Вконтакте Facebook Twitter Лента RSS

Нервная система. Курсовая работа: Сравнительно-инитомическая характеристика нервной системы животных

Происхождение мозга Савельев Сергей Вячеславович

§ 20. Нервная система с радиальной симметрией

Наиболее простой вариант строения нервной системы мы встречаем у стрекающих (кишечнополостных). Как уже говорилось выше, их нервная система построена по диффузному типу. Клетки образуют пространственную сеть, которая расположена в мезоглее (рис. II-4, а). Небольшое скопление нервных клеток в окологлоточной области образует подобие распределённого нервного центра. Он интегрирует все несложные реакции тела кишечнополостных и является эволюционным предшественником ганглиозной нервной системы. В окологлоточном нервном кольце формируются параллельные ганглии, описанные в главе (см. рис. I-16). По-видимому, этот тип строения нервной сети был исходным для всех групп животных.

При всей кажущейся простоте диффузный тип нервной системы обеспечивает довольно сложное поведение кишечнополостных. Хорошо известно, что раки-отшельники используют актиний для защиты от хищников. Они выбирают наиболее подходящих особей и пересаживают их себе на раковину. Классическим примером является симбиоз актиний и рака-отшельника. Однако мало известно, что сами актинии также могут выбирать наиболее подходящую поверхность раковины и перемещаться на неё. Иначе говоря, актинии такие же активные, хотя и бессознательные, участники симбиоза, как и раки-отшельники (Холодковский, 1914; Meglitsch, Schram, 1991).

В скромных рамках диффузной нервной системы известно необычайно большое количество вариантов строения. Их всех объединяют радиальная или изоморфная симметрия и общая тенденция к объединению нервных клеток в некие скопления. С момента появления пронейральной сети у губкоподобных организмов началась дифференциальная концентрация нервных элементов. В начале эволюции многоклеточных животных появилось бесконечное разнообразие вариантов строения нервной системы, которые реализовались у кишечнополостных и частично сохранились до нашего времени (см. рис. II-4).

Нервные клетки концентрировались различными способами. Самым простым способом интеграции нервных сетей стало окологлоточное нервное кольцо. Его появление вполне оправдано тем, что оно находилось на границе поступления пищи в организм кишечнополостных. Пища была тем ведущим стимулом, который определял и оценивал успех морфологических изменений нервной системы. Тот, кто мог эффективнее контролировать поступление пищи, увеличивал свой метаболизм и репродуктивные возможности. Самым простым движением, позволяющим проиллюстрировать действие диффузной нервной системы, является реакция на механическое раздражение. Пресноводная гидра (Pelmatohydra oligactis) при малейшем раздражении сжимается в микроскопический комочек. Это происходит за счёт расположенных продольно в эктодерме и поперечно в энтодерме сократимых белков. Кроме генерализованной реакции, кишечнополостные могут дифференциально пользоваться отдельными щупальцами или их группами. Гидры способны передвигаться, чередуя при переворотах опору на подошву и ротовое отверстие.

Тем не менее диффузная сеть с окологлоточным нервным кольцом была относительно медленно действующим устройством. Измеренная проводимость по нервной сети кишечнополостных составляет не более 5-20 см/с. Этого явно не хватает животным размером более 5 см, поэтому уже у актиний выделились участки нервной сети с высокой скоростью проведения (см. рис. II-4, в). В некоторых случаях она достигает

см/с, что делает актиний изощрёнными охотниками за значительно более эволюционно продвинутыми позвоночными. Окологлоточное нервное кольцо было явным достижением, но оно не могло дифференциально управлять всем телом или обеспечить контроль за свободным плаванием.

Среди предков современных одиночных актиний явно были свободноплавающие существа. На это указывает двойная нервная сеть в их теле (см. рис. II-4, б). Одна диффузная сеть расположена под эктодермой в мезоглее и ничем не отличается от таковой у других кишечнополостных (см. рис. II-4, а). Другая нервная сеть лежит в той же мезоглее, но уже около энтодермы. Они связаны между собой только в зоне окологлоточного нервного кольца, которое начинает играть как интегрирующую, так и разделяющую роль. По-видимому, такие двойные сети возникли на заре эволюции нервной системы и были нужны для активного свободного плавания. Животное с автономной «эктодермальной» сетью могло активно двигаться в толще воды. Сокращение эктодермальных клеток позволяло животному перемещаться, не вовлекая в этот процесс пищеварительную систему.

Рис. II-4. Предполагаемые первые этапы (показано стрелками) усложнения строения нервной системы кишечнополостных с радиальной симметрией.

а - однослойная сеть примитивных гидроидов; б - двойная нервная сеть актиний; в - нервная сеть актиний со скоростными проводящими цепями клеток; г - нервная сеть восьмилучевого полипа; д - нервный аппарат радиально-комиссурального типа.

Не исключено, что мезоглея была у этих существ намного толще и рыхлее. Пищеварительная нервная сеть с энтодермальными сократимыми клетками функционировала относительно автономно, перемещая пищевые частицы без эктодермальных сокращений. Такой самодвижущийся пылесос мог быть крайне эффективным при избытке мелких пищевых частиц. Эволюционные преимущества подвижных фильтраторов хорошо известны, поскольку усатые киты являются самыми крупными животными на планете.

Совершенно иная нервная система у свободноплавающих сцифоидных медуз. Они преимущественно хищники с диффузной нервной системой, которая интегрируется околоротовым круговым скоплением нейронов и несколькими нервными кольцами в зонтике. Эти существа имеют интересные высокоспециализированные участки нервной системы - ропалии. Это небольшие скопления нейронов по краям зонтика. Ропалии могут содержать статоцисты, или светочувствительные глазки. В статоцистах конкреции различной природы образуют давящий на нейроны «камушек». Он позволяет определять направление на гравитационный центр Земли и ориентировать тело в воде. Глазки измеряют освещённость, а движущиеся волны механически влияют на нервную сеть, что позволяет медузам выбирать направление движения. Подобные нервные образования не смогли стать значимыми центрами для интеграции поведения кишечнополостных, но были первыми специализированными органами чувств. Подобные примитивные рецепторные системы неоднократно возникали в эволюции, что подтверждается разнообразием их структурной организации при общей убогости рецепторных возможностей.

Можно предположить, что потенциальный предковый вариант строения нервной системы беспозвоночных выглядел как некое кишечнополостное со скоростными тяжами проведения нервных клеток (см. рис. II-4, в). Если допустить эволюционное продолжение концентрации нервных клеток, то из такой морфологической организации с равной вероятностью могла появиться нервная система двух типов строения (см. рис. II-4, г, д). Эти типы различаются только по туловищным комиссурам, которые соединяют продольные нервные стволы.

Окологлоточное нервное кольцо имеет примерно одинаковое строение и интегрирует активность всей нервной сети животного. В хорошо известном плане строения радиально-симметричной нервной системы многих современных кишечнополостных нет поперечных комиссур, соединяющих нервные стволы. Этот тип мог эволюционировать по пути сокращения числа нервных стволов. При этом, по-видимому, возникали самые оригинальные варианты симметрии нервной системы. Примером может служить нервная система нематод (рис. II-5, б). Она представлена 4 параллельными стволами, которые соединяются только окологлоточным нервным кольцом. Других комиссур в глоточной зоне и теле круглых червей нет. Важно подчеркнуть, что 4 нервных ствола нематод расположены симметрично, но вопреки ожиданиям в дорсальном, вентральном и латеральном положении (см. рис. 11-5, б), 4 нервных ствола иннервируют треугольный рот и не имеют отростков, проникающих в мышечные клетки. Наоборот, мышечные клетки образуют отростки, которые оканчиваются на дорсальном и вентральном нервных стволах, идущих вдоль тела. Каждая мышечная клетка имеет несколько таких отростков, а сократимые белки локализованы в дистальном участке цитоплазмы. По этим отросткам проходит нервный сигнал, который и заставляет сокращаться группы мышечных клеток.

Вполне вероятно, что у нематод сохранился древнейший механизм «информирования» клеток организма co стороны нервной системы. Мышечные клетки сами заботятся об источнике информации, пригодном для повышения метаболизма. Такой тип нервно-мышечных связей крайне примитивен и претендует на эволюционную первичность, что косвенно подтверждает высказанную ранее гипотезу происхождения нервных клеток. Нематоды многочисленны, но не разнообразны по строению органов чувств. В основном это внешние и внутренние механорецепторы, хеморецепторы (чувствительные ямки, сосочки) и простые глазки. Механорецепторы специализированы на мужские сенсорные органы и спикулы, головные и соматические щетинки. Однако это пример крайней специализации, который показывает, что наиболее эволюционно перспективным был «комиссуральный» путь (см. рис. II-5, в).

Комиссуры, посегментно связывающие продольные нервные стволы, дают существенные преимущества в дифференциальной активности отдельных участков тела. Вполне возможно, что комиссуральные нервные стволы сформировались ещё на уровне гипотетических кишечнополостных с радиальной симметрией. Множественные нервные стволы таких животных могли иметь комиссуры, которые создавали развитую пространственную нервную сеть. Неподвижным особям вполне достаточно бескомиссурного варианта (см. рис. II-5, а), поэтому комиссуры свидетельствуют скорее о подвижном образе жизни. Сегментированная сеть носила вполне практический характер и использовалась для перистальтического движения. Животное двигалось в результате распространения кольцевых перистальтических волн по телу назад относительно движения. Дифференциальное управление такими полостями и окружающими их мышцами возможно только при наличии повторяющихся нейральных сегментов. В таком сегменте должен быть автономный центр, управляющий мышцами, - ганглий. У радиально-симметричного животного их может быть несколько, у билатерально-симметричного - 2 или 4. Такие ганглии расположены в узлах пересечения нервных стволов и поперечных комиссур.

Пересечения постепенно трансформируются в контактные узлы, а затем и в полноценные ганглии. Появление дополнительных периферических центров позволяет им принять на себя часть забот об управлении телом животного. Сегментарные комиссуры с ганглиями являются основным условием возникновения внутри тела специализированных полостей и целома. Без развитой посегментной иннервации септально-целомические конструкции не имели бы биологического смысла. Их использование для перистальтических движений было бы невозможно. Развитая иннервация позволяет деформировать их в широких диапазонах и развивать большие усилия при различных способах перистальтического движения. Следовательно, комиссуры и узловые ганглии создали у радиально-симметричного животного все предпосылки для возникновения сегментарности и билатеральной симметрии.

Радиально-симметричное животное, похожее на трубу с пробегающими по ней волнами, не самый лучший пловец. Этот тип движения очень эффективен в почве, но в воде преимущество получают животные с меньшим числом осей симметрии. Плоскотелые животные с волнообразными движениями тела двигаются быстрее, а их энергетические затраты ниже. Это касается как придонной зоны, так и толщи воды. Замена радиальной симметрии на билатеральную была делом очень небольшого времени. По-видимому, уменьшение числа продольных нервных стволов происходило путём их слияния. Стволы сближались и сливались, как это происходит при метаморфозе насекомых. Мы не знаем, из какой радиальной системы складывалась билатеральная нервная система, но маловероятно, что в ней было нечётное число нервных стволов. В конечном итоге слияние продольных стволов привело к возникновению билатерально-организованной нервной системы. Вероятнее всего, билатеральность сложилась в придонном слое. Древнее свободноплавающее существо перешло к придонному образу жизни. Успешно передвигаться внутри придонного слоя могла и радиально-симметричная трубка. Однако более эффективно плавать или ползать по поверхности может билатерально-симметричное существо. Такой тип организации нервной системы широко распространён и среди современных свободноживущих плоских червей - турбеллярий. Встречаются варианты строения с 4 и 2 параллельными нервными стволами (см. рис. II-5, г, е).

Рис. II-5. Общий вид и сечения основных вариантов строения нервной системы кишечнополостных и червей.

а - нервная сеть восьмилучевого полипа; б - нервная сеть нематод; в - нервный аппарат радиально-комиссурального типа; г, е - нервная система тубеллярий; д - нервная система печеночного сосальщика. Синим цветом на сечениях обозначены нервные стволы.

Из книги Допинги в собаководстве автора Гурман Э Г

3.2. НЕРВНАЯ СИСТЕМА И ПОВЕДЕНИЕ В поведенческом акте участвуют многие системы организма. Он реализуется с помощью аппарата движений, деятельность которого тесно связана с различными функциями организма (дыханием, кровообращением, терморегуляцией и др.). Управление

Из книги Основы зоопсихологии автора Фабри Курт Эрнестович

Нервная система Как известно, нервная система впервые появляется у низших многоклеточных беспозвоночных. Возникновение нервной системы - важнейшая веха в эволюции животного мира, и в этом отношении даже примитивные многоклеточные беспозвоночные качественно

Из книги Служебная собака [Руководство по подготовке специалистов служебного собаководства] автора Крушинский Леонид Викторович

Центральная нервная система В соответствии со сложной и высокодифференцированной организацией двигательного аппарата находится и сложное строение центральной нервной системы насекомых, которую, однако, мы можем здесь охарактеризовать лишь в самых общих чертах.Как и у

Из книги Краткая история биологии [От алхимии до генетики] автора Азимов Айзек

9. Нервная система Общие понятия. Нервная система является очень сложной и своеобразной по своему строению и функциям системой организма. Ее назначение - устанавливать и регулировать взаимоотношение органов и систем в организме, связывать все функции организма в

Из книги Гомеопатическое лечение кошек и собак автора Гамильтон Дон

Глава 10 Нервная система ГипнотизмДругая разновидность заболеваний, которые не подпадают под теорию Пастера, - это заболевания нервной системы. Такие заболевания смущали и пугали человечество испокон веков. Гиппократ подходил к ним рационалистично, однако большинство

Из книги Генетика этики и эстетики автора Эфроимсон Владимир Павлович

Глава XIII Нервная система Функции У нервной системы живых существ имеются две основные функции. Первая - сенсорное восприятие, благодаря которому мы воспринимаем и постигаем окружающий мир. По центростремительным чувствительным нервам импульсы от всех пяти органов

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

8.3. Некоторые эмоции, вызываемые цветом и симметрией Если хищники необычайно остро распознают движущиеся предметы, то зрение приматов специализировано на распознавание самых слабых различий в форме и строении. В поисках пищи важно распознавание цвета, и в отличии от

Из книги Мозг, разум и поведение автора Блум Флойд Э

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Вегетативная нервная система Некоторые общие принципы организации сенсорных и двигательных систем весьма пригодятся нам при изучении систем внутренней регуляции. Все три отдела вегетативной (автономной) нервной системы имеют «сенсорные» и «двигательные» компоненты.

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

§ 11. Нервная система беспозвоночных У беспозвоночных диффузно-ганглиозная нервная система с выраженными головными и туловищными ганглиями. Туловищные ганглии обеспечивают местный контроль над вегетативными функциями и моторной активностью. Головные ганглии содержат

Из книги автора

§ 12. Нервная система позвоночных Нервная система позвоночных построена на принципах вероятностного развития, дублирования, избыточности и индивидуальной изменчивости. Это не означает, что в мозге позвоночных нет места генетической детерминации развития или

Из книги автора

§ 21. Билатеральная нервная система Появление билатеральной симметрии стало переломом в эволюции нервной системы. Это не означает, что билатеральность лучше радиальной симметрии. Скорее наоборот. Из-за того что в далёком прошлом билатеральная симметрия была утрачена, мы

Из книги автора

§ 22. Нервная система членистоногих Организация нервной системы членистоногих и сходных с ними групп может существенно варьировать, но в пределах общего плана строения. Рисунок нервной системы дневной бабочки (Lepidoptera) довольно точно отражает типичное расположение

Из книги автора

§ 23. Нервная система моллюсков Наибольший морфофункциональный контраст представляют собой организация нервной системы головоногих и двустворчатых моллюсков (рис. II-9; II-10, а). У двустворчатых моллюсков есть парные головные, висцеральные и педальные ганглии, соединённые

Из книги автора

§ 43. Нервная система и органы чувств птиц Нервная система птиц состоит из центрального и периферического отделов. Головной мозг птиц крупнее, чем у любых современных представителей рептилий. Он заполняет полость черепа и имеет округлую форму при небольшой длине (см. рис.

Из книги автора

7.5. Нервная ткань Нервная ткань представлена двумя типами клеток: нейронами и нейроглией.Нейроны способны воспринимать раздражение и передавать информацию в виде электрических импульсов. На основе этих свойств нейронов у животных сформировалась нервная система –

— в энтодерме.

Особенность диф-фузной нервной системы заключается в том, что активность распро-страняется в любом направлении из любой точки стимуляции. Хотя нервная система подобного типа может считаться примитивной, такие действия, как питание , плавание, перемещение на раковины моллюс-ков у актиний и т. д., далеко не просты.

У медуз и актиний кроме нервной сети имеется еще система длинных биполярных нейронов, образующих цепочки. Они способны быстро передавать импульсы на большие расстояния без их затухания, возможно, это и позволяет организму осуществлять общую реакцию на различные стимулы.

В других груп-пах беспозвоночных жи-вотных нервные сети су-ществуют наряду с нерв-ными стволами. Они отме-чены на различных участ-ках тела — под кожей, в глотке или других частях кишечника, а также в ноге моллюсков или в лучах иг-локожих.

Уже у стрекающих наме-чается тенденция к концен-трации нейронов в области ротового диска, а у поли-пов еще и в подошве. У медуз образуются нервные сгущения по краю зонтика, а в определенных местах кольцевого сгу-щения — еще и скопления нервных клеток. Их называют ганглии. Крае-вые ганглии медуз представляют собой первый шаг к формированию центрального отдела нервного аппарата. В них сконцентрированы перикарионы нервных клеток, а сами ганглии нервными тяжами связаны между собой и с периферией — органами чувств и эффекторами. Тяжи (нервы) состоят из аксонов нервных клеток, находящихся в ганглиях.

Следующим этапом концентрации нервных элементов и усложнения нервных аппаратов является образование ортогона у плоских червей — стволовая нервная система . Самые примитивные из них имеют рассеянное нервное сплетение. Затем в нем появляются продольные и поперечные сгущения, которые упорядочиваются и образуют прямоугольную решетку из продольных и кольцевых стволов — ортогон (рис. 38). Это исходная форма для большинства типов нервного аппарата низших червей.

Как и у книдарий, у некоторых групп типа плоских червей встреча-ются нервные сети. Их функциональные харак-теристики такие же, как у книдарий.

Эволюция ортогона идет в сторону уменьшения числа стволов при смещении все большего числа нервных клеток в мозг. Его появление способствует интеграции организма. У более продвинутых в эволюционном отношении беспозвоночных лучше развиты передние ганглии. Это часть общего процесса дифференцировки головы , или цефализации . Она характерна для билатерально--симметричных животных, ведущих, как прави-ло, подвижный образ жизни. У таких животных ротовое отверстие и чувствительные органы располагаются на переднем конце тела. В таком случае обработка сигналов от органов чувств (зрительных, обонятельных, вкусовых и т. п.) осуществляется головным, или церебральным, ганглием. В его функции входят также нервный контроль пищедобывающего поведения и кон-троль рефлексов . Можно сказать, что мозг «при-нимает стратегические решения» и отдает «ко-манды».

Мозг образуется либо за счет утолщения од-ного из первых колец примитивного ортогона, либо за счет скопления нервных клеток в перед-нем конце тела в толще паренхимы. Отсюда и различия в названиях: первый тип мозга называ-ется ортогонным, а второй — эндонным.

Нервный аппарат, подобный описанному выше, характерен для целого ряда беспозвоноч-ных, в частности для круглых червей . По- видимому, ортогон следует считать исходным типом нервного аппарата моллюсков и кольча-тых червей, поскольку личинки последних име-ют близкое к нему строение нервной системы.

Узловая нервная система

Из современных моллюсков наиболее просто устроен нервный аппарат у боконервных. Их мозг развит очень слабо. От него отходят две пары нервных стволов — педальные и плевро-висцеральные, соединенные между собой мно-жеством поперечных комиссур. Это центральный нервный аппарат, кроме него у всех моллюсков есть еще периферическое нервное спле-тение.

У большинства моллюсков все клетки центрального нервного ап-парата собираются в компактные, четкие ганглии, а участки стволов, соединяющие два ганглия, полностью освобождаются от нервных кле-ток. Ганглии можно сравнить с телефонными станциями, а промежу-точные участки — с пучками проводов. Нервная система моллюсков образует так называемый узловой (разбросанно-узловой) тип , или сложную ганглионарную систему . Ганглии в нем расположены на разных уровнях. Общим для них является ганглионизация и укорочение соединительных продольных (коннектив) и попереч-ных (комиссур) тяжей, а также уход ЦНС вглубь.

У кольчатых червей нет диффузно-го нервного сплетения, свойственного моллюскам. Их центральный нервный аппарат состоит из мозга, или надгло-точного ганглия, окологлоточных коннектив и пары нервных стволов, лежащих под кишкой и соединяю-щихся поперечными комиссурами. У большинства кольчецов нервные стволы полностью ганглионизированы, причем в типичном случае в каж-дом сегменте тела образуется по од-ной паре ганглиев. Каждая пара ин-нервирует свой сегмент. У примитив-ных кольчецов брюшные стволы ши-роко расставлены и соединены длин-ными поперечными комиссурами так, что образуется «лестничная нервная система». У более высокоорганизо-ванных представителей происходит укорочение комиссур и сближение стволов, что ведет в конце концов к их слиянию. При этом ЦНС приобретает вид цепочки, которую называют брюшной нервной цепочкой.

Подобный тип нервного аппарата встречается и у членистоногих. Он рас-положен глубоко внутри тела и также состоит из мозга, окологлоточных коннективов и брюшной нервной цепочки (рис. 39), но в мозг включается одна пара брюшных ганглиев, образующая задний его отдел (тритоцеребрум).

В отличие от кольчецов у членистоногих широко распространена концентрация брюшной нервной цепочки за счет укорочения коннективов и слияния последовательных метамерных ганглиев. Коннективы укорачиваются в той же степени, в какой удлиняются периферические нервы. Этим достигается централизация нервного аппарата — укорочение межцентральных путей. В ряде случаев, характерных для раков и насекомых, ганглии концентрируются лишь в голове и груди. Иннервация брюшка осу-ществляется длинными перифе-рическими нервами (рис. 40).

В централизованной нервной системе, подобно той, которую име-ют головоногие моллюски или членистоногие, механизм быстрого от-вета на раздражение осуществляется по типу рефлекторной дуги, в об-разовании которой участвуют несколько нейронов (рис. 41): чувстви-тельный , промежуточный (ассоциативный ) и двигательный . Какое-либо внешнее раздражение вызывает изменения в воспринимающем органе, что в свою очередь стимулирует чувствительный нейрон, от которого импульс через синапсы попадает на промежуточный нейрон, а от него — на двигательный. По аксону двигательного нейрона импульс доходит до мышечного волокна, которое отвечает на стимул сокращением. Материал с сайта

У насекомых особой сложно-сти достигает головной мозг (над-глоточный ганглий). Он состоит из трех пар слившихся ганглиев — протоцеребрума , дейтоцеребрума и тритоцеребрума . Наиболее раз-вит протоцеребрум, имеющий не-сколько центров, в том числе ко-ординирующие центры нервной системы. С протоцеребрумом свя-зана пара очень крупных и сложных зрительных долей, иннервирую-щих сложные глаза. Дейтоцеребрум иннервирует усики, а тритоцеребрум — верхнюю губу.

Подглоточный ганглий состоит из трех пар слившихся ганглиев и иннервирует ротовые органы и передний отдел кишечника.

Концентрация нервной системы высших групп насекомых — яркое проявление принципа олигомеризации (уменьшения числа гомологич-ных органов и частей). Она улучшает нервное управление организмом и в целом способствует повышению морфофизиологического уровня насекомых.

Кроме ЦНС, у насекомых имеются также периферическая и симпа-тическая нервные системы. С последней связаны эндокринные желе-зы — прилежащие и кардиальные тела (см. Эндокринная система, железы и гормоны насекомых ).

Трубчатая нервная система вторичноротых

Все рассмотренные типы нервных аппаратов характерны для так называемых первичноротых животных . К вторичноротым из беспо-звоночных относятся иглокожие и погонофоры. Вторичноротыми являются и все хордовые , в том числе позвоночные животные .

По строению нервного аппарата низшие вторичноротые стоят на низкой ступени развития, отличаясь от книдарий в основном тем, что имеют нервные сплетения не только в эктодерме, но и в эпителиях кишечника и целома (вторичной полости тела) . У хордовых же ЦНС представлена нервной трубкой, проходящей по спинной стороне жи-вотного. Передний конец трубки обычно расширен и образует голов-ной мозг.

Все разнообразие значений нервной системы вытекает из ее свойств.

Возбудимость, раздражимость и проводимость характеризуются как функции времени, то есть это процесс, возникающий от раздражения до проявления ответной деятельности органа. Согласно электрической теории распространения нервного импульса в нервном волокне он распространяется за счет перехода локальных очагов возбуждения на соседние неактивные области нервного волокна или процесса распространяющейся деполяризации потенциала действия, представляющего подобие электрического тока. В синапсах протекает другойхимический процесс, при котором развитие волны возбужденияполяризации принадлежит медиатору ацетилхолину, то есть химической реакции.

Нервная система обладает свойством трансформации и генерации энергий внешней и внутренней среды и преобразования их в нервный процесс.

К особенно важному свойству нервной системы относится свойство мозга хранить информацию в процессе не только онто, но и филогенеза.

Типы нервных систем

Существует несколько типов организации нервной системы, представленные у различных систематических групп животных.

Диффузная нервная система -- представлена у кишечнополостных. Нервные клетки образуют диффузное нервное сплетение в эктодерме по всему телу животного, и при сильном раздражении одной части сплетения возникает генерализованный ответ -- реагирует все тело.

Стволовая нервная система (ортогон)-- некоторые нервные клетки собираются в нервные стволы, наряду с которыми сохраняется и диффузное подкожное сплетение. Такой тип нервной системы представлен у плоских червей и нематод (у последних диффузное сплетение сильно редуцировано), а также многих других групп первичноротых -- например, гастротрих и головохоботных.

Узловая нервная система, или сложная ганглионарная система -- представлена у аннелид, членистоногих, моллюсков и других групп беспозвоночных. Большая часть клеток центральной нервной системы собраны в нервные узлы -- ганглии. У многих животных клетки в них специализированы и обслуживают отдельные органы. У некоторых моллюсков (например, головоногих) и членистоногих возникает сложное объединение специализированных ганглиев с развитыми связями между ними -- единый головной мозг или головогрудная нервная масса (у пауков). У насекомых особенно сложное строение имеют некоторые отделы протоцеребрума («грибовидные тела»).

Трубчатая нервная система (нервная трубка) характерна для хордовых.

Рост и развитие ребенка, т.е. количественные и качественные изменения тесно взаимосвязаны друг с другом. Постепенные количественные и качественные изменения, происходящие в процессе роста организма, приводят к появлению у ребенка новых качественных особенностей.

Весь период развития живого существа, от момента оплодотворения до естественного окончания индивидуальной жизни, называют - онтогенез (греч. ОНТОС - сущее, и ГИНЕЗИС - происхождение). В онтогенезе выделяют два относительных этапа развития:

  • 1. Пренатальный
  • 2. Постнатальный

Пренатальный - начинается с момента зачатия до рождения ребенка.

Постнатальный - от момента рождения до смерти человека.

Наряду с гармоничностью развития существуют особые этапы наиболее резких скачкообразных атомо - физиологических преобразований.

В постнатальном развитии выделяют три таких «критических периода» или «возрастного кризиса».

Изменяющиеся факторы

Последствия

от 2х до 4х

Развитие сферы общения с внешним миром.

Развитие формы речи.

Развитие формы сознания.

Повышение воспитательных требований.

Повышение двигательной деятельности

с 6 до 8 лет

Новые люди

Новые друзья

Новые обязанности

Уменьшение двигательной деятельности

с 11 до 15 лет

Изменение гормонального баланса с созреванием и перестройкой работы желез внутренней секреции.

Расширение круга общения

Конфликты в семье и в школе

Вспыльчивый характер

Важной биологической особенностью в развитии ребенка является то, что формирование их функциональных систем происходит намного раньше, чем это им требуется.

Принцип опережающего развития органов и функциональных систем у детей и подростков является своеобразной "страховкой", которую дает природа человеку на случай непредвиденных обстоятельств.

Функциональной системой - называют временное объединение различных органов детского организма, направленное на достижение полезного для существования организма результата.

Комплексная диагностика уровня функционального развития ребенка. Готовность ребенка к школе.

Психологическая готовность к обучению в школе включает в себя:

интеллектуальную готовность;

мотивационную готовность;

волевую готовность;

коммуникативную готовность.

Интеллектуальная готовность предполагает развитие внимания, памяти, сформированные мыслительные операции анализа, синтеза, обобщения, умение устанавливать связи между явлениями и событиями. К 6-7и годам ребенок должен знать:

  • * свой адрес и название города, в котором он живет;
  • * название страны и ее столицы;
  • * имена и отчества своих родителей, информацию о местах их работы;
  • * времена года, их последовательность и основные признаки;
  • * названия месяцев, дней недели;
  • * основные виды деревьев и цветов.

Ему следует уметь различать домашних и диких животных, понимать, что бабушка -- это мама отца или матери. Иными словами, он должен ориентироваться во времени, пространстве и своем ближайшем окружении.

Мотивационная готовность подразумевает наличие у ребенка желания принять новую социальную роль -- роль школьника. Поэтому очень важно, чтобы школа была для него привлекательна своей главной деятельностью -- учебой. С этой целью родителям необходимо объяснить своему ребенку, что дети ходят учиться для получения знаний, которые необходимы каждому человеку.

Следует давать ребенку только позитивную информацию о школе. Помните, что ваши оценки и суждения с легкостью заимствуются детьми, воспринимаются некритично. Ребенок должен видеть, что родители спокойно и уверенно смотрят на его предстоящее поступление в школу.

Причиной нежелания идти в школу может быть и то, что ребенок “не наигрался”. Но в возрасте 6-7 лет психическое развитие очень пластично, и дети, которые “не наигрались”, придя в класс, скоро начинают испытывать удовольствие от процесса учебы.

Вам не обязательно до начала учебного года формировать любовь к школе, поскольку невозможно полюбить то, с чем еще не сталкивался.

Достаточно дать понять ребенку, что учеба -- это обязанность каждого современного человека и от того, насколько он будет успешен в учении, зависит отношение к нему многих из окружающих ребенка людей.

Волевая готовность предполагает наличие у ребенка способностей ставить перед собой цель, принять решение о начале деятельности, наметить план действий, выполнить его, проявив определенные усилия, оценить результат своей деятельности, а также умения длительно выполнять не очень привлекательную работу.

Развитию волевой готовности к школе способствуют изобразительная деятельность и конструирование, поскольку они побуждают длительное время сосредоточиваться на постройке или рисовании.

Коммуникативная готовность проявляется в умении ребенка подчинять свое поведение законам детских групп и нормам поведения, установленным в классе. Она предполагает способность включиться в детское сообщество, действовать совместно с другими ребятами, в случае необходимости уступать или отстаивать свою правоту, подчиняться или руководить.

В целях развития коммуникативной компетентности следует поддерживать доброжелательные отношения вашего сына или дочери с окружающими. Личный пример терпимости во взаимоотношениях с друзьями, родными, соседями также играет большую роль в формировании этого вида готовности к школе.

  • Автономная нервная система, её структурно-функциональные особенности. Симпатический, парасимпатический, метасимпатический отделы.
  • Введение в физиологию. Физиология ЦНС и нервная регуляция функций
  • I тип нервной системы - диффузная нервная система, характерна для типа кишечнополостных (актинии, полипы, гидры, медузы). Общий принцип работы этой наиболее древней нервной системы - нервные клетки разбросаны по телу животного, образуя сеть нейронов, и проводят возбуждение по всем направлениям. При этом, несмотря на кажущуюся примитивность организации, здесь наблюдаются явления дифференцировки и специализации на уровне клеток и проводящих нервных путей. У сцифомедуз для быстрых плавательных движений служит сеть из крупных волокон, а медленные сокращения при пищевых движениях координируются сетью из тонких волокон. У актиний медленная система проводит импульсы со скоростью от 4,4 до 14,6 см/сек, а быстрая - 120 см/сек. В диффузной нервной системе кишечнополостных существуют два типа (иногда и больше) нейронов: рецепторные (сенсорные, чувствительные), воспринимающие сигналы внешней среды и промежуточные, передающие сигналы на клетки, выполняющие сократительные (мышечные) функции. Также в диффузной нервной системе обнаружены синапсы (контакты), электрические и химические. Более примитивные электрические синапсы преобладают, а химические подразделяются на симметричные и асимметричные, как у человека, и имеют синаптические пузырьки.

    Диффузная сеть обеспечивает не только простые рефлексы, как правило, не обладающие специфичностью, например, на различные внешние воздействия актиния отвечает сжатием тела, но и некоторые сложные формы поведения. К ним относятся: принятие одних пищевых продуктов и отвергание других, подведение ротового стебелька к пище, расширение, вытягивание, дефекация и покачивание. Есть актинии, которые живут на раковинках улиток, в которых поселяются раки отшельники, когда рак переходит в новое жилье, актиния путем ряда сложных движений перебирается на новую раковину.

    На примере кишечнополостных отчетливо прослеживаются основные тенденции в эволюции нервной системы - централизация и цефализация функций.

    Под централизацией понимают объединение в процессе эволюции нервных клеток в компактные центральные образования со специфическими функциями - нервные центры (или нервные узлы).

    Цефализацией называют усиление в эволюции развития и регулирующей роли головных отделов ЦНС у животных с билатерально-симметричным строением тела. В процессе цефализации происходит усложнение строения ЦНС, развивается функциональная иерархия нижележащих структур по отношению к вышележащим. Высшей формой цефализации является кортиколизация функций у высших позвоночных, когда все структуры нервной системы попадают под контроль деятельности коры головного мозга. Цефализация связана с тем, что передний конец тела животного первым сталкивается со всеми разнообразными раздражителями внешней среды, и именно здесь, на переднем конце тела формируются дистантные рецепторы (зрения, слуха, обоняния, вкуса). Для выживания организма требуется быстрота ответных реакций на эти раздражения, поэтому анализ их производится в самом ближайшем переднем головном ганглии (нервном узле). Чем сложнее сенсорная система, тем разнообразнее реакции организма, в первую очередь, двигательной системы. Развитие двигательной системы коррелирует с выраженностью цефализации нервной системы.

    Выделяют три основных типа структурной организации нервной системы: диффузный, узловой (ганглионарный) и трубчатый.

    Диффузная нервная система - наиболее древняя, характерна для кишечнополостных. Она представляет собой сетевидное соединение сравнительно равномерно разбросанных по телу нервных клеток. Примитивность такой системы состоит в отсутствии разделения ее на центральную и периферическую части, отсутствии длинных проводящих путей. Сеть относительно медленно проводит раздражение от нейрона к нейрону. Реакции организма на раздражение имеют неточный, расплывчатый характер. Однако множество связей между элементами диффузной нервной системы обеспечивает их широкую взаимозаменяемость и тем самым большую надежность функционирования.

    Узловая нервная система типична для червей моллюсков, членистоногих. Для нее характерна концентрация тел нервных клеток с образованием ганглиев (узлов). Тела нейронов, сосредоточенные в ганглиях, образуют центральную часть нервной системы. Резко возрастает роль нервных узлов головного отдела. Происходит дифференцировка нейронов в соответствии с различными выполняемыми функциями. Нейроны, по отросткам которых импульс поступает в нервные центры, называются центростремительными (чувствительными) или афферентными , а нейроны, по отросткам которых импульс от нервных центров направляется к исполнительным органам (мышцам, железе), - центробежными (двигательными) или эфферентными . Нервные клетки, воспринимающие возбуждение от одних нейронов и передающие его другим нервным клеткам, называются вставочными или интернейронами . Благодаря специализации нейронов, нервный импульс стал проводиться по определенным путям, что обеспечило быстроту, точность реакций организма. Такой качественно новый способ ответа организма называется рефлекторным типом реакции .

    Трубчатая нервная система характерна для хордовых. Такой тип системы обеспечивает наибольшую точность, быстроту и локальность ответных реакций. Для него характерна высшая степень концентрации нервных клеток. Центральная нервная система представлена трубчатым спинным и головным мозгом. В процессе эволюции усиливалось развитие головных отделов мозга, возрастала их регулирующая роль. В головном мозге высших позвоночных развился новый отдел - кора больших полушарий . Она собирает информацию от всех сенсорных и двигательных систем, осуществляет высший анализ и служит аппаратом условно-рефлекторной деятельности, а у человека - органом психической деятельности, мышления.

    «Платой» за централизацию нервной системы является высокая ее ранимость: повреждение центров приводит, как правило, к нарушению функций организма в целом.

    Партнеры
    © 2020 Женские секреты. Отношения, красота, дети, мода