д., и элементы с ослабленными металлическими свойствами – Ga(галий), Ge(германий).

Применение металлов началось с меди, серебра и золота. Так как они встречаются в природе в чистом (самородном) виде.

Позднее стали восстанавливать металлы из руд – Sn, Pb, Fe и др.

Наибольшее распространение в технике получили сплавы железа с углеродом: сталь (0,025–2,14% С) чугун (2,14–6,76% С); причина широкого использования Fe-C сплавов связано с рядом причин: малой стоимостью, наилучшими механическими свойствами, возможностью массового изготовления и большой распространенностью руд Fe в природе.

Более 90% изготовленных металлов составляет сталь.

Производство металлов на 1980 г.:

Железо – 718 000 тыс. тонн (в СССР до 150 млн тонн в год)

Марганец – > 10 000 тыс. тонн

Алюминий – 17 000 тыс. тонн

Медь – 9 400 тыс. тонн

Цинк – 6200 тыс. тонн

Олово – 5400 тыс. тонн

Никель – 760 тыс. тонн

Магний – 370 тыс. тонн

Золото – > 1,2 тыс. тонн

Стоимость металла – фактор возможности и целесообразности его применения. В таблице показана относительная стоимость разных металлов (за единицу принята стоимость железа, точнее простой углеродистой стали).

Благородные металлы:

Au, Ag, Pt и их сплавы.

Свое название получили из-за высокой коррозионной стойкости. Эти металлы пластичны. Имеют высокую стоимость.

Применяют в ювелирном и зубоврачебном деле. Чистое золото из-за его мягкости не применяют. Для повышения твердости золото легируют (добавляют другие элементы). Обычно используются тройные сплавы: Au – Ag – Cu.

Наиболее распространенными являются сплавы 375, 583, 750 и 916-й проб – это значит, что в этих сплавах на 1000 г. сплава приходится 375, 583, 750 и 916 г. золота, а остальное – медь, серебро, соотношение которых может быть различным.

Сплавы 916-й пробы наиболее мягкие, но и наиболее коррозионостойкие. С уменьшением индекса пробы коррозионная стойкость уменьшается.

Наибольшей твердостью (следовательно износостойкостью) обладают сплавы 583-й пробы, при соотношении Cu и Ag около 1:1.

Сплавы указанных проб имеют цвет золота.

Индийский булат

Конец IV века до н.э., войска Александра Македонского впервые встретились с необыкновенной индейской сталью при походе через Месопотамию (Ирак) и Афганистан в Индию.

«Чакра» – тяжелое плоское стальное кольцо заточено как лезвие, раскручивалось на двух пальцах, и швырялось во врага. Вращалось со страшной скоростью и срезало головы македонцев как головы цветов.

Параметры меча:

длина – 80–100 см

ширина у перекрестья – 5–6 см

толщина – 4 мм

вес – 1,2–1,8 кг

Свойства клинков:

Высокая твердость, прочность и при этом одновременно большая упругость и вязкость. Клинки свободно перерубали гвозди и при этом легко сгибались в дугу. Легко перерезали газовые легкие платки.

При оценке качества булатного оружия большую роль играл рисунок на клинке. В узоре имели значение форма, величина и цвет основного металла (фона).

По форме рисунок подразделяется на полосатый, струйчатый, волнистый, сетчатый и коленчатый. Наиболее высоко ценился коленчатый булат.

Испытывали булатный клинок и на упругость: его клали на голову, после чего оба конца притягивали к ушам и отпускали. После этого остаточной деформации не наблюдалось.

Настоящий булат изготавливался ковкой из литой стали, имеющей естественные узоры.

Сварочный булат (подделка) – получали проковкой скрученных в канат кусков проволоки с разным содержанием углерода и потому разную твердость. После травления появлялся рисунок.

Также расковывали булат из пакетов листовой стали – до 320 слоев: или: рассеянная в разных уровнях получают разный рисунок.

Донские казаки пользовались оружием всего мира – захватывали в боях. Оружие изготовлено было в основном мастерами Кавказа.

Прибалтийский булат:

Раскрыл его проф. Иванов Г.П., а адмирал Макаров С.О. нашел новое применение: при испытании броневых плит

Плита легко пробивалась с мягкой малоуглеродистой стороны, тогда изобрели бронебойный снаряд с мягким наконечником:

Следовательно, из-за этого старые мастера-кузнецы нашивали на очень твердое лезвие мягкую полоску, чтобы пробить стальные латы.

Производство булата связано с традициями и секретами. Очень трудно сварить полосы и прутки разного состава между собой и обеспечить требуемые свойства: гибкость твердость, остроту лезвия. Необходимо выдерживать температуру, скорость ковки, порядок соединения полос, удаление окислов, применение флюсов.

Японский булат

Японский булат был тверже и прочнее дамасской стали. Это связано с присутствием в составе стали молибдена (Мо). Мо – один из немногих элементов, добавка которого в сталь вызывает повышение ее вязкости и твердости одновременно. Все другие элементы, увеличивая прочность и твердость, увеличивают и хрупкость.

Изготовление: выплавленное железо (с Мо) проковывалось в прутья и закаливалось на 8–10 лет в землю. В процессе коррозии из металла выедались, выпадали частички, обогащенные вредными примесями. Заготовки напоминали сыр с дырками. Затем прутки науглероживали и проковывали многократно. Количество тончайших слоев достигало нескольких десятков тысяч.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Муниципальное общеобразовательное учреждение средняя Городищенская школа №2

Реферат по химии на тему

Работу выполнила

ученица средней школы №2

Яблочкина Екатерина

Городище 2011

  • Введение
  • Сплав
  • Классификация сплавов
  • Свойства сплавов
  • Физические свойства сплавов
  • Получение сплавов
  • ЭЛЕМЕНТЫ ХИМИЧЕСКИ Е
  • Сплавы золота
  • Заключение
  • ИспользУемая литература и сайты
  • Введение
  • Древние мастера по металлу не оставили описаний приемов обработки и составов сплавов, применявшихся для изготовления разных предметов. Такая литература появляется только в средневековье, но в ней названия сплавов и терминология не всегда поддаются расшифровке, поэтому источником сведений являются исключительно сами вещи. Существует множество работ, посвящённых результатам исследований древних предметов. Из них мы узнаем, что первое появление изделий из меди археологи относят к VII тыс. до н.э. Это были кованые предметы из самородной меди. Затем появляется металлургическая медь и сплавы меди с другими металлами. На протяжении нескольких тысячелетий в основном из меди и ее сплавов изготавливались различные предметы: орудия труда, оружие, украшения и зеркала, посуда, монеты. Составы древних сплавов весьма разнообразны, в литературе их условно называют бронза. К наиболее ранним относятся мышьяковистые и оловянистые бронзы. Кроме олова и мышьяка в древних сплавах часто присутствует свинец, цинк, сурьма, железо и другие элементы в виде микропримесей, которые попадали в металл с рудой. Состав сплава подбирался весьма рационально в зависимости от функционального назначения предмета и используемой техники изготовления. Так, для литья художественных изделий был выбран рецепт тройного сплава медь-олово-свинец, применявшийся в античной Греции, в Римской империи, на Ближнем и Среднем Востоке, в Индии; в Китае бронза была одним из самых распространенных сплавов. На литых предметах из такой бронзы со временем образуется красивая патина, которая в некоторых случаях сохраняется и на археологических предметах.

Сплав

Сплавы, макроскопические однородные системы, состоящие из двух или более металлов (реже- металлов и неметаллов) с характерными металлическими свойствами. В более широком смысле сплавы -любые однородные системы, полученные сплавлением металлов, неметаллов, неорганических соединений и т.д.. Многие сплавы (например: бронза, сталь, чугун) были известны в глубокой древности и уже тогда имели обширное практическое применение. Техническое значение металлических сплавов объясняется тем, что многие их свойства (прочность, твердость, электрическое сопротивление) гораздо выше, чем у составляющих их чистых металлов.

Называют сплавы исходя из названия элемента, содержащегося в них в наибольшем количестве (основной элемент, основа), например: сплав железа, сплав алюминия. Элементы, вводимые в сплав для улучшения их свойств, называются легирующими, а сам процесс - легированием.

Легирование -- процесс введения в расплав дополнительных элементов, улучшающих механические, физические и химические свойства основного материала. Легирование является обобщающим понятием ряда технологических процедур, проводимых на различных этапах получения металлического материала с целями повышения качества металлургической продукции.

Классификация сплавов

По характеру металла- основы, различают черные сплавы (основа - железо (Fe), цветные сплавы (основа - цветные металлы), сплавы редких металлов, сплавы радиоактивных металлов.

ь По числу компонентов сплавы делят на двойные, тройные и т.д.;

ь по структуре - на гомогенные (однородные) и гетерогенные (смеси), состоящие из нескольких;

ь по характерным свойствам - на тугоплавкие, легкоплавкие, высокопрочные, жаропрочные, твердые, антифрикционные, коррозионностойкие;

ь сплавы со специальными свойствами и другие.

ь По технологии производства выделяют литейные (для изготовления деталей методом литья) и деформируемые (подвергаемые ковке, штамповке, прокатке, прессованию и другим видам обработки давлением).

Свойства сплавов

Свойства сплавов зависят не только от состава, но и от способов их тепловой и механической обработки: закалки, ковки и др. Вплоть до конца XIX века поиск новых практических полезных сплавов веди методом проб и ошибок. Только на рубеже XIX- XX вв. результате фундаментальных открытий в области физической химии возникло учение о закономерности между свойствами металлов и свойствами образованных из них сплавов, о влиянии на них механических, тепловых и других воздействий.

В металловедение различают три типа сплавов:

ь твердый раствор (если атомы, входящие в состав сплава элементов незначительно отличаются строением и размером, они могут образовывать общую кристаллическую решетку);

ь механическую смесь (если каждый элемент сплава кристаллизуется самостоятельно);

ь химическое соединение (если элементы сплава химически взаимодействуют, образуя новое вещество).

Физические свойства сплавов

Механические свойства металлов и сплавов

К основным механическим свойствам относятся прочность, вязкость, пластичность, твердость, выносливость, ползучесть, износостойкость. Они являются главными характеристиками металла или сплава.

Физические свойства металлов и сплавов

Физические свойства металлов и сплавов определяются удельным весом, к оэффициентами линейного и объемного расширения, электропроводностью, теплопроводностью, температурой плавления и т. д.

Химическая стойкость металлов и сплавов

Химическую стойкость металлов и сплавов определяют по их способности сопротивляться химическому воздействию различных агрессивных сред. Эти свойства имеют большое значение для машиностроения и с ними приходится считаться при конструировании машин и деталей. Характерным примером химического воздействия среды является коррозия (окисление металлов).

Разрушение металлов от коррозии наносит промышленности огромный ущерб, выражающийся ежегодной потерей миллионов тонн металла.

Для устранения таких больших потерь в машиностроении применяют покрытие деталей лаками, красками, химически стойкими металлами, окисными пленками.

В отдельных случаях применяют различные сплавы, имеющие высокую химическую стойкость, например, нержавеющие чугуны, нержавеющие стали и ряд химически стойких сплавов на основе меди и никеля. Широкое применение начинает находить титан.

Технологические свойства металлов

Технологические свойства металлов и сплавов характеризуются их спосо бностью поддаваться различным методам горячей и холодной обработки (легко плавиться и заполнять форму, коваться, свариваться, обрабатываться режущими инструментами и т. д.). В связи с этим их подразделяют на литейные

Литейные свойства металлов и сплавов

Литейные свойства металлов и сплавов определяются жидко-текучестью, усадкой и склонностью к ликвации. Жидкотекучестью - способность сплава заполнять литейную форму. Под усадкой подразумевают сокращение объема и размеров металла отливки при затвердевании и последующем охлаждении. Ликвация- процесс образования неоднородности химического состава сплава в разных частях отливки при ее затвердевании.

Ковкость металла

Ковкостью металла- способность деформироваться при наименьшем сопр отивлении и принимать необходимую форму под влиянием внешних усилий без нарушения целостности. Металлы могут обладать ковкостью как в холодном, так и в нагретом состоянии. Хорошей ковкостью обладает сталь в нагретом состоянии. Латунь однофазная и алюминиевые сплавы обладают хорошей ковкостью в холодном состоянии. Пониженной ковкостью отличается бронза. Чугуны практически не обладают ковкостью.

Свариваемость металла

Свариваемостью металла - способность создавать прочные соединения металлических деталей методами сварки. Хорошо сваривается малоуглеродистая сталь, значительно хуже чугун, медные и алюминиевые сплавы.

Получение сплавов

Рассмотрим процесс получения сплавов на примере чугуна и стали.

Получение чугуна и стали. Технологический процесс получения черных металлов включает выплавку чугуна из железных руд с последующей переработкой его в сталь.

Основным способом получения чугуна является доменный. Доменный процесс состоит из трех стадий: восстановление железа из оксидов, содержащихся в руде, науглероживание железа и шлакообразование. Сырьевыми материалами служат железные руды, топливо и флюсы.

Железные руды до плавки обычно подвергают предварительной подготовке: дроблению, обогащению и окускованию. Обогащают измельченную руду часто магнитной сепарацией. Для удаления песчаных и глинистых частиц промывают водой. Окускование мелких и пылеватых руд производится агломерацией -- путем спекания на колосниковых решетках агломерационных машин или окатывания в грануляторе с последующей сушкой и обжигом. Основным топливом при плавке чугуна служит кокс, который является источником тепла и непосредственно участвует в восстановлении и науглероживании железа. Флюсы (известняки, доломиты или песчаники) применяют для снижения температуры плавления пустой породы и связывания ее с золой топлива в шлак.

Доменная печь представляет собой вертикальную шахту высотой до 35 м и более со стенами из огнеупорного кирпича, заключенными в стальной кожух. Сверху в печь послойно загружают подготовленные сырьевые материалы. В результате горения кокса за счет кислорода воздуха, нагнетаемого в нижнюю часть печи, образуется оксид углерода, который восстанавливает железо из руды и может взаимодействовать с ним, при этом образуется карбид Ре3С -- цементит.

Одновременно с восстановлением железа восстанавливаются кремний, фосфор, марганец и другие примеси.

Расплавленные при температуре 1380--1420°С чугун и шлак выпускают через летки. Чугун разливается в формы, а шлак идет на переработку. В доменных печах выплавляют передельный чугун, идущий на переработку в сталь, литейный чугун, используемый для получения разнообразных чугунных изделий, и специальные чугуны (ферросилиций, ферромарганец), применяемые в производстве стали как раскислители или легирующие добавки.

Сталь получают из передельного чугуна окислением с помощью мартеновского, конвертерного и электроплавильного способов. Основным способом производства стали в СССР и других странах мира является мартеновский способ, но в последние годы широкое распространение находит кислородно-конвертерный способ, обладающий существенными технико-экономическими преимуществами.

При мартеновском способе сталь получают в мартеновских печах, в плавильном пространстве которых сжигается газ или мазут, а в специальных камерах -- регенераторах подготавливаются поступающие в печь воздух и газообразное топливо за счет аккумулированного тепла отходящих продуктов горения. Шихта включает чугун в чушках и металлический лом -- скрап или жидкий чугун, скрап и железную руду. Процесс получения стали заключается в плавлении шихты, при котором образуется большое количество закиси железа, окислении углерода и других примесей закисью железа и раскислении -- восстановлении железа из закиси добавками ферросилиция, ферромарганца или алюминия.

Элементы химические

Многие металлы, например магний, выпускают высокочистыми, чтобы можно было точно знать состав изготавливаемых из него сплавов. Число металлических сплавов, применяемых в наши дни, очень велико и непрерывно растет. Их принято разделять на две большие категории: сплавы на основе железа и сплавы цветных металлов. Ниже перечисляются наиболее важные сплавы промышленного значения и указываются основные области их применения.

Сталь. Сплавы железа с углеродом, содержащие его до 2%, называются сталями. В состав легированных сталей входят и другие элементы - хром, ванадий, никель. Сталей производится гораздо больше, чем каких-либо других металлов и сплавов, и все виды их возможных применений трудно было бы перечислить. Малоуглеродистая сталь (менее 0,25% углерода) в больших количествах потребляется в качестве конструкционного материала, а сталь с более высоким содержанием углерода (более 0,55%) идет на изготовление таких низкоскоростных режущих инструментов, как бритвенные лезвия и сверла. Легированные стали находят применение в машиностроении всех видов и в производстве быстрорежущих инструментов.

Чугун. Чугуном называется сплав железа с 2-4% углерода. Важным компонентом чугуна является также кремний. Из чугуна можно отливать самые разнообразные и очень полезные изделия, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей. В правильно выполненных отливках достигаются хорошие механические свойства материала.

Сплавы на основе меди. В основном это латуни, т.е. медные сплавы, содержащие от 5 до 45% цинка. Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), а с содержанием 20-36% Zn - желтой (альфа-латунью). Латуни применяются в производстве различных мелких деталей, где требуются хорошая обрабатываемость и формуемость. Сплавы меди с оловом, кремнием, алюминием или бериллием называются бронзами. Например, сплав меди с кремнием носит название кремнистой бронзы. Фосфористая бронза (медь с 5% олова и следовыми количествами фосфора) обладает высокой прочностью и применяется для изготовления пружин и мембран.

Свинцовые сплавы. Обычный припой (третник) представляет собой сплав примерно одной части свинца с двумя частями олова. Он широко применяется для соединения (пайки) трубопроводов и электропроводов. Из сурьмяно-свинцовых сплавов делают оболочки телефонных кабелей и пластины аккумуляторов. Пьютер, из которого ранее отливали столовые приборы (вилки, ножи, тарелки), содержит 85-90% олова (остальное - свинец). Подшипниковые сплавы на основе свинца, называемые баббитами, обычно содержат олово, сурьму и мышьяк.

Легкие сплавы. Современная промышленность нуждается в легких сплавах высокой прочности, обладающих хорошими высокотемпературными механическими свойствами. Основными металлами легких сплавов служат алюминий, магний, титан и бериллий. Однако сплавы на основе алюминия и магния не могут применяться в условиях высокой температуры и в агрессивных средах.

Алюминиевые сплавы. К ним относятся литейные сплавы (Al - Si), сплавы для литья под давлением (Al - Mg) и самозакаливающиеся сплавы повышенной прочности (Al - Cu). Алюминиевые сплавы экономичны, легкодоступны, прочны при низких температурах и легко обрабатываемы (они легко куются, штампуются, пригодны для глубокой вытяжки, волочения, литья, хорошо свариваются и обрабатываются на металлорежущих станках). К сожалению, механические свойства всех алюминиевых сплавов начинают заметно ухудшаться при температурах выше приблизительно 175° С. Но благодаря образованию защитной оксидной пленки они проявляют хорошую коррозионную стойкость в большинстве обычных агрессивных сред. Эти сплавы хорошо проводят электричество и тепло, обладают высокой отражательной способностью, немагнитны, безвредны в контакте с пищевыми продуктами (поскольку продукты коррозии бесцветны, не имеют вкуса и нетоксичны), взрывобезопасны (поскольку не дают искр) и хорошо поглощают ударные нагрузки. Благодаря такому сочетанию свойств алюминиевые сплавы служат хорошими материалами для легких поршней, применяются в вагоно- , автомобиле- и самолетостроении, в пищевой промышленности, в качестве архитектурно-отделочных материалов, в производстве осветительных отражателей, технологических и бытовых кабелепроводов, при прокладке высоковольтных линий электропередачи. Примесь железа, от которой трудно избавиться, повышает прочность алюминия при высоких температурах, но снижает коррозионную стойкость и пластичность при комнатной температуре. Кобальт, хром и марганец ослабляют охрупчивающее действие железа и повышают коррозионную стойкость. При добавлении лития к алюминию повышаются модуль упругости и прочность, что делает такой сплав весьма привлекательным для авиакосмической промышленности. К сожалению, при своем превосходном отношении предела прочности к массе (удельной прочности) сплавы алюминия с литием обладают низкой пластичностью.

Магниевые сплавы. Магниевые сплавы легки, характеризуются высокой удельной прочностью, а также хорошими литейными свойствами и превосходно обрабатываются резанием. Поэтому они применяются для изготовления деталей ракет и авиационных двигателей, корпусов для автомобильной оснастки, колес, бензобаков, портативных столов и т.п. Некоторые магниевые сплавы, обладающие высоким коэффициентом вязкостного демпфирования, идут на изготовление движущихся частей машин и элементов конструкции, работающих в условиях нежелательных вибраций. Магниевые сплавы довольно мягки, плохо сопротивляются износу и не очень пластичны. Они легко формуются при повышенных температурах, пригодны для электродуговой, газовой и контактной сварки, а также могут соединяться пайкой (твердым), болтами, заклепками и клеями. Такие сплавы не отличаются особой коррозионной стойкостью по отношению к большинству кислот, пресной и соленой воде, но стабильны на воздухе. От коррозии их обычно защищают поверхностным покрытием - хромовым травлением, дихроматной обработкой, анодированием. Магниевым сплавам можно также придать блестящую поверхность либо плакировать медью, никелем и хромом, нанеся предварительно покрытие погружением в расплавленный цинк. Анодирование магниевых сплавов повышает их поверхностную твердость и стойкость к истиранию. Магний - металл химически активный, а потому необходимо принимать меры, предотвращающие возгорание стружки и свариваемых деталей из магниевых сплавов.

Титановые сплавы. Титановые сплавы превосходят как алюминиевые, так и магниевые в отношении предела прочности и модуля упругости. Их плотность больше, чем всех других легких сплавов, но по удельной прочности они уступают только бериллиевым. При достаточно низком содержании углерода, кислорода и азота они довольно пластичны. Электрическая проводимость и коэффициент теплопроводности титановых сплавов малы, они стойки к износу и истиранию, а их усталостная прочность гораздо выше, чем у магниевых сплавов. Предел ползучести некоторых титановых сплавов при умеренных напряжениях (порядка 90 МПа) остается удовлетворительным примерно до 600° C, что значительно выше температуры, допустимой как для алюминиевых, так и для магниевых сплавов. Титановые сплавы достаточно стойки к действию гидроксидов, растворов солей, азотной и некоторых других активных кислот, но не очень стойки к действию галогеноводородных, серной и ортофосфорной кислот. Титановые сплавы ковки до температур около 1150° C. Они допускают электродуговую сварку в атмосфере инертного газа (аргона или гелия), точечную и роликовую (шовную) сварку. Обработке резанием они не очень поддаются (схватывание режущего инструмента). Плавка титановых сплавов должна производиться в вакууме или контролируемой атмосфере во избежание загрязнения примесями кислорода или азота, вызывающими их охрупчивание. Титановые сплавы применяются в авиационной и космической промышленности для изготовления деталей, работающих при повышенных температурах (150-430° C), а также в некоторых химических аппаратах специального назначения. Из титанованадиевых сплавов изготавливается легкая броня для кабин боевых самолетов. Титаналюминиевованадиевый сплав - основной титановый сплав для реактивных двигателей и корпусов летательных аппаратов. В табл. 3 приведены характеристики специальных сплавов, а в табл. 4 представлены основные элементы, добавляемые к алюминию, магнию и титану, с указанием получаемых при этом свойств.

Бериллиевые сплавы. Пластичный бериллиевый сплав можно получить, например, вкрапляя хрупкие зерна бериллия в мягкую пластичную матрицу, такую, как серебро. Сплав этого состава удалось холодной прокаткой довести до толщины, составляющей 17% первоначальной. Бериллий превосходит все известные металлы по удельной прочности. В сочетании с низкой плотностью это делает бериллий пригодным для устройств систем наведения ракет. Модуль упругости бериллия больше, чем у стали, и бериллиевые бронзы применяются для изготовления пружин и электрических контактов. Чистый бериллий используется как замедлитель и отражатель нейтронов в ядерных реакторах. Благодаря образованию защитных оксидных слоев он устойчив на воздухе при высоких температурах. Главная трудность, связанная с бериллием, - его токсичность. Он может вызывать серьезные заболевания органов дыхания и дерматит.

Сплавы золота

Золото - благородный металл желтого цвета, мягкий и достаточно тяжелый. Содержится золото как в земной коре, так и в воде, и, хотя содержание его в земле достаточно низкое (3 мкг/кг), но весьма многочисленны участки, сильно обогащенные данным металлом. Такие участки, являющиеся первичным месторождением золота, получили название - россыпи.

Из физических и химических свойств золота следует отметить, в первую очередь, его исключительно высокую теплопроводность и низкое электрическое сопротивление. При нормальных условиях оно не взаимодействует с большинством кислот и не образует оксидов, не окисляется на воздухе и устойчиво к воздействию влаги, щелочей и солей, благодаря чему было отнесено к благородным металлам. Золото очень ковко и пластично. Из кусочка золота массой в один грамм можно вытянуть проволоку длиной в три с половиной километра или изготовить золотую фольгу в 500 раз тоньше человеческого волоса. Золото - очень тяжёлый металл, что является большим плюсом в его добыче. Плотность его высока - 19,3 г/см3, твёрдость по Бринеллю - 20. Золото также является самым инертным металлом, но, когда была открыта способность царской водки (смесь соляной и азотной кислот в соотношении 3/1) растворять золото, уверенность в его инертности была поколеблена. Плавится металл при весьма высокой температуре - 1063°С. Растворяется в горячей селеновой кислоте. Данные физические и химические свойства золота широко используются для его получения.

Добывается золото чаще всего методом промывки, что основано на его высокой плотности (другие металлы, плотностью меньше золота, в потоке воды вымываются). Но природное золото редко бывает чистым, в нем содержатся серебро, медь и многие другие элементы, поэтому после промывки все золото подвергается глубокой очистке - аффинажу. В России чистота золота измеряется пробой.

Существует сплавы золота, которые становятся очень популярными в настоящее время.

Розовое золото

Розовое золото -- это сплав чистого золота и меди; ювелирный сплав необыкновенно нежного оттенка.

Украшения из розового сплава становятся все популярней, все чаще встречаются кольца и кулоны.

Зеленое (оливковое) золото

Зеленое (оливковое) золото можно получить как сплав золота с калием.

Такие соединения еще называют металлидами.

Вообще металлиды -- это соединения золота с алюминием (фиолетовое золото), рубидием (темно-зеленое), калием (фиолетовое и оливковое), индием (голубое золото). Такие сплавы очень красивы и экзотичны, но при этом хрупки и не пластичны. Как драгоценный металл их обрабатывать нельзя. Но иногда такие ювелирные сплавы-металлиды используются как вставки в украшения, как камни.

Кстати, иногда зеленое золото еще получают при сплавлении чистого золота с серебром. Небольшое включение серебра в составе ювелирного сплава даст зеленоватый цвет, чуть большая пропорция сделает золото желтовато-зеленым, еще увеличив содержание серебра, получаем желто-белый оттенок, и, наконец, совершенно белый цвет.

Голубое золото

Это сплав чистого золота с индием. Но такой ювелирный сплав -- также металлид, он нестойкий и как обычное золото использоваться не может.

Только как вставки в украшения, т.е. как камни.

Еще золото «голубеет», если оно покрыто родием.

Или если это детище аргентинского ювелира Антониасси. До сих пор загадка, как ему удалось получить голубой сплав с чуть ли не 958 пробой (в сплаве доля чистого золота 90%). Ювелир не торопится раскрывать свои секреты.

Синее золото

Синее золото -- это сплав золота с железом и хромом. Также как зеленое и фиолетовое, синее золото можно использовать только как вставки в украшения.

Сам по себе синий сплав хрупок и сделать драгоценность только из него не получится.

Фиолетовое золото

По сути это сплав золота с алюминием. Такому золоту можно «присудить» 750 пробу (содержание золота в сплаве даже больше чем 75%).

Другой вид фиолетового золота -- это сплав золота с калием.

Фиолетовый ювелирный сплав прекрасен. Но, к сожалению, непрочен и непластичен. Иногда его можно встретить в украшениях в виде вставок, как будто это драгоценный камень, а не металл.

Коричневое золото

Коричневое золото - золото 585 или 750 пробы, с большей долей меди в лигатуре (добавке примесей к чистому золоту в сплаве). Такое золото ювелиры подвергают специальной химической обработке.

Черное золото

Черное золото -- необыкновенно изысканный металл с глубоким и мягким цветом. Есть несколько способов получения черного золота.

Это и сплавление с кобальтом и хромом с окислением при высокой температуре, и покрытие черным родием или аморфным углеродом…

сплав чугун сталь легирование золото

Заключение

Окружающие нас металлические предметы редко состоят из чистых металлов. Только алюминиевые кастрюли или медная проволока имеют чистоту около 99,9%. В большинстве же других случаев люди имеют дело со сплавами. Так, различные виды железа и стали содержат наряду с металлическими добавками незначительные количества углерода, которые оказывают решающее влияние на механическое и термическое поведение сплавов. Все сплавы имеют специальную маркировку, т.к. сплавы с одним названием (например, латунь) могут иметь разные массовые доли других металлов.

Используемая литература и сайты

ь Химия для любознательных - Э. Гроссе.

ь Советский энциклопедический словарь. - М.: Советская энциклопедия, 1983.

o Краткая химическая энциклопедия под редакцией И.А. Кнуянц и др. Советская энциклопедия, 1961-1967, Т.2.

o Энциклопедический словарь юного химика, составленный Крицманом В.А и Станцо В.В. Издательство «Педагогика»,1982 год.

ь Большая энциклопедия современного школьника.

ь Общая химия. Глинка Н.Л., СССР, 1985 год

o Сайт Википедия

ь www.erudition.ru- доклад «Сплавы»

ь dic.academic.ru- сайт «Академик», тема «Сплавы»

ь www.chemport.ru- сплавы

Размещено на Allbest.ru

Подобные документы

    История возникновения сплавов. Коррозионная стойкость, литейные свойства, жаропрочность и электрическое сопротивление сплавов. Основные свойства сплавов. Раствор одного металла в другом и механическая смесь металлов. Классификация и группы сплавов.

    презентация , добавлен 30.09.2011

    Физические свойства металлов и сплавов. Химические свойства металлов и сплавов. Сплавы. Требования к сплавам и виды сплавов. Методы испытания полиграфических сплавов. Металлы и сплавы, применяемые в полиграфии.

    реферат , добавлен 06.09.2006

    Классификация и общая характеристика медно-никелевых сплавов, влияние примесей на их свойства. Коррозионное поведение медно-никелевых сплавов. Термодинамическое моделирование свойств твёрдых металлических растворов. Энергетические параметры теории.

    дипломная работа , добавлен 13.03.2011

    Основные деформируемые алюминиевые сплавы. Механические свойства силуминов. Маркировка литейных алюминиевых сплавов. Кремний как основной легирующий элемент в литейных алюминиевых силуминах. Типичные механические свойства термически неупрочняемых сплавов.

    реферат , добавлен 08.01.2010

    Уменьшение скорости коррозии как метод противокоррозийной защиты металлов и сплавов. Классификация защитных покрытий (металлические, гальванические, металлизация напылением, неметаллические покрытия, органические, ингибиторная, кислородная и другие).

    курсовая работа , добавлен 16.11.2009

    Анодное оксидирование алюминия и его сплавов. Закономерности анодного поведения алюминия и его сплавов в растворах кислот на начальных стадиях формирования АОП и вторичных процессов, оказывающих влияние на структуру и свойства формирующегося слоя оксида.

    Кристаллическая структура ниобия, золота и их сплавов; количество и положение междоузлий. Диаграмма состояния системы Nb-V; график зависимости периода кристаллической решетки от состава сплава; стереографические проекции; кристаллографические расчеты.

    курсовая работа , добавлен 09.05.2013

    Общие представление о коррозии металлов. Поведение титана и его сплавов различных агрессивных средах. Влияние легирующих элементов в титане на коррозионную стойкость. Электрохимическая коррозия. Особенности взаимодействия титана с воздухом.

    реферат , добавлен 03.12.2006

    Химическая характеристика и свойства металлов, их расположение в периодической системе элементов. Классификация металлов по различным признакам. Стоимость металла как фактор возможности и целесообразности его применения. Наиболее распространенные сплавы.

    контрольная работа , добавлен 20.08.2009

    Общая характеристика и свойства меди. Рассмотрение основных методов получения меди из руд и минералов. Определение понятия сплавов. Изучение внешних характеристик, а также основных особенностей латуни, бронзы, медно-никелевых сплавов, мельхиора.

Металлическим сплавом называется вещество, полученное сплавлением двух или более исходных веществ, преимущественно металлических. Помимо сплавления сплавы получают спеканием, электролизом и другими способами.

Вещества, из которых образован сплав, называются компонентами сплава. В качестве компонентов сплавов могут быть как чистые элементы, так и устойчивые химические соединения. При кристаллизации сплавов могут образоваться следующие основные твердые фазы: твердые растворы; химические соединения; механические смеси из сплавляемых компонентов.

Твердые растворы

Твердые растворы являются наиболее распространенной фазой в металлических сплавах. Являются кристаллическими веществами.

Химический или спектральный анализ показывает в твердых растворах наличие двух элементов или более, тогда как по данным металлографического анализа такой сплав, как и чистый металл, имеет однородные зерна (рис. 2.3).

Рис. 2.3. Микроструктура твердого раствора

Рентгеновский анализ обнаруживает в твердом растворе, как и у чистого металла, только один тип решетки.

Следовательно, твердый раствор является однофазным, состоит из одного вида кристаллов, имеет одну кристаллическую решетку; существует в интервале концентраций компонентов.

Строение твердых растворов на основе одного из компонентов сплава таково, что в решетку основного металла-растворителя входят атомы растворенного вещества. При образовании твердого раствора сохраняется решетка одного из элементов, и этот элемент называется растворителем . Атомы растворенного вещества искажают и изменяют средние размеры элементарной ячейки растворителя. При образовании растворов внедрения и замещения атомы растворенного компонента распределяются в решетке растворителя беспорядочно.

Изменение параметров решетки при образовании твердых растворов – важный момент, определяющий свойства вещества. В общем независимо от вида металла относительное упрочнение при образовании твердого раствора пропорционально относительному изменению параметров решетки, причем уменьшение параметра решетки ведет к большему упрочнению, чем ее расширение.

Твердые растворы замещения могут быть ограниченные и неограниченные . Для образования неограниченных твердых растворов в соответствии с исследованиями Юм-Розери необходимы:

1) изоморфность (однотипность) кристаллических решеток сплавляемых компонентов;

2) близость атомных радиусов компонентов, которые не должны отличаться больше чем на 8…13 %;

3) близость физико-химических свойств компонентов.


Однако соблюдение этих условий не всегда является достаточным, чтобы сплавляемые компоненты образовали неограниченные твердые растворы. В реальных сплавах чаще наблюдаются твердые растворы с ограниченной растворимостью.

Химические соединения

Характерными особенностями химических соединений являются:

1) постоянство состава , которое может быть выражено формулой химического соединения;

2) наличие нового типа кристаллической решетки , отличного от типа решеток сплавляемых компонентов;

3) ярко выраженные индивидуальные свойства ;

4) постоянство температуры кристаллизации , как у чистых компонентов.

Химические соединения металлов делятся на две группы . Одна группа – это соединения с нормальной валентностью, т.е. соединения металлов с типичными неметаллами (О, S, Cl и т.д.). Такими соединениями являются оксиды, сульфиды, хлориды. В сплавах эти соединения присутствуют в виде так называемых неметаллических включений.

Другая группа – металлические соединения . Из этой группы наиболее важными являются фазы внедрения и электронные соединения. Металлические соединения отличаются разнообразием типов межатомных связей (металлической, ковалентной, ионной) с преобладанием металлической связи. Благодаря этому металлические соединения характеризуются металлическим блеском, электропроводностью и в отдельных случаях сверхпроводимостью.

Металлическими соединениями являются также соединения переходных металлов с углеродом (карбиды), азотом (нитриды), водородом (гидриды), бором (бориды). Эти соединения могут иметь как очень сложную, так и простую решетку типа ГЦК, ГПУ, реже ОЦК. Химические соединения обозначаются формулой соединения, например: A m B n .

Механические смеси

При сплавлении компонентов с большим различием атомных радиусов и значительным различием электрохимических свойств их взаимная растворимость очень мала, и образуется механическая смесь из кристаллов исходных компонентов (например, сплавы: Рb – Sb, Zn – Sn, Pb – Bi и др.). Между тем, следует помнить, что абсолютное отсутствие взаимной растворимости в реальных сплавах не встречается. Компоненты в сплаве обозначают символами их элементов.

Если компоненты механической смеси А и В достаточно крупного размера, то они отчетливо выявляются на микроструктуре (рис. 2.4).

Рис. 2.4. Микроструктура механической смеси (схема)

Рентгенограмма сплава покажет наличие двух решеток компонентов А и В . Если бы исследовать в таком сплаве отдельно свойства кристаллов А и кристаллов В , то они были бы тождественны свойствам чистых металлов А и В . Механические свойства полученного вещества зависят от количественного соотношения компонентов, а также от размера и формы зерен.

Муниципальное общеобразовательное учреждение средняя Городищенская школа №2

Реферат по химии на тему

Работу выполнила

ученица средней школы №2

Яблочкина Екатерина

Городище 2011

Введение

Сплав

Классификация сплавов

Свойства сплавов

Физические свойства сплавов

Получение сплавов

ЭЛЕМЕНТЫ ХИМИЧЕСКИ Е

Сплавы золота

Заключение

ИспользУемая литература и сайты

Введение

Древние мастера по металлу не оставили описаний приемов обработки и составов сплавов, применявшихся для изготовления разных предметов. Такая литература появляется только в средневековье, но в ней названия сплавов и терминология не всегда поддаются расшифровке, поэтому источником сведений являются исключительно сами вещи. Существует множество работ, посвящённых результатам исследований древних предметов. Из них мы узнаем, что первое появление изделий из меди археологи относят к VII тыс. до н.э. Это были кованые предметы из самородной меди. Затем появляется металлургическая медь и сплавы меди с другими металлами. На протяжении нескольких тысячелетий в основном из меди и ее сплавов изготавливались различные предметы: орудия труда, оружие, украшения и зеркала, посуда, монеты. Составы древних сплавов весьма разнообразны, в литературе их условно называют бронза. К наиболее ранним относятся мышьяковистые и оловянистые бронзы. Кроме олова и мышьяка в древних сплавах часто присутствует свинец, цинк, сурьма, железо и другие элементы в виде микропримесей, которые попадали в металл с рудой. Состав сплава подбирался весьма рационально в зависимости от функционального назначения предмета и используемой техники изготовления. Так, для литья художественных изделий был выбран рецепт тройного сплава медь-олово-свинец, применявшийся в античной Греции, в Римской империи, на Ближнем и Среднем Востоке, в Индии; в Китае бронза была одним из самых распространенных сплавов. На литых предметах из такой бронзы со временем образуется красивая патина, которая в некоторых случаях сохраняется и на археологических предметах.

Сплавы, макроскопические однородные системы, состоящие из двух или более металлов (реже- металлов и неметаллов) с характерными металлическими свойствами. В более широком смысле сплавы -любые однородные системы, полученные сплавлением металлов, неметаллов, неорганических соединений и т.д.. Многие сплавы (например: бронза, сталь, чугун) были известны в глубокой древности и уже тогда имели обширное практическое применение. Техническое значение металлических сплавов объясняется тем, что многие их свойства (прочность, твердость, электрическое сопротивление) гораздо выше, чем у составляющих их чистых металлов.

Называют сплавы исходя из названия элемента, содержащегося в них в наибольшем количестве (основной элемент, основа), например: сплав железа, сплав алюминия. Элементы, вводимые в сплав для улучшения их свойств, называются легирующими, а сам процесс - легированием.

Легирование - процесс введения в расплав дополнительных элементов, улучшающих механические, физические и химические свойства основного материала. Легирование является обобщающим понятием ряда технологических процедур, проводимых на различных этапах получения металлического материала с целями повышения качества металлургической продукции.

Классификация сплавов

По характеру металла- основы, различают черные сплавы (основа - железо (Fe), цветные сплавы (основа - цветные металлы), сплавы редких металлов, сплавы радиоактивных металлов.

По числу компонентов сплавы делят на двойные, тройные и т.д.;

по структуре - на гомогенные (однородные) и гетерогенные (смеси), состоящие из нескольких;

по характерным свойствам - на тугоплавкие, легкоплавкие, высокопрочные, жаропрочные, твердые, антифрикционные, коррозионностойкие;

сплавы со специальными свойствами и другие.

По технологии производства выделяют литейные (для изготовления деталей методом литья) и деформируемые (подвергаемые ковке, штамповке, прокатке, прессованию и другим видам обработки давлением).

Свойства сплавов

Свойства сплавов зависят не только от состава, но и от способов их тепловой и механической обработки: закалки, ковки и др. Вплоть до конца XIX века поиск новых практических полезных сплавов веди методом проб и ошибок. Только на рубеже XIX- XX вв. результате фундаментальных открытий в области физической химии возникло учение о закономерности между свойствами металлов и свойствами образованных из них сплавов, о влиянии на них механических, тепловых и других воздействий.

В металловедение различают три типа сплавов:

твердый раствор (если атомы, входящие в состав сплава элементов незначительно отличаются строением и размером, они могут образовывать общую кристаллическую решетку);

механическую смесь (если каждый элемент сплава кристаллизуется самостоятельно);

химическое соединение (если элементы сплава химически взаимодействуют, образуя новое вещество).

Физические свойства сплавов

Механические свойства металлов и сплавов

К основным механическим свойствам относятся прочность, вя

Классификация сплавов

ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ (ТКМ)

ТКМ – дисциплина, изучающая способы получения различных металлов и неметаллических материалов, а также технологические методы формообразования заготовок и деталей литьем, сваркой обработкой давлением и резанием.

МЕТАЛЛЫ И ИХ СПЛАВЫ

Все известные в настоящее время химические элементы (более 100 наименований) по совокупности свойств подразделяют на металлы и неметаллы. Примерно 80 % общего числа элементов относится к металлам. Некоторые из них (мышьяк, сурьму и др.) иногда называют полуметаллами, так как по одним свойствам их можно отнести к металлам, а по другим – к неметаллам.

Металлы (от греческого металлон – копи, рудники) – вещества неорганического происхождения, многие из которых обладают характерным блеском, высокой плотностью, прочностью и твердостью, пластичностью, хорошей электро- и теплопроводностью.

Классификация металлов

Все существующие металлы условно принято подразделять на черные и цветные.

Черные металлы – промышленное название железа и его сплавов (чугун, сталь, ферросплавы и др.). Черные металлы составляют более 90 % всего объёма, используемых в экономике металлов, из них основную часть составляют различные стали.

Цветные металлы – все остальные, например: K (калий), Na (натрий), Ca (кальций), Al (алюминий), Mg (магний); Ni (никель), Cu (медь), Pb (свинец), Zn (цинк), Sn (олово), W(вольфрам), Ti (титан), Mо (молибден), V (ванадий), Nb (ниобий), Zr (цирконий), Au (золото), Ag (серебро), Pt (платина) и т.д.

Цветные металлы в свою очередь подразделяются на следующие группы:

- легкие цветные , например: K (калий), Na (натрий), Ca (кальций), Al (алюминий), Mg (магний);

- тяжелые цветные с плотностью более 5 г/см3, например: Ni (никель)i, Cu (медь), Pb (свинец), Zn (цинк), Sn (олово);

- благородные , например: Au (золото), Ag (серебро), Pt (платина);

- редкие.

Редкие металлы в свою очередь подразделяют на:

Тугоплавкие (с температурой плавления выше 1875 °С), например: W(вольфрам), Ti (титан), Mо (молибден), V (ванадий), Nb (ниобий), Zr (цирконий), Та (тантал);

Легкие, например: Sr (стронций), Sc (скандий), Rb (рубидий), Cs (цезий);

Радиоактивные, например: U (уран); Ra (радий), Ae (актинидий), Pd (палладий);

Редкоземельные, например: Ge (германий), Ga (галлий), Hf (гафний), In (индий), La (лантан), Tl (таллий), Се (церий), Re (рений).

Классификация сплавов

Технически чистые металлы обладают низкой прочностью и поэтому применение их ограничено. В промышленности, как правило, применяются сплавы металлов.

Сплавом (металлов) называют твёрдые и жидкие системы, образованные главным образом сплавлением двух или более металлов, а также металлов с различными неметаллами. Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В технике применяется более 5 тыс. сплавов.

По характеру металла (основы) различают:

Черныеили железоуглеродистые сплавы - стали, чугуны (основа - Fe);

Цветные сплавы (основа - цветные металлы), в т.ч. :

  • сплавы на основе цветных металлов, таких как K (калий), Na (натрий), Ca (кальций), Al (алюминий), Mg (магний) называются легкими цветными сплавами;
  • на основе цветных металлов, таких как Ni (никель)i, Cu (медь), Pb (свинец), Zn (цинк), Sn (олово) называются тяжёлыми цветными сплавами;
  • на основе тугоплавких металлов, таких как W(вольфрам), Ti (титан), Mо (молибден), V (ванадий), Nb (ниобий), Zr (цирконий), и т.д. называются тугоплавкими сплавами;

- сплавы радиоактивных металлов (основа – радиоактивные металлы);

- сплавы редкоземельных металлов (основа – радиоактивные металлы).

В зависимости от количества основных компонентов, входящих в состав сплава, различают сплавы двойные (бинарные) и сложные (тройные, четверные и т. д.)

Примеси сплавов.

Помимо основных компонентов в состав сплавов входят примеси:

Случайные (попадают в сплав во время его приготовления);

Специальные (вводятся в сплав в виде добавок для придания ему необходимых эксплуатационных свойств)

Введение в сплав специальных добавок называется легированием, а сама добавка – лигатурой. Составляющими лигатуры могут быть как отдельные элементы (легирующие элементы), так и сплавы этих элементов (например: ферросплавы FeTi: FeV; FeCr и т.д.).

Помимо этого различают примеси вредные (S, P, O 2 , H 2 , N 2), ухудшающие свойства материалов, и полезные, улучшающие их свойства - (легирующие элементы).

Структура сплавов.

По структуре сплавы разделяют на твердые растворы, механические смеси и химические соединения.

  1. Если атомы входящих в состав сплава компонентов имеют незначительные различия в размерах и строении электронной оболочки, то они, как правило, образуют общую кристаллическую решетку. Такая структура называется твердым раствором.
  2. Механическая смесь получается в том случае, когда компоненты сплава не могут образовать общую решетку и каждый из них кристаллизуется самостоятельно.
  3. Если при химическом взаимодействии компонентов сплава получается новое вещество, свойства которого резко отличаются от свойств исходных компонентов, то такой сплав называют химическим соединением.

В одном сплаве могут одновременно присутствовать все три структуры.

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода