Вконтакте Facebook Twitter Лента RSS

Московий из центавра. Свинец и висмут – самые тяжелые стабильные элементы

При энергии ионов криптона вблизи кулоновского барьера наблюдалось три случая образования 118 элемента . Ядра 293 118 имплантировались в кремниевый детектор и наблюдалась цепочка шести последовательных α-распадов, которая заканчивалась на изотопе 269 Sg. Сечение образования 118 элемента составляло ~2 пикобарна. Период полураспада изотопа 293 118 равен 120 мс. На рис. 3 показана цепочка последовательных α-распадов изотопа 293 118 и приведены периоды полураспада дочерних ядер, образующихся в результате α-распадов.

На основе различных теоретических моделей были рассчитаны распадные характеристики сверхтяжелых ядер. Результаты одного из таких расчетов показаны на рис. 4. Приведены периоды полураспада четно-четных сверхтяжелых ядер относительно спонтанного деления (а), α-распада (б), β-распада (в) и для всех возможных процессов распада (г). Наиболее устойчивым ядром по отношению к спонтанному делению (рис. 4а) является ядро с Z = 114 и N = 184. Для него период полураспада по отношению к спонтанному делению ~10 16 лет. Для изотопов 114-го элемента, отличающихся от наиболее устойчивого на 6-8 нейтронов, периоды полураспада уменьшаются на 10-15 порядков. Периоды полураспада по отношению к α-распаду приведены на рис. 4б. Наиболее устойчивое ядро расположено в области Z < 114 и N = 184 (T 1/2 = 10 15 лет). Для изотопа 298 114 период полураспада составляет около 10 лет.

Стабильные по отношению к β-распаду ядра показаны на рис. 4в темными точками. На рис. 4г приведены полные периоды полураспада. Для четно-четных ядер, расположенных внутри центрального контура, составляют ~10 5 лет. Таким образом, после учета всех типов распада оказывается, что ядра в окрестности Z = 110 и N = 184 образуют "остров стабильности". Ядро 294 110 имеет период полураспада около 10 9 лет. Отличие величины Z от предсказываемого оболочечной моделью магического числа 114 связано с конкуренцией между делением (относительно которого ядро с Z = 114 наиболее стабильно) и α-распадом (относительно которого устойчивы ядра с меньшими Z). У нечетно-четных и четно-нечетных ядер периоды полураспада по отношению к α-распаду и спонтанному делению увеличиваются, а по отношению к β-распаду уменьшаются. Следует отметить, что приведенные оценки сильно зависят от параметров, использованных в расчетах, и могут рассматриваться лишь как указания на возможность существования сверхтяжелых ядер, имеющих времена жизни достаточно большие для их экспериментального обнаружения.

Результаты еще одного расчета равновесной формы сверхтяжелых ядер и их периодов полураспада показаны на рис. 5, 11.11 . На рис. 11.10 показана зависимость энергии равновесной деформации от количества нейтронов и протонов для ядер с Z = 104-120. Энергия деформации определяется как разность энергий ядер в равновесной и сферической форме. Из этих данных видно, что в области Z = 114 и N = 184 должны располагаться ядра, имеющие в основном состоянии сферическую форму. Все обнаруженные на сегодня сверхтяжелые ядра (они показаны на рис. 5 темными ромбами) деформированы. Светлыми ромбами показаны ядра стабильные по отношению к β-распаду. Эти ядра должны распадаться в результате α-распада или деления. Основным каналом распада должен быть α-распад.

Периоды полураспада для четно-четных β-стабильных изотопов показаны на рис. 6. Согласно этим предсказаниям для большинства ядер ожидаются периоды полураспада гораздо большие, чем наблюдались для уже обнаруженных сверхтяжелых ядер (0.1-1 мс). Так например, для ядра 292 110 предсказывается время жизни ~ 51 год.
Таким образом, согласно современным микроскопическим расчетам, стабильность сверхтяжелых ядер резко возрастает по мере приближения к магическому числу по нейтронам N = 184. До недавнего времени единственным изотопом элемента с Z = 112 был изотоп 277 112, имеющий период полураспада 0.24 мс. Более тяжелый изотоп 283 112 был синтезирован в реакции холодного слияния 48 Ca + 238 U. Время облучения 25 дней. Полное число ионов 48 Ca на мишени - 3.5·10 18 . Зарегистрированы два случая, которые были интерпретированы как спонтанное деление образовавшегося изотопа 283 112. Для периода полураспада этого нового изотопа получена оценка T 1/2 = 81 c. Таким образом видно, что увеличение числа нейтронов в изотопе 283 112 по сравнению с изотопом 277 112 на 6 единиц увеличивает время жизни на 5 порядков.

На рис. 7 показано измеренное время жизни изотопов сиборгия Sg (Z = 106) в сравнении с предсказаниями различных теоретических моделей . Обращает на себя внимание уменьшение почти на порядок времени жизни изотопа с N = 164 по сравнению с временем жизни изотопа с N = 162.
Наибольшего приближения к острову стабильности можно достичь в реакции 76 Ge + 208 Pb. Сверхтяжелое почти сферическое ядро может образоваться в реакции слияния с последующим испусканием γ-квантов или одного нейтрона. Согласно оценкам образующееся ядро 284 114 должно распадаться с испусканием α-частиц с периодом полураспада ~ 1 мс. Дополнительную информацию о заполненности оболочки в районе N = 162 можно получить, изучая α-распады ядер 271 108 и 267 106. Для этих ядер предсказываются периоды полураспада 1 мин. и 1 час. Для ядер 263 106, 262 107, 205 108, 271,273 110 ожидается проявление изомерии, причиной которой является заполнение подоболочек с j = 1/2 и j = 13/2 в районе N = 162 для ядер деформированных в основном состоянии.

На рис. 8 показаны экспериментально измеренные функции возбуждения реакции образования элементов Rf (Z = 104) и Hs (Z = 108)для реакций слияния налетающих ионов 50 Ti и 56 Fe с ядром-мишенью 208 Pb.
Образовавшееся компаунд-ядро охлаждается испусканием одного или двух нейтронов. Информация о функциях возбуждения реакций слияния тяжелых ионов особенно важны для получения сверхтяжелых ядер. В реакции слияния тяжелых ионов необходимо точно сбалансировать действие кулоновских сил и сил поверхностного натяжения. Если энергия налетающего иона недостаточно большая, то расстояние минимального сближения будет недостаточно для слияния двойной ядерной системы. Если энергия налетающей частицы будет слишком большой, то образовавшаяся в результате система будет иметь большую энергию возбуждения и с большой вероятностью произойдет развал ее на фрагменты. Эффективно слияние происходит в довольно узком диапазоне энергий сталкивающих частиц.

Реакции слияния с испусканием минимального числа нейтронов (1-2) представляют особый интерес, т.к. в синтезируемых сверхтяжелых ядрах желательно иметь максимально большое отношение N/Z. На рис. 9 показан потенциал слияния для ядер в реакции
64 Ni + 208 Pb 272 110. Простейшие оценки показывают, что вероятность туннельного эффекта для слияния ядер составляет ~ 10 -21 , что существенно ниже наблюдаемой величины сечения. Это можно объяснить следующим образом. На расстоянии 14 Фм между центрами ядер первоначальная кинетическая энергия 236.2 МэВ полностью компенсируется кулоновским потенциалом. На этом расстоянии находятся в контакте только нуклоны, расположенные на поверхности ядра. Энергия этих нуклонов мала. Следовательно существует высокая вероятность того, что нуклоны или пары нуклонов покинут орбитали в одном ядре и переместятся на свободные состояния ядра-партнера. Передача нуклонов от налетающего ядра ядру-мишени особенно привлекательна в случае, когда в качестве мишени используется дважды магический изотоп свинца 208 Pb. В 208 Pb заполнены протонная подоболочка h 11/2 и нейтронные подоболочки h 9/2 и i 13/2 . Вначале передача протонов стимулируется силами притяжения протон-протон, а после заполнения подоболочки h 9/2 - силами притяжения протон-нейтрон. Аналогично нейтроны перемещаются в свободную подоболочку i 11/2 , притягиваясь нейтронами из уже заполненной подоболочки i 13/2 . Из-за энергии спаривания и больших орбитальных моментов передача пары нуклонов более вероятна, чем передача одного нуклона. После передачи двух протонов от 64 Ni 208 Pb кулоновский барьер уменьшается на 14 МэВ, что способствует более тесному контакту взаимодействующих ионов и продолжению процесса передачи нуклонов.
В работах [В.В. Волков. Ядерные реакции глубоконеупругих передач. М. Энергоиздат, 1982; В.В. Волков. Изв. АН СССР серия физич., 1986 т. 50 с. 1879] был детально исследован механизм реакции слияния. Показано, что уже на стадии захвата формируется двойная ядерная система после полной диссипации кинетической энергии налетающей частицы и нуклоны одного из ядер постепенно оболочка за оболочкой передаются другому ядру. То есть оболочечная структура ядер играет существенную роль в образовании компаунд-ядра. На основе этой модели удалось достаточно хорошо описать энергию возбуждения составных ядер и сечение образования 102-112 элементов в реакциях холодного синтеза.
В Лаборатории ядерных реакций им. Г.Н. Флерова (Дубна) синтезирован элемент с Z = 114. Была использована реакция

Идентификация ядра 289 114 проводилась по цепочке α-распадов. Экспериментальная оценка периода полураспада изотопа 289 114 ~30 с. Полученный результат находится в хорошем согласии с ранее выполненными расчетами .
При синтезе 114 элемента в реакции 48 Cu + 244 Pu максимальный выход дает канал с испарением трех нейтронов. При этом энергии возбуждения составного ядра 289 114 была 35 МэВ.
Теоретически предсказываемая последовательность распадов, происходящих с ядром 296 116, образующемся в реакции , приведена на рис.10.



Рис. 10. Схема распада ядра 296 116

Ядро 296 116 охлаждается испусканием четырех нейтронов и превращается в изотоп 292 116, который далее с 5% -ой вероятностью в результате двух последовательных e-захватов превращается в изотоп 292 114. В результате α-распада (T 1/2 = 85 дней) изотоп 292 114 превращается в изотоп 288 112. Образование изотопа 288 112 происходит и по каналу

Конечное ядро 288 112, образующееся в результате обеих цепочек, имеет период полураспада около 1 часа и распадается в результате спонтанного деления. Примерно с 10%-ой вероятностью в результате α-распада изотопа 288 114 может образовываться изотоп 284 112. Приведенные выше периоды и каналы распада получены расчетным путем.
Анализируя различные возможности образования сверхтяжелых элементов в реакциях с тяжелыми ионами нужно учитывать следующие обстоятельства.

  1. Необходимо создать ядро с достаточно большим отношением числа нейтронов к числу протонов. Поэтому в качестве налетающей частицы надо выбирать тяжелые ионы, имеющие большое N/Z.
  2. Необходимо, чтобы образующееся компаунд-ядро имело малую энергию возбуждения и небольшую величину момента количества движения, так как в противном случае будет снижаться эффективная высота барьера деления.
  3. Необходимо, чтобы образующееся ядро имело форму близкую к сферической, так как даже небольшая деформация будет приводить к быстрому делению сверхтяжелого ядра.

Весьма перспективным методом получения сверхтяжелых ядер являются реакции типа 238 U + 238 U, 238 U + 248 Cm, 238 U + 249 Cf, 238 U + 254 Es. На рис. 11 приведены оценочные сечения образования трансурановых элементов при облучении ускоренными ионами 238 U мишеней из 248 Cm, 249 Cf и 254 Es. В этих реакциях уже получены первые результаты по сечениям образования элементов с Z > 100. Для увеличения выходов исследуемых реакций толщины мишеней выбирались таким образом, чтобы продукты реакции оставались в мишени. После облучения из мишени сепарировались отдельные химические элементы. В полученных образцах в течение нескольких месяцев регистрировались продукты α-распада и осколки деления. Данные, полученные с помощью ускоренных ионов урана, ясно указывают на увеличение выхода тяжелых трансурановых элементов по сравнениюю с более легкими бомбардирующими ионами. Этот факт чрезвычайно важен для решения проблемы синтеза сверхтяжелых ядер. Несмотря на трудности работы с соответствующими мишенями прогнозы продвижения к большим Z выглядят довольно оптимистично.

Продвижение в область сверхтяжелых ядер в последние годы оказалось ошеломляюще впечатляющим. Однако, пока все попытки обнаружить остров стабильности не увенчались успехом. Поиск его интенсивно продолжается.

К концу 60-х годов усилиями многих теоретиков - О. Бором и Б. Мотельсоном (Дания), С. Нильсоном (Швеция), В.М. Струтинским и В.В. Пашкевичем (СССР), Х. Майерсом и В. Святецким (США), А. Собичевским и др. (Польша), В. Грайнером и др. (Германия), Р. Никсом и П. Мёллером (США), Ж. Берже (Франция) и многими другими была создана микроскопическая теория атомных ядер. Новая теория привела все вышеуказанные противоречие в стройную систему физических закономерностей.
Как любая теория, она обладала определённой предсказательной силой, в частности, в предсказании свойств очень тяжёлых, ещё неизвестных ядер. Оказалось что стабилизирующий эффект ядерных оболочек будет работать и за пределами обозначенными капельной моделью ядра (т.е. в области Z > 106) образуя т.н. «острова стабильности» вокруг магических чисел Z=108, N=162 и Z=114, N=184. Как видно на рис.2 время жизни сверхтяжёлых ядер расположенных в этих «островах стабильности» может существенно возрастать. Особенно это относится к наиболее тяжёлым, сверхтяжёлым элементам, где эффект замкнутых оболочек Z=114 (возможно 120) и N=184 повышает периоды полураспада до десятков, сотен тысяч и, быть может, миллионов лет, т.е. - на 32-35 порядков больше чем в случае отсутствия эффекта ядерных оболочек. Так возникла интригующая гипотеза о возможном существовании сверхтяжёлых элементов значительно расширяющая границы материального мира. Прямой проверкой теоретических предсказаний явился бы синтез сверхтяжёлых нуклидов и определение их свойств распада. Поэтому нам придется кратко рассмотреть ключевые вопросы, связанные с искусственным синтезом элементов.

2. Реакции синтеза тяжёлых элементов

Многие рукотворные элементы тяжелее урана были синтезированы в реакциях последовательного захвата нейтронов ядрами изотопа урана - 235 U в длительных облучениях на мощных ядерных реакторах. Большие периоды полураспада новых нуклидов позволяли отделять их от других побочных продуктов реакции радиохимическими методами с последующим измерением их свойств радиоактивного распада. Эти пионерские работы проф. Г. Сиборга и его коллег, проведенные в 1940 - 1953 гг. в Радиационной национальной лаборатории (Беркли, США) привели к открытию восьми искусственных элементов с Z = 93 -100, наиболее тяжёлый изотоп 257 Fm (Т 1/2 ~ 100 дней.). Дальнейшее продвижение в область более тяжёлых ядер было практически невозможно из-за исключительно короткого периода полураспада следующего изотопа - 258 Fm (T SF = 0.3 миллисекунды). Попытки обойти это ограничение в импульсных потоках нейтронов большой мощности возникающих при ядерном взрыве не дали желаемых результатов: по-прежнему наиболее тяжёлым ядром, был 257 Fm.

Элементы тяжелее Рт (Z=100) были синтезированы в реакциях с ускоренными тяжёлыми ионами, когда в ядро-мишень вносится комплекс протонов и нейтронов. Но этот тип реакции отличается от предыдущего случая. При захвате нейтрона, не обладающего электрическим зарядом, энергия возбуждения нового ядра составляет всего 6 - 8 МэВ. В отличие от этого, при слиянии ядер мишени даже с лёгкими ионами, такими как гелий (4 Не) или углерод (12 С), тяжёлые ядра будут нагреты до энергии Е х = 20 - 40 МэВ. С дальнейшим увеличением атомного номера ядра-снаряда ему необходимо будет сообщать всё большую энергию для преодоления электрических сил расталкивания положительно заряженных ядер (кулоновского барьера реакции). Это обстоятельство приводит к росту энергии возбуждения (нагреву) компаунд ядра образующегося после слияния двух ядер - снаряда и мишени. Его охлаждение (переход в основное состояние Е х =0) будет происходить посредством испускания нейтронов и гамма-лучей. И здесь возникает первое препятствие.

Нагретое тяжёлое ядро лишь в 1/100 доле случаев сможет испустить нейтрон, в основном оно будет делиться на два осколка т. к. энергия ядра существенно выше высоты его барьера деления. Легко понять, что увеличение энергии возбуждения компаунд ядра губительно для него. Вероятность выживания нагретого ядра резко падает с увеличением температуры (или энергии Е х) из-за увеличения числа испаряемых нейтронов, с которыми сильно конкурирует деление. Для того чтобы охладить ядро, нагретое до энергии около 40 МэВ, необходимо испарить 4 или 5 нейтронов. Каждый раз с испусканием нейтрона будет конкурировать деление, вследствие чего вероятность выживания будет всего (1/100) 4-5 =10 -8 —10 -10 . Ситуация осложняется тем, что с ростом температуры ядра уменьшается стабилизирующий эффект оболочек, следовательно уменьшается высота барьера деления и делимость ядра резко возрастает. Оба эти фактора приводят к исключительно малой вероятности образования сверхтяжёлых нуклидов.

Продвижение в область элементов тяжелее 106 стало возможным после открытия в 1974 г. т.н. реакций «холодного слияния». В этих реакциях в качестве мишенного материала используются "магические" ядра стабильных изотопов - 208 РЬ (Z=82, N=126) или 209 Bi (Z=83, N=126), которые бомбардируются ионами тяжелее аргона (Ю.Ц. Оганесян, А.Г. Дёмин и др.). В процессе слияния высокая энергия связи нуклонов в "магическом" ядре-мишени приводит к поглощению энергии при перестройке двух взаимодействующих ядер
в тяжёлое ядро суммарной массы. Эта разница в энергиях "упаковки" нуклонов во взаимодействующих ядрах и в конечном ядре компенсирует в значительной степени энергию необходимую для преодоления высокого кулоновского барьера реакции. В результате, тяжёлое ядро имеет энергию возбуждения всего 12-20 МэВ. В какой-то степени подобная реакция подобна процессу «обратного деления». Действительно, если деление ядра урана на два осколка происходит с выделением энергии, (она используется в атомных электростанциях), то в обратной реакции, при слиянии осколков, образующееся ядро урана будет почти холодным. Поэтому при синтезе элементов в реакциях холодного слияния тяжёлому ядру достаточно испустить всего один или два нейтрона, чтобы перейти в основное состояние.
Реакции холодного слияния массивных ядер были успешно использованы для синтеза 6 новых элементов, от 107 до 112-го (П. Армбрустер, З. Хофман, Г. Мюнценберг и др.) в Национальном ядерно-физическом центре GSI в Дармштадте (Германия). Недавно К. Морита и др. в Национальном центре RIKEN (Токио) повторили опыты GSI по синтезу 110-112 элементов. Обе группы намерены двигаться дальше, к элементу 113 и 114, используя более тяжёлые снаряды. Однако попытки синтеза всё более тяжёлых элементов в реакциях холодного слияния связаны с большими трудностями. С увеличением атомного заряда ионов вероятность их слияния с ядрами мишени 208 РЬ или 209 Bi сильно уменьшается из-за возрастания кулоновских сил отталкивания пропорциональных, как известно, произведению зарядов ядер. От элемента 104, который может быть получен в реакции 208 РЬ + 50 Тi (Z 1 × Z 2 = 1804) к элементу 112 в реакции 208 РЬ + 70 Zn (Z 1 × Z 2 = 2460), вероятность слияния уменьшается более чем в 10 4 раз.

Рисунок 3 Карта тяжёлых нуклидов. Периоды полураспада ядер представлены различным цветом (правая шкала). Чёрные квадраты - изотопы стабильных элементов обнаруженных в земной коре (Т 1/2 10 9 лет). Темно-синий цвет - «море нестабильности», где ядра живут менее 10 -6 секунды. Жёлтые линии соответствуют замкнутым оболочкам с указанием магических чисел протонов и нейтронов. «Острова стабильности» следующие за «полуостровом» тория, урана и трансурановых элементов -предсказания микроскопической теории ядра. Два ядра с Z = 112 и 116, полученные в различных ядерных реакциях и их последовательный распад, показывают насколько близко можно подойти к «островам стабильности» при искусственном синтезе сверхтяжёлых элементов.

Есть и другое ограничение. Компаунд ядра, полученные в реакциях холодного слияния, имеют относительно малое число нейтронов. В рассматриваемом выше случае образования 112-го элемента конечное ядро с Z = 112 имеет только 165 нейтронов, в то время как подъём стабильности ожидается для числа нейтронов N > 170 (см рис.3 ).

Ядра с большим избытком нейтронов могут быть в принципе получены, если в качестве мишеней использовать искусственные элементы: плутоний (Z=94), америций (Z=95) или кюрий (Z=96) нарабатываемые в ядерных реакторах, а в качестве снаряда - редкий изотоп кальция - 48 Са. (см. далее).

Ядро атома 48 Са содержит 20 протонов и 28 нейтронов - оба значения соответствуют замкнутым оболочкам. В реакциях слияния с ядрами 48 Са будет также работать их "магическая" структура (эту роль в реакциях холодного слияния играли магические ядра мишени - 208 РЬ), в результате чего энергия возбуждения сверхтяжёлых ядер будет около 30 - 35 МэВ. Их переход в основное состояние будет сопровождаться эмиссией трёх нейтронов и гамма лучей. Можно было ожидать что при этой энергии возбуждения эффект ядерных оболочек ещё присутствует в нагретых сверхтяжёлых ядрах, это повысит их выживаемость и позволит нам их синтезировать в наших экспериментах. Отметим также, что асимметрия масс взаимодействующих ядер (Z 1 × Z 2 2000) уменьшает их кулоновское отталкивание и тем самым увеличивает вероятность слияния.

Несмотря на эти, казалось бы, очевидные преимущества, все предыдущие попытки синтеза сверхтяжёлых элементов в реакциях с ионами 48 Са, предпринятые в различных лабораториях в 1977 - 1985 гг. оказались не результативными. Однако развитие экспериментальной техники в последние годы и, прежде всего, получение в нашей лаборатории интенсивных пучков ионов 48 Са на ускорителях нового поколения, позволили увеличить чувствительность эксперимента почти в 1000 раз. Эти достижения были использованы в новой попытке синтеза сверхтяжёлых элементов.

3 Ожидаемые свойства

Что мы ожидаем увидеть в эксперименте в случае успешного синтеза? Если теоретическая гипотеза справедлива, то сверхтяжёлые ядра будут стабильны относительно спонтанного деления. Тогда они будут испытывать другой тип распада: альфа - распад (эмиссия ядра гелия состоящего из 2 протонов и 2 нейтронов). В результате этого процесса образуется дочернее ядро на 2 протона и 2 нейтрона легче материнского. Если у дочернего ядра вероятность спонтанного деления также мала, то после второго альфа - распада внучатое ядро теперь будет уже на 4 протона и 4 нейтрона легче начального ядра. Альфа - распады будут продолжаться до тех пор, пока не наступит спонтанное деление (рис.4 ).

Т. о. мы ожидаем увидеть не один распад, а «радиоактивное семейство», цепочку последовательных альфа - распадов, достаточно длительных по времени (в ядерном масштабе), которые конкурируют но, в конечном итоге, прерываются спонтанным делением. В принципе такой сценарий распада уже свидетельствует об образовании сверхтяжёлого ядра.

Чтобы увидеть ожидаемый подъём стабильности в полной мере необходимо подойти как можно ближе к замкнутым оболочкам Z = 114 и N = 184. Синтезировать в ядерных реакциях столь нейтронно-избыточные ядра чрезвычайно трудно т. к. при слиянии ядер стабильных элементов, в которых уже имеется определённое соотношение протонов и нейтронов, невозможно добраться до дважды магического ядра 298 114. Поэтому нам необходимо попытаться использовать в реакции ядра, которые изначально содержат максимально возможное число нейтронов. Этим, в значительной степени, был также обусловлен выбор в качестве снаряда ускоренных ионов 48 Са. Кальция, как известно, в природе много. Он состоит на 97% из изотопа 40 Са, ядро которого содержит 20 протонов и 20 нейтронов. Но в нём содержится в количестве 0.187% тяжёлый изотоп - 48 Са (20 протонов и 28 нейтронов) который имеет 8 избыточных нейтронов. Технология его получения очень трудоёмкая и дорогостоящая; стоимость одного грамма обогащённого 48 Са -около $200,000. Поэтому пришлось изменить существенным образом конструкцию и режимы работы нашего ускорителя с тем, чтобы найти компромиссное решение - получить максимальную интенсивность пучка ионов при минимальном расходе этого экзотического материала.

Рисунок 4
Теоретические предсказания о типах распада (показаны разным цветом на рисунке) и периодах полураспада изотопов сверхтяжёлых элементов с различным числом протонов и нейтронов. В качестве примера показано, что для изотопа 116-го элемента с массой 293, образующегося в реакции слияния ядер 248 Ст и 48 Са, ожидаются три последовательных альфа - распада которые завершаются спонтанным делением правнучатого ядра 110-го элемента с массой 281. Как видно на Рис.8 именно такой сценарий распада, в виде цепочки α - α - α
- SF, наблюдён для этого ядра в эксперименте. Распад более лёгкого ядра - изотопа 110-го элемента с массой 271 полученный в реакции «холодного слияния» ядер 208 Pb + 64 Ni .Его период полураспада в 10 4 раз меньше чем у изотопа 281 110.

Сегодня мы достигли рекордной интенсивности пучка - 8× 10 12 /с, при весьма низком расходе изотопа 48 Са - около 0.5 миллиграмма/час. В качестве мишенного материала мы используем долгоживущие обогащенные изотопы искусственных элементов: Pu, Am, Cm и Cf (Z = 94-96 и 98) также с максимальным содержанием нейтронов. Они производятся в мощных ядерных реакторах (в г. Ок-Ридже, США и в г. Димитровграде, Россия) и затем обогащаются на специальных установках, масс-сепараторах во Всероссийском научно-исследовательском институте экспериментальной физики (г. Саров). Реакции слияния ядер 48 Са с ядрами этих изотопов были выбраны для синтеза элементов с Z = 114 - 118 .

Здесь я хотел бы сделать некоторое отступление.

Далеко не каждая лаборатория, даже ведущих ядерных центров мира, обладает столь уникальными материалами, и в таком количестве, которые мы используем в нашей работе. Но технологии их получения были разработаны в нашей стране и они нарабатываются нашей промышленностью. Министр атомной энергии России предложил нам разработать программу работ по синтезу новых элементов на 5 лет и выделил специальный грант на проведение этих исследований. С другой стороны, работая в Объединённом институте ядерных исследований, мы широко сотрудничаем (и конкурируем) с ведущими лабораториями мира. В исследованиях по синтезу сверхтяжёлых элементов мы плотно сотрудничаем на протяжении многих лет с Ливерморской национальной лабораторией (США). Это сотрудничество не только объединяет наши усилия, но и создаёт условия, при которых экспериментальные результаты обрабатываются и анализируются двумя группами независимым образом на всех этапах эксперимента.
За 5 лет работы, в течение длительных облучений, была набрана доза около 2× 10 20 ионов (около 16 миллиграмм 48 Са, ускоренного до ~ 1/10 скорости света, прошло через слои мишеней). В этих экспериментах наблюдалось образование изотопов 112÷118 элементов (за исключением 117-го элемента) и были получены первые результаты о свойствах распада новых сверхтяжёлых нуклидов. Представление всех результатов заняло бы слишком много места и, чтобы не утомлять читателя, мы ограничимся описанием лишь последнего эксперимента по синтезу 113 и 115 элементов - все остальные реакции были исследованы подобным образом. Но прежде чем приступить к этой задаче, целесообразно было бы кратко изложить постановку эксперимента и объяснить основные принципы работы нашей установки.


4. Постановка эксперимента

Составное ядро, образующееся при слиянии ядер мишени и частицы, после испарения нейтронов, будет двигаться по направлению пучка ионов. Слой мишени выбирается достаточно тонким, для того чтобы тяжёлый атом отдачи мог вылететь из него и продолжить свое движение к детектору, удаленному от мишени на расстояние около 4 м. Между мишенью и детектором расположен газонаполненный сепаратор, предназначенный для подавления частиц пучка и побочных продуктов реакции.
Принцип работы сепаратора (рис.5 ) основан на том, что атомы в газовой среде - в нашем случае в водороде, при давлении всего 10 -3 атм. - будут иметь различный ионный заряд в зависимости от их скорости. Это позволяет разделить их в магнитном поле «на лету» за время 10 -6 с. и направить в детектор. Атомы, прошедшие сепаратор имплантируются в чувствительный слой полупроводникового детектора, вырабатывая сигналы о времени прихода атома отдачи, его энергии и места имплантации (т.е. координат: х и у на рабочей поверхности детектора). Для этих целей детектор общей площадью около 50 см 2 выполнен в виде 12 "стрипов"- полос, напоминающих клавиша пианино - каждая из которых обладает продольной чувствительностью. Если ядро имплантированного атома будет испытывать альфа - распад, то вылетевшая альфа -частица (с ожидаемой энергией около 10 МэВ) зарегистрируется детектором с указанием всех ранее перечисленных параметров: времени, энергии и координат. Если после первого распада последует второй, то подобная информация будет получена и для второй альфа - частицы и т.д. пока не произойдёт спонтанное деление. Последний распад будет зарегистрирован в виде двух совпадающих по времени сигналов с большой амплитудой (Е 1 +Е 2 ~ 200 MeV). Для того чтобы повысить эффективность регистрации альфа - частиц и парных осколков деления фронтальный детектор окружён боковыми детекторами образуя «коробку» с открытой со стороны сепаратора стенкой. Перед детекторной сборкой расположены два тонких времяпролетных детектора измеряющие скорость ядер отдачи (т.н. TOF-детекторы, аббревиатура английских слов - time of flight ). Поэтому первый сигнал, возникающий от ядра отдачи, приходит с признаком TOF. Последующие сигналы от распада ядер не имеют этого признака.
Конечно, распады могут быть различной длительности, характеризуемые эмиссией одной или нескольких альфа - частиц с различными энергиями. Но если они принадлежат одному и тому же ядру и образуют радиоактивное семейство (материнское ядро - дочернее - внучатое и т.д.), то координаты всех сигналов - от ядра отдачи, альфа - частиц и осколков деления - должны совпадать по координате с точностью позиционного разрешения детектора. Наши детекторы, изготовленные фирмой Canberra Electronics, измеряют энергию альфа - частиц с точностью ~ 0.5% и имеют для каждого стрипа позиционное разрешение около 0.8 мм.

Рисунок 5
Схематический вид установки для сепарации ядер отдачи в экспериментах по синтезу тяжёлых элементов

Мысленно всю поверхность детектора можно представить в виде около 500 ячеек (пикселей), в которых детектируются распады. Вероятность того, что два сигнала попадут случайным образом в одно и тоже место составляет 1/500, три сигнала - 1/250000 и т.д. Это позволяет выбрать, с большой надежностью, из громадного количества радиоактивных продуктов очень редкие события генетически связанных последовательных распадов сверхтяжёлых ядер, даже если они образуются в исключительно малом количестве (~1 атом/месяц).

5. Экспериментальные результаты


(физический опыт)

Для того чтобы показать установку «в действии» опишем в качестве примера более подробно эксперименты по синтезу 115 элемента образующегося в реакции слияния ядер 243 Am(Z=95) + 48 Са(Z=20) → 291 115.
Синтез Z-нечётного ядра привлекателен тем, что наличие нечётного протона или нейтрона существенно понижает вероятность спонтанного деления и число последовательных альфа -переходов будет больше (длинные цепочки), чем в случае распада чётно-чётных ядер. Для преодоления кулоновского барьера ионы 48 Са должны иметь энергию Е > 236 MeV. С другой стороны, выполняя это условие, если ограничить энергию пучка величиной Е=248 MeV, то тепловая энергия компаунд ядра 291 115 будет около 39 MeV; его охлаждение произойдет посредством эмиссии 3-х нейтронов и гамма-лучей. Тогда продуктом реакции будет изотоп 115 элемента с числом нейтронов N=173. Вылетев из мишенного слоя, атом нового элемента, пройдёт через сепаратор настроенный на его пропускание и попадёт в детектор. Далее события развиваются так, как показано на рис.6 . Через 80 микросекунд после остановки ядра отдачи во фронтальном детекторе, в систему сбора данных поступают сигналы о его времени прихода, энергии и координатах (номер стрипа и позиция в нём). Отметим, что эта информация имеет признак "TOF" (пришел из сепаратора). Если в течение 10 секунд из того же места на поверхности детектора последует второй сигнал с энергией более 9.8 MeV, без признака "TOF" (т.е. от распада имплантированного атома) пучок отключается и весь дальнейший распад регистрируется в условиях практически полного отсутствия фона. Как видно на верхнем графике рис 6 , за первыми двумя сигналами - от ядра отдачи и первой альфа-частицы - за время около 20 с. после отключения пучка, последовало ещё 4 других сигнала, позиции которых, с точностью ± 0.5 мм, совпадает с предыдущими сигналами. В течение последующих 2.5 часов детектор молчал. Спонтанное деление в том же стрипе и в той же позиции было зарегистрировано лишь на следующий день, спустя 28.7 часов в виде двух сигналов от осколков деления с суммарной энергией 206 MeV.
Такие цепочки были зарегистрированы три раза. Они все имеют одинаковый вид (6 поколений ядер в радиоактивном семействе) и согласуются друг с другом как по энергии альфа - частиц так и по времени их появления, с учётом экспоненциального закона распада ядер. Если наблюдаемый эффект относится, как ожидалось, к распаду изотопа 115-го элемента с массой 288, образующегося после испарения компаунд ядром 3-х нейтронов, то при увеличении энергии пучка ионов 48 Са всего на 5 MeV он должен уменьшится в 5-6 раз. Действительно, при Е = 253 МэВ эффект отсутствовал. Но здесь была наблюдена другая, более короткая, цепочка распадов, состоящая из четырёх альфа - частиц (мы полагаем, что их тоже было 5, но последняя альфа частица вылетела в открытое окно) продолжительностью всего 0.4 с. Новая цепочка распадов закончилась через — 1.5 часа спонтанным делением. Очевидно, что это распад другого ядра, с большой вероятностью соседнего изотопа 115-го элемента с массой 287, образующегося в реакции слияния с испусканием 4-х нейтронов. Цепочка последовательных распадов нечётно-нечётного изотопа Z=115, N=173 представлена на нижнем графике рис.6 , где приведены в виде контурной карты расчётные периоды полураспада сверхтяжёлых нуклидов с различным числом протонов и нейтронов. Здесь показан также распад другого, более лёгкого нечётно-нечётного изотопа 111-го элемента с числом нейтронов N=161 синтезированного в реакции 209 Bi+ 64 Ni в немецкой Лаборатории - GSI (г. Дармштадт) и затем и в японской - RIKEN(Токио).

Рисунок 6
Эксперимент по синтезу 115 элемента в реакции 48 Са + 243 Ат.
На верхнем рисунке приведены времена появления сигналов после имплантации в детектор ядра отдачи (R). Красным цветом отмечены сигналы от регистрации альфа - частиц, зелёным - от спонтанного деления. В качестве примера, для одного из трёх событий приведены позиционные координаты (в мм) всех 7 сигналов от цепочки распада R →
α 1 → α 2 → α 3 → α 4 →α 5 → SF зарегистрированной в стрипе № 4. На нижнем рисунке показаны цепочки распадов ядер с Z=111, N=161 и Z=115, N=173. Контурные линии, очерчивающие области ядер с различными периодами полураспада (разная степень затемнения) - предсказания микроскопической теории.

Прежде всего, следует отметить, что периоды полураспада ядер в обоих случаях хорошо согласуются с теоретическими предсказаниями. Несмотря на то, что изотоп 288 115 удалён от нейтронной оболочки N=184 на 11 нейтронов, изотопы 115 и 113 элементов обладают относительно большим временем жизни (Т 1/2 ~ 0.1 с и 0.5 с соответственно).
После пяти альфа - распадов образуется изотоп 105 элемента - дубния (Db) с N=163, стабильность которого определяется уже другой замкнутой оболочкой N=162. Силу действия этой оболочки демонстрирует огромная разница в периодах полураспада двух изотопов Db отличающихся друг от друга всего на 8 нейтронов. Отметим, ещё раз, что в отсутствии структуры (ядерных оболочек) все изотопы 105÷115 элементов должны были бы испытывать спонтанное деление за время ~ 10 -19 с.


(химический опыт)

В описанном выше примере свойства долгоживущего изотопа 268 Db замыкающего цепочку распада 115-го элемента представляют самостоятельный интерес.
Согласно Периодическому закону 105-ый элемент находится в V ряду. Он является, как видно на рис.7 , химическим гомологом ниобия (Nb) и тантала (Та) и отличается по химическим свойствам от всех, более лёгких элементов - актиноидов (Z = 90÷103) представляющих отдельную группу в Таблице Д.И. Менделеева. Благодаря большому периоду полураспада, данный изотоп 105-ого элемента может быть отделен от всех продуктов реакции радиохимическим методом с последующим измерением его распада - спонтанного деления. Этот эксперимент даёт независимую идентификацию атомного номера конечного ядра (Z = 105) и всех нуклидов образующихся в последовательных альфа - распадах 115-го элемента.
В химическом эксперименте нет необходимости в использовании сепаратора ядер отдачи. Разделение продуктов реакции по их атомным номерам осуществляется методами, основанными на различии их химических свойств. Поэтому здесь использовалась более упрощенная методика. Продукты реакции, вылетающие из мишени, вбивались в медный сборник, расположенный на пути их движения, на глубину 3-4 микрон. После 20-30 часового облучения сборник растворялся. Из раствора выделялась фракция трансактиноидов - элементов Z > 104 - а из этой фракции, затем элементы 5-ого ряда - Db в сопровождении своих химических гомологов Nb и Та. Последние добавлялись в качестве "отметчиков" в раствор перед химическим разделением. Капелька раствора, содержащая Db, наносилась на тонкую подложку, высушивалась и помещалась затем между двумя полупроводниковыми детекторами, регистрирующими оба осколка спонтанного деления. Вся сборка помещалась в свою очередь в нейтронный детектор, определяющий число нейтронов испущенных осколками при делении ядер Db.
В июне 2004 г. было проведено 12 идентичных опытов (С. Н. Дмитриев и др.), в которых было зарегистрировано 15 событий спонтанного деления Db. Осколки спонтанного деления Db имеют кинетическую энергию около 235 МэВ, на каждый акт деления испускается в среднем около 4 нейтронов. Такие характеристики присущи спонтанному делению достаточно тяжёлого ядра. Напомним, что для 238 U эти величины составляют соответственно около 170 МэВ и 2 нейтрона.
Химический опыт подтверждает результаты физического эксперимента: образующиеся в реакции 243 Am + 48 Са ядра 115-го элемента в результате последовательных пяти альфа распадов: Z = 115 → 113 → 111 → 109 → 107 → 105 действительно приводят к образованию долгоживущего спонтанно-делящегося ядра с атомным номером 105. В этих экспериментах, как дочерний продукт альфа - распада 115-го элемента, был синтезирован также ещё один, ранее неизвестный элемент с атомным номером 113.

Рисунок 7
Физический и химический опыты по изучению радиоактивных свойств 115-го элемента.
В реакции 48 Са + 243 Ат, с помощью физической установки было показано, что пять последовательных
альфа - распадов изотопа 288 115 приводят к долгоживущему изотопу 105-го элемента - 268 Db, который
делится спонтанно на два осколка. В химическом эксперименте определено, что спонтанное деление испытывает ядро с атомным номером 105.

6. Общая картина и будущее

Полученные в реакции 243 Am+ 48 Са результаты не являются частным случаем. При синтезе Z-чётных нуклидов - изотопов 112, 114 и 116 элементов - мы наблюдали также длинные цепочки распадов, оканчивающиеся спонтанным делением ядер с Z =104-110, время жизни которых составляло от секунд до часов в зависимости от атомного номера и нейтронного состава ядра. К настоящему времени получены данные о свойствах распада 29 новых ядер с Z =104-118; они представлены на карте нуклидов (рис.8 ). Свойства тяжелейших ядер расположенных в области трансактиноидов, их тип распада, энергии и времена распадов находятся в хорошем согласии с предсказаниями современной теории. Гипотеза о существовании островов стабильности сверхтяжёлых ядер, значительно расширяющих мир элементов, кажется, впервые нашла экспериментальное подтверждение.

Перспективы

Теперь задача состоит в более детальном изучении ядерной и атомной структуры новых элементов, что весьма проблематично, прежде всего, из-за малого выхода искомых продуктов реакции. Для того чтобы увеличить число атомов сверхтяжёлых элементов необходимо увеличить интенсивность пучка ионов 48 Са и повысить эффективность физических методик. Модернизация ускорителя тяжёлых ионов, намеченная на ближайшие годы, с использованием всех последних достижений ускорительной техники, позволит нам увеличить интенсивность пучка ионов примерно в 5 раз. Решение второй части требует кардинального изменения постановки опытов; оно может быть найдено в создании новой экспериментальной методики, исходя из свойств сверхтяжёлых элементов.

Рисунок 8
Карта нуклидов тяжелых и сверхтяжёлых элементов.
Для ядер внутри овалов, соответствующих различным реакциям синтеза (показаны на рисунке), приведены периоды полураспада и энергии испускаемых альфа-частиц (жёлтые квадраты). Данные представлены на контурной карте разделяющей области по вкладу эффекта ядерных оболочек в энергию связи ядра. В отсутствие ядерной структуры всё поле было бы белого цвета. По мере потемнения эффект оболочек растёт. Две соседние зоны отличаются на величину всего 1 МэВ. Этого, однако, достаточно для значительного увеличения стабильности ядер относительно спонтанного деления, в результате чего нуклиды расположенные вблизи «магических» чисел протонов и нейтронов испытывают преимущественно альфа - распад. С другой стороны, в изотопах 110-го и 112-го элементов увеличение числа нейтронов на 8 атомных единиц приводит к возрастанию периодов альфа - распада ядер более чем в 10 5 раз.

Принцип работы действующей установки - кинематического сепаратора ядер отдачи (рис.5 ) основан на отличии кинематических характеристик различного типа реакций. Интересующие нас продукты реакции слияния ядер мишени и 48 Са вылетают из мишени в переднем направлении, в узком угловом конусе ± 3 0 с кинетической энергией около 40 МэВ. Ограничивая траектории движения ядер отдачи с учётом этих параметров, мы практически полностью отстраиваемся от пучка ионов, подавляем фон побочных продуктов реакции в 10 4 ÷10 6 раз, и с эффективностью примерно 40% доставляем атомы новых элементов к детектору за время 1 микросекунду. Иными словами, сепарация продуктов реакции происходит «налету».

Рисунок 8 Установка MASHA
На верхнем рисунке приведена схема сепаратора и принцип его действия. Ядра отдачи, вылетающие из мишенного слоя, останавливаются в графитовом сборнике на глубине несколько микрометром. Вследствие высокой температуры сборника они диффундируют в камеру ионного источника, вытягиваются из плазмы, ускоряются электрическим полем и анализируются по массе магнитными полями по ходу движения к детектору. В данной конструкции масса атома может быть определена с точность 1/3000. На нижнем рисунке показан общий вид установки.

Но для того чтобы получить высокую селективность установки важно сохранить, «не размазать» кинематические параметры - углы вылета и энергии ядер отдачи. Из-за этого необходимо использовать мишенные слои толщиной не более 0.3 микрометра - примерно втрое меньшей, чем нужно для получения эффективного выхода сверхтяжёлого ядра с данной массой или в 5÷6 раз меньшей, если речь идёт о синтезе двух соседних по массе изотопов данного элемента. Кроме того, чтобы получить данные о массовых числах изотопов сверхтяжёлогоэлемента, необходимо проводить длительную и трудоёмкую серию опытов - повторять измерения при различных энергиях пучка ионов 48 Са.
Вместе с тем, как следует из наших опытов, синтезированные атомы сверхтяжёлых элементов имеют периоды полураспада, значительно превышающие быстродействие кинематического сепаратора. Поэтому, во многих случаях, нет необходимости в сепарации продуктов реакции за столь короткое время. Тогда можно изменить принцип действия установки и провести разделение продуктов реакции в несколько этапов.
Схема новой установки представлена на рис.9 . После имплантации ядер отдачи в нагретый до температуры 2000 0 С сборник атомы диффундируют в плазму ионного источника, ионизуются в плазме до заряда q = 1 + , вытягиваются из источника электрическим полем, сепарируются по массе в магнитных полях специального профиля и, наконец, регистрируются (по типу распада) детекторами, расположенными в фокальной плоскости. Вся процедура может занимать, по оценкам, время от десятых долей секунды до нескольких секунд в зависимости от температурных режимов и физико-химических свойств сепарируемых атомов. Уступая в быстродействии кинематическому сепаратору, новая установка - MASHA (аббревиатура от полного названия Маss Analyzer of Super Heavy Atoms ) - повысит эффективность работы примерно в 10 раз и даст, наряду со свойствами распада, прямое измерение массы сверхтяжёлых ядер.
Благодаря гранту, выделенному губернатором Московской области Б.В. Громовым для создания этой установки, она была спроектирована и изготовлена в короткий срок - за 2 года, прошла испытания и готова к работе. После реконструкции ускорителя, с установкой МАSНА. мы существенно расширим наши исследования свойств новых нуклидов и попытаемся пройти дальше, в область более тяжёлых элементов.


(поиск сверхтяжёлых элементов в природе)

Другая сторона проблемы сверхтяжёлых элементов связана с получением более долгоживущих нуклидов. В описанных выше экспериментах мы подошли лишь к краю «острова», обнаружили крутой подъём вверх, но далеки ещё от его вершины, где ядра могут жить тысячи и, быть может, даже миллионы лет. Нам не хватает нейтронов в синтезируемых ядрах, для того чтобы приблизится к оболочке N=184. Сегодня это недостижимо - нет таких реакций, которые позволили бы получать столь нейтронно-избыточные нуклиды. Возможно, в отдалённом будущем, физики смогут использовать интенсивные пучки радиоактивных ионов, с числом нейтронов большим, чем у ядер 48 Са. Такие проекты сейчас широко обсуждаются, пока не касаясь затрат необходимых для создания подобных ускорительных гигантов.

Однако можно попытаться подойти к этой задаче с другой стороны.

Если предположить, что наиболее долгоживущие сверхтяжёлые ядра имеет период полураспада 10 5 ÷ 10 6 лет (не сильно расходится с предсказаниями теории, которая свои оценки делает также с определённой точностью), то не исключено, что они могут быть обнаружены в космических лучах - свидетелях образования элементов на других, более молодых планетах Вселенной. Если сделать ещё более сильное предположение о том, что период полураспада «долгожителей» может составлять десятки миллионов лет или более, то они могли бы присутствовать в Земле, сохранившись в очень малых количествах от момента образования элементов в Солнечной системе до наших дней.
Среди возможных кандидатов мы отдаём предпочтение изотопам 108-го элемента (Нs)ядра которых содержат около 180 нейтронов. Химические опыты, проведенные с короткоживущим изотопом 269 Нs (Т 1/2 ~ 9 с) показали, что 108 элемент, как и ожидалось, согласно Периодическому закону, является химическим гомологом 76-го элемента - осмия (Оs).

Рисунок 10
Установка для регистрации вспышки нейтронов от спонтанного деления ядер при распаде 108 элемента. (Подземная лаборатория в г. Модан, Франция)

Тогда образец металлического осмия, может содержать в очень малых количествах 108 элемент Ека(Оs). Присутствие Ека(Оs) в осмии можно определить по его радиоактивному распаду. Возможно, сверхтяжёлый долгожитель будет испытывать спонтанное деление, либо спонтанное деление наступит после предшествующих альфа или бета - распадов (вид радиоактивного превращения, при котором один из нейтронов ядра превращается в протон) более легкого и более короткоживущего дочернего или внучатого ядра. Поэтому, на первом этапе, можно поставить эксперимент по регистрации редких событий спонтанного деления осмиевого образца. Такой эксперимент подготавливается. Измерения начнутся в конце этого года, и будут продолжаться 1-1.5 лет. Распад сверхтяжёлого ядра будет регистрироваться по нейтронной вспышке сопровождающей спонтанное деление. Для того чтобы защитить установку от фона нейтронов, возникающего под действием космических лучей, измерения будут проводиться в подземной лаборатории расположенной под Альпами в середине тоннеля соединяющего Францию с Италией на глубине соответствующей 4000-метровому слою водного эквивалента.
Если в течение года измерений будет наблюдено хотя бы одно событие спонтанного деления сверхтяжёлого ядра, то это будет соответствовать концентрации 108 элемента в Оs-образце около 5× 10 -15 г/гр., в предположении, что его период полураспада равен 10 9 лет. Столь малая величина составляет всего 10 -16 часть от концентрации урана в земной коре.
Несмотря на сверхвысокую чувствительность эксперимента, шансы обнаружить реликтовые, сверхтяжёлые нуклиды малы. Но любой научный поиск всегда имеет малый шанс... Отсутствия эффекта даст верхнюю границу периода полураспада долгожителя на уровне Т 1/2 3× 10 7 лет. Не столь впечатлительно, но важно для понимания свойств ядер в новой области стабильности сверхтяжёлых элементов.

You can comment here or .

ЧИКАГО, 17 февраля. Впервые удалось измерить массу элемента тяжелее урана – новый метод открывает путь к давно предсказанному «острову стабильности» устойчивых сверхтяжелых элементов, лежащему за пределами привычной Таблицы Менделеева.

Ядро урана включает 92 протона, это – самый тяжелый из известных нам элементов, встречающихся в природе. В искусственных условиях, конечно, синтезированы и более тяжелые, вплоть до 118-ти протонов. Все эти «тяжеловесы» крайне короткоживущи, они распадаются за считанные миллисекунды.

Но еще в середине ХХ века была теоретически предсказана возможность существования сверхтяжелых элементов, содержащих определенное соотношение протонов и нейтронов и имеющих срок жизни куда более долгий – десятилетия, а то и больше. С тех пор путь к этому «острову стабильности» стал одним из важнейших направлений ядерной физики. И вовсе не из чисто академического интереса. Сверхтяжелые стабильные элементы могли бы послужить отличным топливом для ядерных двигателей будущих космических миссий. Они должны, по расчетам, проявлять также необычные и полезные химические и физические свойства.

Однако до сих пор никто в точности не знает, где же мы должны наткнуться на этот остров. Одни расчеты показывают, что где-то в области с центром в 114 протонов на ядро, другие – между 120-ю и 126-ю протонами. Вычисления затрудняются тем, что ученые не имеют точного представления о том, как действуют сильные и слабые силы в «перенаселенных» ядрах таких элементов, удерживая их протоны и нейтроны вместе. Краткость существования полученных в лаборатории сверхтяжелых элементов не позволяет собрать достаточно экспериментальных данных.

Новый прорыв в этой области обещает недавняя работа команды немецких ученых во главе с Майклом Блоком, которым удалось найти способ прямого измерения массы частиц тяжелее урана. А поскольку масса и энергия связаны знаменитой эйнштейновской формулой E = mc2, определение массы атома позволяет (учтя дополнительные факторы) вычислить и силы, с которыми частицы в его ядре связаны друг с другом.

Для измерения массы атома ученые воспользовались устройством, которое называется ловушкой Пеннинга, где, упрощенно говоря, ионы удерживаются электромагнитным полем. Объектом измерений послужил нобелий, ядро которого включает 102 протона – на 10 больше, чем у урана. Как и прочие «искусственные» элементы, он получается столкновением несколько более легких элементов и является крайне короткоживущим (максимум 58 минут). Главной задачей, которую удалось решить немецким физикам, было найти способ замедлить атомы перед тем, как они попадут в ловушку, для чего ученые решили пропускать их предварительно через камеру, заполненную гелием.

Теперь, обладая методом, позволяющим «взвешивать» сверхтяжелые короткоживущие атомы, экспериментаторы могут точнее установить их параметры. А теоретики на базе этих данных – выбрать между конкурирующими моделями, предсказывающими положение «острова стабильности».

Метод позволяет двинуться существенно дальше по Периодической таблице, хотя на практике воспользоваться им для наиболее тяжелых из полученных элементов может быть не очень просто. Хотя бы потому, что синтез подобных великанов – уже сам по себе крайне непростой процесс. Если тот же нобелий можно с помощью подготовленного эксперимента получать с частотой, в среднем, 1 атом в секунду, то с более тяжелыми элементами, ядра которых содержат более 104 протонов, все гораздо дольше. Получение 1 атома может занять, к примеру, неделю.

Но если все пойдет хорошо, рано или поздно этот метод позволит заметить и обитателей «острова стабильности». Поскольку такие сверхтяжелые элементы обычно обнаруживаются по продуктам распада, а стабильные имеют слишком долгий период жизни, традиционные методы работы с атомами-тяжеловесами для этого не годятся

28 ноября 2016 года Международный союз теоретической и прикладной химии (ИЮПАК) присвоил названия четырем сверхтяжелым элементам: нихонию (113 элемент периодической системы), московию (115 элемент), теннесину (117 элемент) и оганесону (118 элемент). Московий, теннесин и оганесон впервые были получены в Российской Федерации в коллаборации с американскими физиками. В годовщину этой даты N + 1 совместно с Издательством Яндекса предлагает вам представить себя алхимиком и попробовать синтезировать один (или несколько, как повезет) сверхтяжелых элементов на ускорителе элементарных частиц.

Сверхтяжелые химические элементы с атомным номером больше 100 удается получить только в реакциях слияния в ускорителях заряженных частиц. В них тяжелое ядро-мишень обстреливают более легкими ядрами-снарядами. Ядра новых элементов возникают в случае точного попадания и слияния ядер снаряда и мишени. У вас есть возможность почувствовать себя алхимиком-любителем и создать новый элемент. В вашем распоряжении есть ядра-снаряды и ядра-мишени. Выберите пару и нажмите кнопку «Включить ускоритель». Если выберете правильную пару, то получите сверхтяжелый элемент, увидите продукты его распада и узнаете, кем и когда он был синтезирован в реальности.


А еще мы совместно с Издательством Яндекса приготовили ответы на распространенные в интернете вопросы про сверхтяжелые элементы. Кликните на вопрос, чтобы увидеть ответ.


Можно ли предсказать, сколько сверхтяжелых элементов еще можно будет открыть? Есть ли какое-то максимальное количество протонов, которое может быть в ядре и которое бы ограничивало массу элемента?

Все подобные предсказания основаны на современных моделях устойчивости атомных ядер. Исходя из самых наивных соображений кажется, что устойчивым может быть любое ядро, в котором кулоновское отталкивание между положительно заряженными протонами компенсируется силой связи между ними за счет сильного взаимодействия. Для этого, в любом случае, в ядре должно быть определенное количество незаряженных нейтронов, однако соотношение между количеством нейтронов и протонов - недостаточное условие для устойчивости атомных ядер. Здесь вступает в игру квантовая природа нуклонов: они обладают полуцелым спином и, как и электроны, стремятся собираться парами и формировать заполненные энергетические уровни.

Эти эффекты приводят к различию в устойчивости протонно-нейтронных систем относительно нескольких путей распада - спонтанного деления (которое происходит в результате квантово-механических эффектов и без внешнего возбуждения приводит к разделению на более легкие ядра и нейтроны), также α- и β-распада с испусканием α-частицы или электрона (или позитрона) соответственно. По отношению к каждому из каналов распада у каждого ядра есть свое время жизни. Так, при увеличении атомного номера элемента резко увеличивается вероятность спонтанного деления, что накладывает значительные ограничения на существование стабильных ядер сверхтяжелых элементов - все они должны быть неустойчивыми с довольно коротким периодом полураспада. Поэтому для всех элементов тяжелее свинца стабильных изотопов нет, все они радиоактивные.

Тем не менее, теория предсказывает, что даже среди сверхтяжелых элементов могут быть изотопы с относительно большим временем жизни. Они должны существовать для систем с подходящим соотношением протонов и нейтронов и полностью заполненными протонными и нейтронными уровнями. Тем не менее, синтезировать такие элементы пока не удалось, и если до ближайшего «острова стабильности» (который предсказывается для ядра флеровия со 184 нейтронами) добраться в ближайшем будущем кажется возможным, то отыскать среди абсолютно неустойчивых систем более тяжелые ядра со следующей заполненной оболочкой будет значительно тяжелее, если не невозможно.

Стоит, однако, отметить, что все эти предсказания основаны на моделях, которые хорошо работают для сравнительно небольших ядер, однако для сверхтяжелых элементов форма ядра, например, начинает довольно заметно отклоняться от сферической, что требует внесения поправок в эти модели.


Есть ли у сверхтяжелых элементов какое-то практическое применение? Или, возможно, оно появится в будущем?

На данный момент у сверхтяжелых элементов никакого практического применения нет. Это объясняется несколькими причинами. Во-первых, их синтез - крайне сложный технологический процесс, занимающий довольно долгое время, в результате которого происходит образование совсем небольшого количества ядер. Во-вторых, из всех элементов с порядковым номером больше ста только фермий (100-й элемент) и менделевий (101-й) имеют сравнительно стабильные изотопы с периодом полураспада 100 и 50 суток соответственно. У остальных же сверхтяжелых элементов даже самые устойчивые из синтезированных изотопов распадаются в лучшем случае за несколько десятков часов, а чаще - за секунды или даже миллисекунды.

Поэтому пока процесс синтеза сверхтяжелых ядер представляет лишь фундаментальный интерес, связанный с изучением нуклон-нуклонного взаимодействия и взаимодействия между кварками. Свойства синтезированных изотопов помогают строить более точные теоретические модели, которые можно использовать не только для исследования ядер атомов на Земле, но и, например, при изучении нейтронных звезд, в ядре которых плотность нуклонов значительно превышает плотность в ядрах атомов.

Ученые ожидают, что в будущем у сверхтяжелых элементов могут появиться и какие-то практические применения, связанные, в частности, с разработкой сенсоров или радиографических методов в медицине или промышленности. Возможно, это будут и какие-то новые способы использования, которые невозможно предсказать сейчас, однако в ближайшие годы их точно ожидать не стоит, потому что для этого должны кардинальным образом измениться технологии их получения.


Можно ли получить стабильные изотопы сверхтяжелых элементов, или все они будут только радиоактивными?

Стабильные изотопы элементов, расположенных в таблице Менделеева после свинца, сейчас неизвестны. Порядковый номер свинца в таблице Менделеева - 82-й. Это значит, что все элементы начиная с висмута будут так или иначе радиоактивными. Период полураспада этих элементов, однако, может варьироваться в очень широких пределах. Так, у наиболее устойчивого изотопа висмута, который раньше считался устойчивым, период полураспада составляет 2 × 10 19 лет, что на несколько порядков больше возраста Вселенной.

У синтезированных на данный момент изотопов сверхтяжелых элементов (с порядковым номером в таблице элементов больше ста) период полураспада значительно меньше, чем у висмута, и варьируется от ста дней до долей миллисекунды. Все они тоже радиоактивны.

Однако, согласно теоретическим предсказаниям, для некоторых элементов с определенным числом протонов и нейтронов в ядре возможно значительное увеличение периода полураспада. Нужное количество нейтронов и протонов в ядре соответствует полностью заполненным нейтронным и протонным оболочкам и предположительно должно равняться 114 для протонов и 184 для нейтронов. Теоретически такая конфигурация должна приводить к увеличению периода полураспада от сотен микросекунд до 10 5 лет. Относительная устойчивость ядер с числом протонов и нейтронов, близким к этим значениям, позволяет предположить существование «острова стабильности» среди сверхтяжелых элементов. Тем не менее, подтвердить его существование экспериментально пока не удалось. Но даже столь значительное увеличение времени жизни ядер не сделает эти изотопы устойчивыми - они так и останутся радиоактивными.


Возможно ли, хотя бы теоретически, обнаружить сверхтяжелые элементы в природе? Или хотя бы продукты их распада, которые бы доказывали, что такие элементы существовали?

Ни один из сверхтяжелых элементов обнаружен в природе не был (что неудивительно, учитывая, что у всех из них очень короткие периоды полураспада). Элемент с самым большим порядковым номером, который удалось найти на сегодняшний день в природе, - это уран с его 92 протонами в ядре.

В начале 1970-х годов сообщалось о нахождения в природных минералах элемента с порядковым номером 108 (позднее был синтезирован под названием хассий), около десяти лет назад говорили об обнаружении в образцах тория следов 122-го элемента, однако подтверждены эти факты не были.

На Земле условий, необходимых для синтеза устойчивых сверхтяжелых ядер, нет и никогда не было, однако считается, что близкие к подобным условиям могут достигаться при взрывах сверхновых. Температура при этом поднимается до значений, достаточных для запуска быстрого поглощения ядрами нейтронов (так называемого r-процесса). Пока достоверных подтверждений естественного образования элементов с порядковым номером больше 100 в таких процессах зафиксировано не было, однако проводятся исследования состава космических лучей на предмет наличия в них следов сверхтяжелых элементов. В частности, об обнаружении в метеоритном веществе частиц с атомными числами более 100 говорили в 2011 году. Эти данные, однако, также не были подтверждены.


Откуда появилось выражение «трансфермиевые войны» и почему так часто возникает вопрос о первенстве той или иной группы в синтезе нового элемента?

Это выражение обычно используют для обозначения споров между США и СССР о приоритете при открытии элементов с порядковыми номерами 104,105 и 106, которые были были открыты в 60-х и 70-х годах XX века. Сам термин «трансфермиевые войны» (все эти элементы располагаются в таблице Менделеева как раз вслед за фермием) был впервые предложен в 1994 году. В Советском Союзе синтез проводился в Объединенном институте ядерных исследований в Дубне, в США - в Национальными лабораториями имени Лоуренса в Беркли и Ливерморе. Первые удачные попытки синтеза 104-го элемента сейчас датируются 1964 годом, 105-го элемента - 1970 годом, а 106-го - 1974-м.

Советская сторона считала, что именно в Дубне впервые удалось синтезировать 104-й и 105-й элементы, и использовала для них названия «курчатовий» и «нильсборий» соответственно. Американские ученые критиковали результаты советских экспериментов и доказывали, что первыми получили эти элементы физики в их лабораториях и назвали их «резерфордием» и «ганием» (в честь Эрнеста Резерфорда и Отто Гана соответственно). Однако из-за того, что значительная часть данных о синтезе была в то время закрыта, однозначно определить первенство той или иной группы было достаточно сложно.

Из-за этого процесс выяснения первенства растянулся на 30 лет и стал одним из элементов холодной войны. Лишь в 1994 году была собрана международная комиссия, которая рассмотрела известные данные и предложила свои варианты названий для элементов. Изначально некоторые из принятых решений вызывали споры, в частности о присвоении элементам имен в честь еще живущего человека (Гленна Сиборга), перенесении названия от одного элемента другому относительно начальных предложений (что вовлекло в споры третью сторону - немецкое Общество исследования тяжелых элементов, ученые которого синтезировали 107-й, 108-й и 109-й элементы).

В результате было найдено компромиссное решение, и в 1997 году произошло окончательное утверждение приоритетов и названий элементов. В частности, было решено не увековечивать имена Игоря Курчатова и Отто Гана, имеющих отношение к советскому и нацистскому ядерным проектам. 104-й и 106-й элемент сейчас используют названия, предложенные американской стороной (резерфордий и сиборгий), 105-й элемент - в признание заслуг советских ученых назвали дубнием, для 107-го, 108-го и 109-го элементов используют названия, предложенные немецкими учеными - борий, хассий и мейтнерий (лишь первый из них отличается от предложенного варианта - изначально его предлагали называть нильсборием). Сейчас благодаря открытости данных и прописанной процедуре присвоения элементам имен вопросы о приоритете решаются значительно проще.

Миниатюра из алхимической рукописи XVI века «Блеск Солнца»


Могут ли сверхтяжелые элементы рождаться при взрывах сверхновых? И можем ли мы это рождение зафиксировать?

Известно, что при вспышках сверхновых может происходить образование ядер очень тяжелых элементов, например урана или тория. Эти ядра образуются по механизму быстрого захвата нейтронов (так называемый r-процесс). Считается, что при взрыве сверхновой образуется достаточная температура - около четырех миллиардов градусов - для запуска этого процесса. Тем не менее, частота образования самых тяжелых ядер даже в таких условиях не очень высока. Считается также, что, кроме урана и тория, при взрыве сверхновых звезд возможно, например, образование калифорния (это 98-й элемент).

Для образования более тяжелых ядер в результате r-процесса необходим запуск термоядерной реакции - таким образом, например, на Земле удалось впервые синтезировать эйнштейний (99-й элемент) и фермий (100-й). Предполагается, что несколько термоядерных взрывов могут привести и к достижению острова стабильности в результате r-процесса. Однако сегодня принято считать, что при взрывах сверхновых такие условия не выполняются и элементы с порядковыми номерами более 100 не образуются. Тем не менее, следы стабильных сверхтяжелых элементов, которые могли образоваться при взрывах сверхновых, продолжают искать, например, в космических лучах и облученных ими метеоритах. Подтверждение же синтеза более легких элементов (например, урана или калифорния) проводят по спектроскопическим исследованиям продуктов их спонтанного деления.


Почему так часто реакции синтеза сверхтяжелых элементов оказываются неудачными, если по теоретическим расчетам они должны работать?

Сверхтяжелые ядра получают с помощью реакции слияния более легких ядер друг с другом. Для этого мишень из более тяжелых элементов бомбардируют ядрами более легких. Чтобы получить ядро с необходимым числом протонов и нейтронов, нужно правильно подобрать те ядра, которые используются в качестве мишеней и снарядов. Здесь может быть несколько проблем, снижающих вероятность образования нужного ядра и его обнаружения.

Во-первых, для образования нужного ядра необходимо преодолеть электростатический барьер - все-таки оба сталкиваемых ядра обладают довольно большим положительным зарядом (и до того, как на коротких расстояниях между протонами начнут действовать силы притяжения, нужно преодолеть дальнодействующее электростатическое отталкивание). Для этого тем ядрам, которыми бомбардируют мишень, необходимо изначально придать достаточно высокую энергию.

Для снижения этого барьера выгоднее использовать в качестве налетающих частиц ядра с довольно большим количеством протонов. Однако их выбор на сегодняшний день ограничен. Раньше для синтеза новых ядер мишени из тяжелых элементов, например свинца, плутония или урана, бомбардировали сравнительно легкими ядрами, например неоном-22 или кислородом-18. Позже для этих целей использовали различные изотопы более тяжелых элементов: железа-58, никеля-62, никеля-64 или цинка-70. Крайне важными стали продукты реакции различных мишеней с изотопом кальция-48.

Перспективными считаются реакции, в которых мишень из урана бомбардируют ионами из сверхтяжелых элементов - того же урана, калифорния, эйнштейния. Для повышения вероятности образования ядра нужно, чтобы налетающее ядро имело сравнительно небольшой момент импульса, а образующееся «компаунд-ядро» имело форму, близкую к сферической. Нарушение этих требований приводит к тому, что реакции не происходят. Однако даже при правильном подборе параметров процесс синтеза очень долог - облучение мишени в течение нескольких месяцев может привести к синтезу сотни нужных ядер.

Таким образом, ограниченный выбор изотопов, которые можно использовать в реакциях синтеза, сложная, с технической точки зрения, их реализация и длительное время протекание реакций значительно снижают вероятность синтеза нужных ядер - даже тех, которые, по теоретическим предсказаниям, должны оказаться устойчивыми.


Раньше считали, что центр «острова стабильности» должен находиться в районе 114 элемента, а где «остров стабильности» находится по современным представлениям? Может быть, его нет вообще?

Центр «острова стабильности», согласно оболочечной модели ядра, соответствует полностью заполненным протонной и нейтронной оболочкам - изотопу с порядковым номером 114 и массовым числом 298, то есть ядру, состоящему из 114 протонов и 184 нейтронов.

Некоторые ученые считают, что центр «острова стабильности» может соответствовать следующему протонному «магическому числу» и, таким образом, более устойчивым должен быть элемент с 120-м номером (а может быть, даже и со 126-м). Кроме того, из-за высокой вероятности α-распада центр стабильности может быть смещен относительно номера 114-го к 112-му и 110-му элементам.

Поскольку для образования относительно устойчивого ядра важно не только количество протонов в нем, но и количество нейтронов, пока синтезировать изотопы с нужным числом нуклонов из-за ограниченного выбора изотопов в эксперименте не удавалось. Потому необходимых данных для подтверждения существования «острова стабильности» нет. Однако те измерения, которые были проведены для менее устойчивых изотопов сверхтяжелых элементов, достаточно хорошо согласуются с данными теоретических моделей.

Тем не менее, стоит отметить, что положение «острова стабильности» определено в рамках концепции оболочечной модели ядра, которая при большом количестве нейтронов или протонов может работать не совсем точно. В частности, некоторые эффекты, связанные с взаимодействием кварков, для нейтрон-избыточных ядер с помощью нее объяснить не удается.


Каков срок жизни элементов в центре «острова стабильности»?

Согласно теоретическим предсказаниям, центру «острова стабильности» соответствует ядро, состоящее из 114 протонов и 184 нейтронов. Синтезировать такой тяжелый изотоп пока не удалось. Однако по данным теоретических моделей именно такое число нуклонов в ядре соответствует полностью заполненным энергетическим оболочкам.

Что касается периодов полураспада этих элементов, то при делении ядер стоит принимать во внимание три возможных процесса: спонтанное деление ядер, а также α- и β-распад. Так, период полураспада 298 114, согласно предсказаниям моделей, должен составлять примерно 10 16 лет относительно спонтанного деления, 10 лет - относительно α-распада и около 10 5 лет - относительно β-распада.

С учетом всех видов распада наиболее стабильным ядром оказывается ядро 298 110. По данным теории, период его полураспада должен составлять около 10 9 лет. Тем не менее, область стабильных ядер относительно широкая, и почти для всех ядер с четным числом протонов от 110 до 114 и четным числом нейтронов от 180 до 184 период полураспада превышает 1 год.

Пока эти числа - лишь результат теоретических расчетов. Самый тяжелый и самый устойчивый изотоп 114-го элемента (флеровия Fl), который на данный момент был получен экспериментально, - это 289 Fl. Период его полураспада составляет около 30 секунд. Период самого стабильного изотопа 110-го элемента (дармштадтий Ds) - около 10 секунд. Тем не менее, экспериментально полученные значения довольно хорошо согласуются с предсказаниями теоретических моделей, поэтому если удастся провести синтез нужных ядер с большим числом нейтронов, время их жизни может существенно увеличиться.


Десять лет назад ученые говорили , что может существовать второй «остров стабильности». Удалось ли его обнаружить?

Вообще, согласно современным теоретическим моделям, в обозримой области элементов может существовать не два, а даже больше «островов стабильности», которые будут соответствовать ядрам с полностью заполненными нейтронными и протонными оболочками, когда число нуклонов равняется так называемому «магическому числу». Сейчас элемент, который может быть «островом стабильности», соответствует изотопу, состоящему из 114 протонов и 184 нейтронов. Согласно современным оболочечным моделям ядра, следующие для протонов «магические числа» - это 126 и 164, а для нейтронов - 196, 228 и 272.

Про возможное существование относительно устойчивых ядер с 120 или 126 протонами говорят довольно давно, а десять лет назад говорили о возможном существовании «острова стабильности» в районе 164-го элемента. Тем не менее, если возможного исследования 120-го элемента в относительно близкой перспективе еще можно ожидать, то говорить об экспериментальном изучении 126-го, а тем более 164-го элемента не приходится. Для этого нужны новые ускорители тяжелых ядер, которые позволили бы работать с низкими концентрациями короткоживущих изотопов. На данный момент таких устройств нет.

Сейчас самый тяжелый элемент, синтез которого удалось подтвердить, - это оганесон с порядковым номером 118. Кроме того, стоит отметить, что применимость использованных теоретических моделей для таких тяжелых ядер тоже не доказана.


Можно ли рассматривать нейтронные звезды как гигантское атомное ядро? Если нет, то в чем принципиальное отличие?

Нет, нейтронная звезда, хоть и состоит преимущественно из протонов и нейтронов, на гигантское атомное ядро не очень похожа. На самом деле, звезда имеет довольно сложное строение - как минимум пять слоев с разными свойствами, и тяжелые атомные ядра входят в состав некоторых из них как один из важных компонентов. При этом во внешних слоях в нейтронной звезде присутствуют, например, и электроны. А во внутренних слоях - ближе к центру нейтронной звезды - очень много свободных нейтронов.

Несмотря на то, что атомное ядро - квантово-механическая система с максимальной плотностью нейтронов и протонов на Земле, в нейтронных звездах плотность нуклонов значительно выше. Размер нейтронных звезд - всего пара десятков километров, а их масса часто превышает массу Солнца, поэтому ближе к центру звезды у нее очень высокая плотность - в несколько раз больше, чем в любом атомном ядре. В ядре нейтронной звезды лишь несколько процентов электронов и протонов, основную массу составляют нейтроны, которые находятся в состоянии ферми-жидкости. В самом центре звезды - во внутреннем ядре - плотность нуклонов может в 10–15 раз превышать плотность в атомных ядрах, при этом точный состав, состояние и механизмы взаимодействия частиц в таких плотных системах достоверно неизвестны.

Исследования нейтрон-избыточных ядер важную информацию, о том, каким образом нейтроны и кварки могут взаимодействовать в ядре нейтронной звезды, однако состояние нуклонов в центре нейтронной звезды в любом случае сильно отличается от того, которое можно наблюдать в атомных ядрах даже самых тяжелых элементов.


Александр Дубов

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода