Вконтакте Facebook Twitter Лента RSS

Атомное ядро. Энергия связи

Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов. Силы, удерживающие нуклоны в ядре, называются ядерными . Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия - так называемого сильного взаимодействия. Ядерные силы примерно в 100 раз превосходят электростатические силы и на десятки порядков превосходят силы гравитационного взаимодействия нуклонов. Важной особенностью ядерных сил является их короткодействующий характер. Ядерные силы заметно проявляются, как показали опыты Резерфорда по рассеянию α-частиц, лишь на расстояниях порядка размеров ядра (10 -12 -10 -13 см). На больших расстояниях проявляется действие сравнительно медленно убывающих кулоновских сил.

На основании опытных данных можно заключить, что протоны и нейтроны в ядре в отношении сильного взаимодействия ведут себя одинаково, т. е. ядерные силы не зависят от наличия или отсутствия у частиц электрического заряда.

Важнейшую роль в ядерной физике играет понятие энергии связи ядра .

Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.

Энергию связи любого ядра можно определить с помощью точного измерения его массы. В настоящее время физики научились измерять массы частиц - электронов, протонов, нейтронов, ядер и др. - с очень высокой точностью. Эти измерения показывают, что масса любого ядра M я всегда меньше суммы масс входящих в его состав протонов и нейтронов :

Эта энергия выделяется при образовании ядра в виде излучения γ-квантов.

В качестве примера рассчитаем энергию связи ядра гелия например, энергия ионизации равна 13,6 эВ.

В таблицах принято указывать удельную энергию связи , т. е. энергию связи на один нуклон. Для ядра гелия удельная энергия связи приблизительно равна 7,1 МэВ/нуклон. На рис. 6.6.1 приведен график зависимости удельной энергии связи от массового числа A . Как видно из графика, удельная энергия связи нуклонов у разных атомных ядер неодинакова. Для легких ядер удельная энергия связи сначала круто возрастает от 1,1 МэВ/нуклон у дейтерия до 7,1 МэВ/нуклон у гелия . Затем, претерпев ряд скачков, удельная энергия медленно возрастает до максимальной величины 8,7 МэВ/нуклон у элементов с массовым числом A = 50-60, а потом сравнительно медленно снижается у тяжелых элементов. Например, у урана она составляет 7,6 МэВ/нуклон.

Уменьшение удельной энергии связи при переходе к тяжелым элементам объясняется увеличением энергии кулоновского отталкивания протонов. В тяжелых ядрах связь между нуклонами ослабевает, а сами ядра становятся менее прочными.

В случае стабильных легких ядер, где роль кулоновского взаимодействия невелика, числа протонов и нейтронов Z и N оказываются одинаковыми (, , ). Под действием ядерных сил как бы образуются протон-нейтронные пары. Но у тяжелых ядер, содержащих большое число протонов, из-за возрастания энергии кулоновского отталкивания для обеспечения устойчивости требуются дополнительные нейтроны. На рис. 6.6.2 приведена диаграмма, показывающая число протонов и нейтронов в стабильных ядрах. У ядер, следующих за висмутом (Z > 83), из-за большого числа протонов полная стабильность оказывается вообще невозможной.

Из рис. 6.6.1 видно, что наиболее устойчивыми с энергетической точки зрения являются ядра элементов средней части системы Менделеева. Это означает, что существуют две возможности получения положительного энергетического выхода при ядерных превращениях:

1. деление тяжелых ядер на более легкие;

2. слияние легких ядер в более тяжелые.

В обоих этих процессах выделяется огромное количество энергии. В настоящее время оба процесса осуществлены практически: реакции деления и термоядерные реакции.

Выполним некоторые оценки. Пусть, например, ядро урана делится на два одинаковых ядра с массовыми числами 119. У этих ядер, как видно из рис. 6.6.1, удельная энергия связи порядка 8,5 МэВ/нуклон. Удельная энергия связи ядра урана 7,6 МэВ/нуклон. Следовательно, при делении ядра урана выделяется энергия, равная 0,9 МэВ/нуклон или более 200МэВ на один атом урана.

Рассмотрим теперь другой процесс. Пусть при некоторых условиях два ядра дейтерия сливаются в одно ядро гелия . Удельная энергия связи ядер дейтерия равна 1,1 МэВ/нуклон, а удельная энергия связи ядра гелия равна 7,1 МэВ/нуклон. Следовательно, при синтезе одного ядра гелия из двух ядер дейтерия выделится энергия, равная 6 МэВ/нуклон или 24 МэВ на атом гелия.

Следует обратить внимание на то, что синтез легких ядер по сравнению с делением тяжелых сопровождается примерно в 6 раз большим выделением энергии на один нуклон.

Энергия связи ядра
Binding energy

Энергия связи ядра – минимальная энергия, необходимая для того, чтобы разделить ядро на составляющие его нуклоны (протоны и нейтроны). Ядро – система связанных нуклонов, состоящая из Z протонов (масса протона в свободном состоянии m p) и N нейтронов (масса нейтрона в свободном состоянии m n). Для того, чтобы разделить ядро на составные нуклоны, нужно затратить определенную минимальную энергию W, называемую энергией связи. При этом покоящееся ядро с массой М переходит в совокупность свободных покоящихся протонов и нейтронов с суммарной массой Zm p + Nm n . Энергия покоящегося ядра Мс 2 . Энергия освобождённых покоящихся нуклонов (Zm p + Nm n)с 2 . В соответствии с законом сохранения энергии Мс 2 + W = (Zm p + Nm n)с 2 . Или W = (Zm p + Nm n)с 2 - Мс 2 . Поскольку W > 0, то М < (Zm p + Nm n), т.е. масса, начального ядра, в котором нуклоны связаны, меньше суммы масс свободных нуклонов, входящих в его состав.
W растёт с увеличением числа А нуклонов в ядре (А = Z + N). Удобно иметь дело с удельной энергией связи ε = W/A, т.е. средней энергией связи, приходящейся на один нуклон. Для большинства ядер ε ≈ 8 МэВ (1 МэВ = 1.6·10 -13 Дж). Для разрыва химической связи нужна энергия в 10 6 раз меньше.

Почему ядро атома устойчиво? Что удерживает внутри него нейтроны, не имеющие заряда, и положительно заряженные протоны?

Это явление невозможно объяснить с точки зрения электромагнитного воздействия между заряженными частицами. Нейтроны не несут заряд, поэтому электромагнитные силы на них не действуют. Ну, а протоны, положительно заряженные частицы, должны были бы отталкиваться друг от друга. Но этого не происходит. Частицы не разлетаются, и ядро не распадается. Какие же силы заставляют нуклоны держаться вместе?

Ядерные силы

Силы, удерживающие внутри ядра протоны и нейтроны, называют ядерными силами . Очевидно, что они должны значительно превосходить электростатические силы отталкивания и силы гравитационного притяжения частиц. Ядерные силы - самые мощные из всех сил, существующих в природе. Опытным путём установлено, что по величине они в 100 раз превышают силы электростатического отталкивания. Но действуют они только на малом расстоянии, внутри ядра. И если это расстояние хоть на очень малую величину больше диаметра ядра, действие ядерных сил прекращается, и атом начинает распадаться под воздействием сил электростатического отталкивания. Поэтому эти силы короткодействующие .

Ядерные силы – это силы притяжения. Они не зависят от того, имеет частица заряд или нет, поскольку внутри ядра они удерживают и заряженные протоны, и не несущие заряд нейтроны. Величина этих сил одинакова для пары протонов, пары нейтронов или пары нейтрон-протон. Взаимодействие ядерных сил называют сильным взаимодействием .

Энергия связи ядра. Дефект масс

Благодаря ядерным силам, нуклоны в ядре связаны очень прочно. Для того, чтобы разорвать эту связь, нужно совершить работу, то есть, затратить определённую энергию. Минимальную энергию, необходимую для разделения ядра на отдельные частицы, называют энергией связи ядра атома . При соединении отдельных нуклонов в ядро атома выделяется энергия, по величине равная энергии связи. Эта энергия имеет огромную величину. К примеру, если сжечь 2 вагона каменного угля, то выделится энергия, которую можно получить при синтезе всего лишь 4 г химического элемента гелия.

Как определить величину энергии связи?

Для нас очевидно, что суммарная масса апельсина равна сумме масс всех его долек. Если каждая долька весит 15 г, а долек в апельсине 10, то вес апельсина 150 г. По аналогии казалось бы, масса ядра должна быть равна сумме масс нуклонов, из которых оно состоит. На самом же деле всё оказывается не так. Эксперименты показывают, что масса ядра меньше суммы масс частиц, в него входящих. Как такое возможно? Куда исчезает часть массы?

Вспомним закон эквивалентности массы и энергии, который называется также законом взаимосвязи массы и энергии и выражается формулой Эйнштейна:

E = mc 2 ;

где Е – энергия, m – масса, с – скорость света.

m = E/c 2 .

Согласно этому закону масса не исчезает, а превращается в энергию, выделяемую при соединении нуклонов в ядро.

Разность масс ядра и суммарной массы отдельных нуклонов, входящих в него, называют дефектом массы и обозначают Δ m .

Находящаяся в покое масса содержит огромный запас энергии. И при соединении нуклонов в ядро выделяется энергия ΔЕ = Δm · c 2 , а масса ядра уменьшается на величину Δ m . То есть, дефект масс – величина, эквивалентная энергии, которая выделяется при образовании ядра.

Δ m = ΔE/c 2 .

Дефект масс можно определить и по-другому:

Δ m = Z · m p + N · m n - M я

где Δ m – дефект масс,

M я – масса ядра,

m p – масса протона,

m n – масса нейтрона,

Z – число протонов в ядре,

N – число нейтронов в ядре.

M я < Z · m p + N · m n .

Оказывается, дефект масс имеют все химические элементы за исключением протия, атома водорода, в ядре которого всего один протон и ни одного нейтрона. И чем больше нуклонов в ядре элемента, тем больше дефект массы для него.

Зная массы частиц, которые взаимодействуют в ядерной реакции, а также частиц, которые образуются в результате, можно определить величину выделяемой и поглощаемой ядерной энергии.

Энергия связи

энергия связанной системы каких-либо частиц (например, атома), равная работе, которую необходимо затратить, чтобы разложить эту систему на бесконечно удаленные друг от друга и не взаимодействующие между собой составляющие ее частицы. Является отрицательной величиной, т. к. при образовании связанного состояния энергия выделяется; ее абсолютная величина характеризует прочность связи (например, устойчивость ядер). Согласно соотношению Эйнштейна, Э. с. эквивалентна дефекту масс (См. Дефект масс) Δm : ΔЕ = Δmc2 (с - скорость света в вакууме). Значение Э. с. определяется типом взаимодействия частиц в данной системе. Так, Э. с. ядра обусловлена сильными взаимодействиями (См. Сильные взаимодействия) нуклонов в ядре (у наиболее устойчивых ядер промежуточных атомов она Энергия связи8 10 6 эв на 1 нуклон - удельная Э. с.). Она может выделяться при слиянии легких ядер в более тяжелые (см. Термоядерные реакции), а также при делении тяжелых ядер, что объясняется уменьшением удельной Э. с. (см. Ядерные реакции) с ростом атомного номера.

Э. с. электронов в атоме или молекуле определяется электромагнитными взаимодействиями (См. Электромагнитные взаимодействия) и пропорциональна для каждого электрона ионизационному потенциалу (См. Ионизационный потенциал), для электрона атома и в нормальном состоянии она равна 13,6 эв. Этими же взаимодействиями обусловлена

Э. с. атомов в молекуле и кристалле (см. Химическая связь). Э. с. при гравитационном взаимодействии обычно мала, но для некоторых космических объектов ее величина может быть значительной (см., например, «Черная дыра» (См. Чёрная дыра)).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Ядро представляет собой систему из А элементарных частиц - нуклонов, удерживаемых вместе силами притяжения и движущихся внутри ядра с нерелятивистскими скоростями. Такая система в хорошем приближении описывается нерелятивистской квантовой механикой. Всякая квантовая система, в том числе и ядро, характеризуется определенным спектром состояний.

Очевидно, что характеристиками состояний изолированной системы могут служить физические величины, не меняющиеся или мало изменяющиеся во времени.

В первом случае мы имеем дело с интегралами движения или, как иногда говорят, с «хорошими квантовыми числами», во втором - с приближенными интегралами движения или с «неточными квантовыми числами». Интегралами движения всякой квантовой системы, в частности ядра, является энергия, полный момент количества движения, четность волновой функции (мы говорим о так называемом «внутреннем» состоянии ядра, описываемом в системе координат, связанной с центром инерции, поэтому такие константы движения, как импульс ядра в целом, выпадает из рассмотрения). Рассмотрим каждую из этих величин в отдельности.

Атомное ядро, находясь в различных состояниях, обладает, вообще говоря, различной полной энергией. Состояние, которому соответствует наименьшая возможная для данного ядра энергия, называется основным; все остальные состояния называются возбужденными.

При нормальных условиях ядра находятся в основных состояниях. Если ядро, находясь в состоянии обладает энергией то говорят, что ядро находится на энергетическом уровне Если состояниям, определяемым квантовыми числами соответствует одна и та же энергия но какие-либо другие квантовые числа различны (например, проекция момента количества движения на одну из координатных осей), то уровень называется кратно вырожденным по этим квантовым числам. Спектры энергетических уровней ядер в связанных состояниях дискретны, т. е. все уровни могут быть перенумерованы с помощью чисел натурального ряда.

Всякое возбужденное состояние ядра неустойчиво. Если ядро перевести в более высокое (возбужденное) квантовое состояние, то оно вернется в основное состояние с испусканием одного или нескольких электромагнитных квантов - у-лучей или других частиц.

Полная энергия ядра связана с его массой соотношением Эйнштейна:

Точные измерения масс ядер показали, что масса сложного ядра не равна сумме масс входящих в состав ядра частиц, а всегда

меньше этой величины на несколько десятых процентов. Масса ядра определяется выражением

где соответственно массы протона и нейтрона.

Разность между суммой масс нуклонов и массой ядра характеризует энергию связи этих нуклонов в ядре, т. е. энергию, которую надо затратить, чтобы разделить данное ядро на составляющие его нуклоны.

В большинстве экспериментов измеряемой величиной является масса атома Мат, которая отличается от массы ядра на величину масс электронов. Так как число электронов в атоме всегда равно числу протонов в ядре, масса атома может быть записана в виде

где масса атома водорода

Энергия связи электронов в атоме пренебрежимо мала по сравнению с энергией связи ядра и поэтому в выражениях (15) и (16) не учитывается.

Из выражения (14) следует, что энергия ядра отличается от суммарной энергии составляющих его частиц, находящихся в покое, не связанных друг с другом

Разность этих величин и представляет собой полную энергию связи ядра

Таким образом, зная массы ядер и массы нуклонов, можно численно определить энергии связи ядер. Если известны массы нейтральных атомов, то

При образовании ядер путем соединения нуклонов должна выделиться энергия, равная энергии связи ядра.

Приведем значение энергии связи для некоторых ядер

Во многих случаях, например для сравнения устойчивости ядер, пользуются понятием об удельной энергии связи - характеризующей среднюю энергию связи одного нуклона в ядре.

Величина равна отношению полной энергии к полному числу нуклонов в ядре А:

Иначе говоря, это та энергия, которую в среднем надо затратить, чтобы удалить из ядра один нуклон, не сообщая ему кинетической энергии. Чем больше значение тем очевидно, устойчивее ядро. На рис. 7 приведена для стабильных ядер зависимость от массового числа

Рис. 7. Зависимость средней энергии связи на нуклон 8 от массового числа А

Из приведенной на рис. 7 экспериментальной зависимости можно видеть, что при малых А величина меняется нерегулярно и имеет аномальную малую величину по сравнению со средним значением.

Столь большие величины энергий связи нуклонов свидетельствуют о колоссальных силах, которые прочно удерживают в ядре протоны и нейтроны, несмотря на большое электростатическое отталкивание протонов. Энергия электростатического отталкивания протонов, например, в ядре гелия составляет

Из хода зависимости от следует несколько очень важных выводов, на которых должна основываться Теория ядерных сил.

1. Полную энергию связи ядра можно грубо считать пропорциональной числу нуклонов в ядре так как для большинства ядер 8 почти постоянно, а

Это означает, что нуклон способен к взаимодействию не со всеми окружающими его нуклонами, а только с ограниченным их числом. Действительно, если бы каждый нуклон ядра взаимодействовал со всеми остальными нуклонами, то суммарная энергия связи была бы пропорциональна

Это свидетельствует о том, что ядерные силы обладают свойством насыщения.

2. При более подробном рассмотрении поведения 8, как функции обнаруживается, что энергия связи максимальна у четно-четных ядер т. е. у ядер с четным числом протонов и четным числом нейтронов.

Это обстоятельство указывает на особую прочность системы

четырех нуклонов: на существование в ядре объединения одинаковых нуклонов в группы.

3. Удельная энергия связи имеет небольшие максимумы для ядер, число протонов или нейтронов у которых равно 2, 8, 20, 50, 82, 126. Данные числа называются «магическими»: Это обстоятельство наталкивает на мысль, что ядро, подобно атому, имеет оболочечную структуру и наиболее стабильно, когда оболочка заполнена полностью.

4. Если построить зависимость удельной энергии связи для легких ядер от при фиксированном значении то она будет иметь максимум при

Это указывает на то, что легкие ядра наиболее устойчивы при равенстве числа протонов числу нейтронов.

Для тяжелых ядер максимум сдвигается в сторону

т. е. тяжелые ядра более устойчивы, когда число нейтронов превышает число протонов.

5. Из хода кривой (рис. 7) видно также, что если объединить два легких ядра в ядро среднего веса или разделить одно тяжелое ядро на два средних ядра, то должна выделиться энергия за счет увеличения энергии связи у вновь образуемых ядер.

Процессы первого типа - процессы синтеза легких ядер непрерывно идут во Вселенной, являясь источником лучистой энергии звезд, и лежат в основе термоядерного синтеза (водородная бомба). Процессы второго типа - деление тяжелых ядер - используются для получения энергии в атомной энергетике.

До сих пор мы говорили об энергии связи ядра относительно всех составляющих его нуклонов. Аналогичным образом можно определить энергию связи ядра относительно каких-либо других составных частей. Чтобы ее подсчитать, надо вычесть из энергии покоя составных частей энергию покоя всего ядра. Например, для разделения ядра кислорода на четыре ядра гелия надо затратить энергию равную

Для разделения ядра на надо затратить которая равна

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода