Вконтакте Facebook Twitter Лента RSS

Потенциал действия нейрона. Мембранный потенциал и потенциал действия и его фазы

Потенциа́л де́йствия - волна возбуждения , перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона , мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса , играющего сигнальную (регуляторную) роль.

Рис. 1. Схема распределения зарядов по разные стороны мембраны возбудимой клетки в спокойном состоянии (A ) и при возникновении потенциала действия (B ) (см. объяснения в тексте).

Потенциалы действия могут различаться по своим параметрам в зависимости от типа клетки и даже на различных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов. Тем не менее, в основе любого потенциала действия лежат следующие явления:

    Мембрана живой клетки поляризована - её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности - бо́льшее количество отрицательно заряженных частиц (анионов).

    Мембрана обладает избирательной проницаемостью - её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.

    Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю (Рис.1 ).

Первые два свойства характерны для всех живых клеток. Третье же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

Фазы потенциала действия

    Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).

    Пиковый потенциал, или спайк , состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).

    Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).

    Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

Общие положения

Рис. 2. A. Схематичное изображение идеализированного потенциала действия.B. Реальный потенциал действия пирамидного нейронагиппокампа крысы. Форма реального потенциала действия обычно отличается от идеализированной.

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны. Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемуюпотенциалом покоя . Если ввести внутрь живой клеткиэлектрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка −70 - −90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся икатионы , ианионы . Снаружи - на порядок большеионов натрия ,кальция ихлора , внутри - ионовкалия и отрицательно заряженныхбелковых молекул, аминокислот, органических кислот,фосфатов ,сульфатов . Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток , подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий черезсинапс или путёмдиффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация ) или положительную (деполяризация ) сторону.

В нервной ткани потенциал действия, как правило, возникает при деполяризации - если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его, клетка возбуждается, и от её тела каксонам идендритам распространяется волна электрического сигнала. (В реальных условиях на теле нейрона обычно возникают постсинаптические потенциалы, которые сильно отличаются от потенциала действия по своей природе - например, они не подчиняются принципу «всё или ничего». Эти потенциалы преобразуются в потенциал действия на особом участке мембраны -аксонном холмике , так что потенциал действия не распространяется на дендриты).

Рис. 3. Простейшая схема, демонстрирующая мембрану с двумя натриевыми каналами в открытом и закрытом состоянии, соответственно

Это обусловлено тем, что на мембране клетки находятся ионные каналы - белковые молекулы, образующие в мембране поры, через которые ионы могут проходить с внутренней стороны мембраны на наружную и наоборот. Большинство каналов ионоспецифичны - натриевый канал пропускает практически только ионы натрия и не пропускает другие (это явление называют селективностью). Мембрана клеток возбудимых тканей (нервной и мышечной) содержит большое количествопотенциал-зависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциал-зависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны. Движущая сила в данном случае обеспечиваетсяградиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны (см. Рис. 2). Поток ионов натрия вызывает ещё бо́льшее и очень быстрое изменение мембранного потенциала, которое и называютпотенциалом действия (в специальной литературе обозначается ПД).

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой жеамплитуды , как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

После возбуждения нейрон на некоторое время оказывается в состоянии абсолютной рефрактерности , когда никакие сигналы не могут его возбудить снова, затем входит в фазуотносительной рефрактерности , когда его могут возбудить исключительно сильные сигналы (при этом амплитуда ПД будет ниже, чем обычно). Рефрактерный период возникает из-за инактивации быстрого натриевого тока, то есть инактивации натриевых каналов (см. ниже).

Биопотенциалы.

    Понятие и виды биопотенциалов. Природа биопотенциалов.

    Причина возникновения потенциала покоя. Стационарный потенциал Гольдмана.

    Условия возникновения и фазы потенциала действия.

    Механизм генерации потенциала действия.

    Методы регистрации и экспериментального исследования биопотенциалов.

Понятия и виды биопотенциалов. Природа биопотенциалов.

Биопотенциалы – любые разности потенциалов в живых системах: разность потенциалов между клеткой и окружающей средой; между возбуждённым и невозбуждённым участками клетки; между участками одного организма, находящимися в разных физиологических состояниях.

Разность потенциалов -электрический градиент – характерная черта всего живого.

Виды биопотенциалов:

    Потенциал покоя (ПП) – постоянно существующая в живых системах разность потенциалов, характерная для стационарного состояния системы. Он поддерживается постоянно протекающими звеньями обмена веществ.

    Потенциал действия (ПД) – быстро возникающая и вновь исчезающая разность потенциалов, характерная для переходных процессов.

Биопотенциалы тесно связаны с метаболическими процессами, следовательно, являются показателями физиологического состояния системы.

Величина и характер биопотенциалов являются показателями изменений в клетке в норме и патологии.

Существует большая группа электрофизиологических методов диагностики , основанных на регистрации биопотенциалов (ЭКГ, ЭМГ и т.д.).

В основе возникновения биопотенциалов лежит несимметричное относительно мембраны распределение ионов, т.е. различные концентрации ионов по разные стороны мембраны. Непосредственная причина – различная скорость диффузии ионов по их градиентам, определяющаяся селективностью мембраны.

Биопотенциалы – ионные потенциалы, преимущественно мембранной природы – это основное положениеМембранной теории биопотенциалов (Бернштейн, Ходжкин, Катц).

Причина возникновения потенциала покоя. Стационарный потенциал Гольдмана.

Натриевый насос – создаёт и поддерживает градиент концентрации иона натрия, иона калия, регулируя их поступление в клетку и выведение из неё.

В состоянии покоя клетка проницаема главным образом для ионов калия. Они диффундируют по градиенту концентрации через клеточную мембрану из клетки в окружающую жидкость. Крупные органические анионы, содержащиеся в клетке не могут преодолеть мембрану. Таким образом внешняя поверхность мембраны заряжается положительно, а внутренняя – отрицательно.

Изменение зарядов и разности потенциалов на мембране продолжается пока силы, обуславливающие градиент концентрации калия не уравновесятся силами возникающего электрического поля, следовательно, не будет достигнуто стационарное состояние системы.

Разность потенциалов через мембрану в этом случае и есть – потенциал покоя.

Вторая причина возникновения потенциала покоя – электрогенность калий-натриевого насоса.

Теоретическое определение потенциала покоя:

При учёте лишь калиевой проницаемости мембраны в состоянии покоя потенциал покоя можно вычислить по уравнению Нернста:

R – универсальная газовая постоянная

T – абсолютная температура

F – число Фарадея

С iK – концентрация калия внутри клетки

C eK – концентрация калия снаружи клетки

На самом деле, помимо ионов калия, клеточная мембрана проницаема также и для ионов натрия и хлора, однако в меньшей степени. Если градиент натрия поступает внутрь клетки, то мембранный потенциал уменьшается. Если градиент хлора поступает внутрь клетки, то мембранный потенциал увеличивается.

, где

P – проницаемость мембраны для данного иона.

Условия возникновения и фазы потенциала действия.

Раздражители – внешние или внутренние факторы, действующие на клетку.

При действии раздражителей на клетку меняется электрическое состояние клеточной мембраны.

Потенциал действия возникает лишь при действии раздражителя достаточной силы и длительности.

Пороговая сила – минимальная сила раздражителя, необходимая для инициации потенциала действия. Раздражители большей силы –надпороговые ; меньшей силы –подпороговые . Пороговая сила раздражителя находится в обратной зависимости от его длительности в определённых пределах.

Если у раздражителя надпороговой или пороговой силы на участке раздражения возникает электрический импульс характерной формы, распространяющийся вдоль всей мембраны, то возникнет потенциал действия .

Фазы потенциала действия:

    Восходящая – деполяризация

    Нисходящая – реполяризация

    Гиперполяризация (возможна, но не обязательна)

- потенциал цитоплазмы

- действие раздражителя ((над)пороговой силы)

д – деполяризация

р – реполяризация

г – гиперполяризация

Фаза деполяризации – быстрая перезарядка мембраны: внутри положительный заряд, снаружи – отрицательный.

Фаза реполяризации – возвращение заряда и потенциала мембраны к исходному уровню.

Фаза гиперполяризации – временное превышение уровня покоя, предшествующее восстановлению потенциала покоя.

Амплитуда потенциала действия заметно превышает амплитуду потенциала покоя – «овершут » (перелёт).

Механизм генерации потенциала действия.

Потенциал действия – результат изменения ионной проницаемости мембраны.

Проницаемость мембраны для ионов натрия – непосредственная функция мембранного потенциала. Если мембранный потенциал понижается, то натриевая проницаемость возрастает.

Действие порогового раздражителя : уменьшение мембранного потенциала до критической величины (критическая деполяризация мембраны) → резкое повышение натриевой проницаемости → усиленный приток натрия в клетку по градиенту → дальнейшая деполяризация мембраны → процесс зацикливается → включается механизм положительной обратной связи. Усиленный приток натрия в клетку вызывает перезарядку мембраны и окончание фазы деполяризации. Положительный заряд на внутренней поверхности мембраны становится достаточным для уравновешивания градиента концентрации ионов натрия. Усиленное поступление натрия в клетку заканчивается, следовательно, заканчивается фаза деполяризации.

P K:P Na:P Cl в состоянии покоя 1: 0,54: 0,045,

на высоте фазы деполяризации: 1: 20: 0,045.

В процессе фазы деполяризации проницаемость мембраны для ионов калия и хлора не меняется, а для ионов натрия – возрастает в 500 раз.

Фаза реполяризации : увеличивается проницаемость мембраны для ионов калия → усиленный выход ионов калия из клетки по градиенту концентрации → Уменьшение положительного заряда на внутренней поверхности мембраны, обратное изменение мембранного потенциала → уменьшение натриевой проницаемости → обратная перезарядка мембраны → уменьшение калиевой проницаемости, замедление оттока калия из клетки.

К концу фазы реполяризации происходит восстановление потенциала покоя. Мембранный потенциал и проницаемость мембраны для ионов калия и натрия возвращается к уровню покоя.

Фаза гиперполяризации : возникает, если проницаемость мембраны для ионов калия ещё повышена, а для ионов натрия уже вернулась к уровню покоя.

Резюме:

Потенциал действия формируется двумя потоками ионов через мембрану. Поток ионов натрия внутрь клетки → перезарядка мембраны. Поток ионов калия наружу → восстановление потенциала покоя. Потоки почти одинаковы по величине, но сдвинуты по времени.

Диффузия ионов через клеточную мембрану в процессе генерации потенциала действия осуществляется по каналам, которые являются высокоселективными, т.е. они обладают большей проницаемостью для данного иона (открытие для него дополнительных каналов).

При генерации потенциала действия клетка приобретает определённое количество натрия и теряет определённое количество калия. Выравнивание концентраций этих ионов между клеткой и средой не происходит благодаря калий-натриевому насосу.

Методы регистрации и экспериментального исследования биопотенциалов .

1. Внутриклеточное отведение.

Один электрод погружают в межклеточную жидкость, другой (микроэлектрод) - вводится в цитоплазму. Между ними – измерительный прибор.

Микроэлектрод представляет собой полую трубку, кончик которой оттянут до диаметра в доли микрона, а пипетка наполнена хлоридом калия. При введении микроэлектрода мембрана плотно охватывает кончик, и повреждения клетки почти не происходит.

Для создания потенциала действия в эксперименте клетка стимулируется надпороговыми токами, т.е. ещё одна пара электродов связана с источником тока. На микроэлектрод подаётся положительный заряд.

С их помощью можно регистрировать биопотенциалы как крупных, так и мелких клеток, а также биопотенциалы ядер. Но наиболее удобным, классическим объектом исследований, являются биопотенциалы крупных клеток. Например,

Nitella ПП 120 мВ (120 * 10 3 В)

Гигантский аксон кальмара ПП 60мВ

Клетки миокарда человека ПП 90 мВ

2. Фиксация напряжения на мембране.

В определённый момент развитие потенциала действия искусственно прерывается с помощью специальных электронных схем.

При этом фиксируется значение мембранного потенциала и величины ионных потоков через мембрану в данный момент, следовательно, есть возможность их измерения.

3. Перфузия нервных волокон.

Перфузия – замена оксоплазмы искусственными растворами различного ионного состава. Таким образом, можно определить роль конкретного иона в генерации биопотенциалов.

Проведение возбуждения по нервным волокнам.

    Роль потенциала действия в жизнедеятельности.

    Об аксонах.

    Кабельная теория проведения.

    Направление и скорость проведения.

    Непрерывное и сальтаторное проведение.

Роль потенциала действия в жизнедеятельности .

Раздражимость – способность живых клеток под влиянием раздражителей (определённых факторов внешней или внутренней среды) переходить из состояния покоя в состояние активности. При этом всегда меняется электрическое состояние мембраны.

Возбудимость – способность специализированных возбудимых клеток в ответ на действие раздражителя генерировать особую форму колебания мембранного потенциала –потенциал действия .

В принципе возможно несколько видов ответов возбудимых клеток на раздражение, в частности – локальный ответ и потенциал действия.

Потенциал действия возникает, если действует пороговый или надпороговый раздражитель. Он вызывает уменьшение мембранного потенциала до критического уровня. Тогда происходит открытие дополнительных натриевых каналов, резкое увеличение натриевой проницаемости и развитие процесса по механизму положительной обратной связи.

Локальный ответ возникает, если действует подпороговый раздражитель, составляющий 50-70% от порогового. Деполяризация мембраны при этом меньше критической, наступает лишь кратковременное, небольшое увеличение натриевой проницаемости, механизм положительной обратной связи не включается, и потенциал быстро возвращается к исходному состоянию.

В процессе развития потенциала действия возбудимость меняется.

Снижение возбудимости – относительная рефрактерность .

Полная утрата возбудимости – абсолютная рефрактерность .

По мере приближения к уровню критической деполяризации возбудимость повышается, так как для достижения этого уровня и развития потенциала действия становится достаточно и небольшого изменения мембранного потенциала. Именно так меняется возбудимость в начале фазы деполяризации, а также при локальном ответе клетки на раздражение.

При удалении мембранного потенциала от критической точки возбудимость снижается. На пике фазы деполяризации, когда клетка уже не может реагировать на раздражение открытием дополнительных натриевых каналов, наступает состояние абсолютной рефрактерности.

По мере реполяризации абсолютная рефрактерность сменяется относительной; к концу фазы реполяризации возбудимость снова увеличена (состояние «супернормальности»).

Во время фазы гиперполяризации возбудимость снова снижена.

Возбуждение – ответ специализированных клеток на действие пороговых и надпороговых раздражителей – это сложный комплекс физико-химических и физиологических изменений, в основе которого лежит потенциал действия.

Результат возбуждения зависит от того, в какой ткани оно развивалось (где возник потенциал действия).

К специализированным возбудимым тканям относятся :

    • мышечная

      железистая

Потенциалы действия обеспечивают проведение возбуждения по нервным волокнам и инициируют процессы сокращения мышечных и секреции железистых клеток.

Потенциал действия, возникающий в нервном волокне – нервный импульс.

Об аксонах.

Аксоны (нервные волокна) – длинные отростки нервных клеток (нейронов).

Афферентные пути – от органов чувств к ЦНС

Эфферентные пути – от ЦНС к мышцам.

Протяжённость – метры.

Диаметр в среднем от 1 до 100 мкм (у гигантского аксона кальмара – до 1 мм).

По наличию или отсутствию миелиновой оболочки различают аксоны:

      миелинизированные (миелиновые, мякотные) – есть миелиновая оболочка

      немиелинизированные (амиелиновые, безмякотные) – не имеют миелиновые оболочки

Миелиновая оболочка – окружающая аксон дополнительная многослойная (до 250 слоёв) мембрана, образующаяся при внедрении аксона в шванновскую клетку (леммоцит, олигодендроцит), и многократном наматывании мембраны этой клетки на аксон.

Миелин – очень хороший изолятор.

Через каждые 1-2 мм миелиновая оболочка прерывается перехватами Ранвье , протяжённостью около 1 мкм каждый.

Только в области перехватов возбудимая мембрана контактирует с внешней средой.

Кабельная теория проведения.

Аксон по ряду свойств подобен кабелю: это полая трубка, внутренне содержимое – аксоплазма – проводник (как и межклеточная жидкость), стенка – мембрана – изолятор.

Механизм проведения возбуждения (распространения нервного импульса) включает 2 ступени:

    Возникновение локальных токов и распространение волны деполяризации вдоль волокна.

    Формирование потенциалов действия на новых участках волокна.

Локальные токи циркулируют между возбужденным и невозбуждённым участками нервного волокна ввиду разной полярности мембраны на этих участках.

Внутри клетки они текут от возбуждённого участка к невозбуждённому. Снаружи – наоборот.

Локальный ток вызывает сдвиг мембранного потенциала соседнего участка, и начинается распространение волны деполяризации по волокну, как тока по кабелю.

Когда деполяризация очередного участка достигает критической величины, происходит открытие дополнительных натриевых, потом калиевых каналов, возникновение потенциала действия.

В разных участках волокна потенциал действия формируется независимыми ионными потоками, перпендикулярными к направлению распространения.

При этом на каждом участке происходит энергетическая подпитка процесса , так как градиенты ионов, идущих по каналам, создаются насосами, работа которых обеспечивается энергией гидролиза АТФ.

Роль локальных токов – лишь инициация процесса путём деполяризации всё новых участков мембраны до критического уровня.

Благодаря энергетической подпитке нервный импульс распространяется вдоль волокна без затухания (с неизменной амплитудой).

Направление и скорость проведения.

Одностороннее проведение нервного импульса обеспечивают:

      наличие в нервной системе синапсов с односторонним проведением

      свойство рефрактерности нервного волокна, что делает невозможным обратный ход возбуждения

Скорость проведения тем выше, чем более выражены кабельные свойства волокна. Для их оценки применяютконстанту длины нервного волокна :

, где

D – диаметр волокна

b m – толщина мембраны

- удельное сопротивление мембраны

- удельное сопротивление аксоплазмы

Физический смысл константы : она численно равна расстоянию, на котором подпороговый потенциал уменьшился бы вe раз. С увеличением константы длины нервного волокна увеличивается и скорость проведения.

Потенциал действия - волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляетэлектрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

Потенциал действия развивается на мембране в результате её возбуждения и сопровождается резким изменением мембранного потенциала.

В потенциале действия выделяют несколько фаз:

Фаза деполяризации;

Фаза быстрой реполяризации;

Фаза медленной реполяризации (отрицательный следовый потенциал);

Фаза гиперполяризации (положительный следовый потенциал).

Фаза деполяризации. Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциал чувствительных Na+- каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

Фаза быстрой и медленной реполяризации. В результате деполяризации мембраны происходит открытие потенциалчувствительных К+- каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется. Усиливает реполяризацию поступление в клетку Ca2+ Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+/K+ помпы. Поступление в клетку Cl– дополнительно гиперполяризует мембрану Изменение величины мембранного потенциала во время развития потенциала действия связано в первую очередь с изменением проницаемости мембраны для ионов натрия и калия.

Современные представления о механизме его генерации

Методом фиксации мембранного потенциала удалось измерить токи, текущие через плазмолемму аксона (аксолемму) кальмара и убедиться в том, что в покое ток катионов (К +) направлен из цитоплазмы в интерстиций, а при возбуждении доминирует ток катионов (Na +) в клетку. В состоянии «покоя» плазмолемма почти непроницаема для ионов, находящихся в межклеточном пространстве(Na + С1 - и НСОз - ,).

При возбуждении проницаемость для ионов натрия на время, равное нескольким миллисекундам, резко возрастает, а затем снова падает.

В результате катионы (ионы Na +) и анионы (С1 - , НСОз) разобщаются на плазмолемме: Na + входит в цитоплазму, а анионы нет. Поток положительных зарядов в цитоплазму не только компенсирует потенциал покоя, но и превышает его. Возникает так называемый «овершут» (или инверсия мембранного потенциала). Входящий поток натрия - результат его пассивного движения по открывшимся мембранным каналам по концентрационному и электрическому градиентам. Выходящий поток этого катиона обеспечивается калий-натриевой помпой.

5. Законы раздражения: Закон силы. Закон «все или ничего»

1.Закон "все или ничего": При допороговых раздражениях клетки, ткани ответной реакции не возникает. При пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается ее усилением. В соответствии с этим законом реагирует на раздражения одиночное нервное и мышечное волокно, сердечная мышца.

2.Закон силы: Чем больше сила раздражителя, тем сильнее ответная реакция. Однако выраженность ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, имеющих различную возбудимость.

3.Закон силы-длительности . Между силой и длительностью действия раздражителя имеется определенная взаимосвязь. Чем сильнее раздражитель, тем меньшее время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривой силы-длительности. По этой кривой можно определить ряд параметров возбудимости.

Потенциал действия (ПД) - это электрофизиологичес-кий процесс, выражающийся в быстром колебании мембранно-го потенциала вследствие перемещения ионов в клетку и из клетки и способный распространяться без декремента (без затухания). ПД обеспечивает передачу сигналов между нервны-ми клетками, нервными центрами и рабочими органами; в мышцах ПД обеспечивает процесс электромеханического сопряжения.

А. Характеристика потенциала действия (ПД). Схема-тично ПД представлен на рис. 1.3. Величина ПД колеблется в пре-делах 80-130 мВ, длительность пика ПД нервного волокна 0,5-1 мс, волокна скелетной мышцы - до 10 мс с учетом замедления деполяризации в конце ее. Длительность ПД сердечной мышцы , 300-400 мс. Амплитуда ПД не зависит от силы раздражения - она всегда максимальна для данной клетки в конкретных условиях: ПД подчиняется закону «все или ничего», но не подчиняется закону силовых отношений - закону силы. ПД либо совсем не возникает при раздражении клетки, если оно мало, либо возникает и достига-ет максимальной величины, если раздражение является пороговым или сверхпороговым.

Следует отметить, что слабое (подпороговое) раздражение может вызвать локальный потенциал. Он подчи-няется закону силы - с увеличением силы стимула величина его возрастает.

В составе ПД различают четыре фазы:

1 — деполяриза-ция , т. е. исчезновение заряда клетки - уменьшение мембранного потенциала до нуля;

2 — инверсия , т. е. изменение заряда клетки на противоположный, когда внутренняя сторона мембраны клетки заряжается положительно, а внешняя - отрицательно (лат. шуегзю - переворачивание);

3 — реполяризация, т. е. восстанов-ление исходного заряда клетки, когда внутренняя поверхность клеточной мембраны снова заряжается отрицательно, а наружная -положительно;

4 - следовая гиперполяризация.

Б. Механизм возникновения ПД. Если действие раздражи-теля на клеточную мембрану приводит к началу развития ПД, да-лее сам процесс развития ПД вызывает фазовые изменения прони-цаемости клеточной мембраны, что обеспечивает быстрое движение № + в клетку, а К + - из клетки. Это наиболее часто встре-чаемый вариант возникновения ПД. Величина мембранного потен-циала при этом сначала уменьшается, а затем снова восстанавли-вается до исходного уровня.

На экране осциллографа отмеченные изменения мембранного потенциала предстают в виде пикового по-тенциала - ПД. Он возникает вследствие накопленных и поддер-живаемых ионными насосами градиентов концентраций ионов внут-ри и вне клетки, т.е. за счет потенциальной энергии в виде электрохимических градиентов ионов. Если заблокировать процесс выработки энергии, потенциалы действия некоторый период вре-мени будут возникать. Но после исчезновения градиентов концен-траций ионов (устранения потенциальной энергии) клетка генери-ровать ПД не будет. Рассмотрим фазы ПД.


1. Фаза деполяризации (см. рис. 1.3 - 1). При действии депо-ляризующего раздражителя на клетку (медиатор, электрический ток) начальная частичная деполяризация клеточной мембраны про-исходит без изменения ее проницаемости для ионов. Когда деполя-ризация достигает примерно 50% пороговой величины (50% поро-гового потенциала), начинает повышаться проницаемость мембраны клетки для Ыа + , причем в первый момент сравнительно медленно.

Естественно, что скорость входа Ыа + в клетку при этом невелика. В этот период, как и во время всей первой фазы (деполя-ризации), движущей силой, обеспечивающей вход Гч!а + в клетку, являются концентрационный и электрический градиенты. Напом-ним, что клетка внутри заряжена отрицательно (разноименные за-ряды притягиваются друг к другу), а концентрация № + вне клетки в 10-12 раз больше, чем внутри клетки.

Условием, обеспечиваю-щим вход № + в клетку, является увеличение проницаемости кле-точной мембраны, которая определяется состоянием воротного ме-ханизма Ыа-каналов (в некоторых клетках, например, в кардиомиоцитах, в волокнах гладкой мышцы, важную роль в воз-никновении ПД играют и управляемые каналы для Са 2+).

Когда деполяризация клетки достигает критической величины (Е, критический уровень деполяризации - КУД), которая обычно составляет 50 мВ (возможны и другие величины), проницаемость мембраны для Ыа* резко возрастает - открывается большое число потенциалзависимых ворот Ыа-каналов - и Ыа + лавиной устремля-ется в клетку.

В результате интенсивного тока Ыа + внутрь клетки процесс деполяризации проходит очень быстро. Развивающаяся деполяризация клеточной мембраны вызывает дополнительное увеличение ее проницаемости и, естественно, проводимости Ыа + - открываются все новые и новые ворота №-каналов, что придает току Ыа + в клетку характер регенеративного процесса. В итоге ПП исчезает, становится равным нулю. Фаза деполяризации на этом заканчивается.

2. Фаза инверсии. После исчезновения ПП вход Ыа + в клетку продолжается, поэтому число положительных ионов в клетке пре-восходит число отрицательных ионов, заряд внутри клетки стано-вится положительным, снаружи - отрицательным. Процесс пере-зарядки мембраны представляет собой вторую фазу потенциала действия - фазу инверсии (рис. 1.3 - 2).

Теперь электрический градиент препятствует входу Ыа + внутрь клетки (положительные заряды отталкиваются друг от друга), Ыа-проводимость снижает-ся. Тем не менее, некоторый период времени (доли миллисекунды) № + продолжает входить в клетку — об этом свидетельствует про-должающееся нарастание ПД. Это означает, что концентрацион-ный градиент, обеспечивающий движение № + в клетку, сильнее электрического, препятствующего входу Ыа + в клетку.

Во время деполяризации мембраны увеличивается проницаемость ее и для Са 2+ , он также идет в клетку, но в нервных волокнах, нейронах и в клетках скелетной мускулатуры роль Са 2+ в развитии ПД мал.а. В клетках гладкой мышцы и миокарда его роль существенна. Та-ким образом, вся восходящая часть пика ПД в большинстве случа-ев обеспечивается в основном входом № + в клетку.

Примерно через 0,5-1 мс и более после начала деполяризации (это время зависит от вида клетки) рост ПД прекращается вслед-ствие закрытия ворот натриевых каналов и открытия ворот К-каналов, т. е. увеличения проницаемости для К + и резкого возрастания выхода его из клетки (см. рис. 1.3 - 2). Препятствуют также росту пика ПД электрический градиент Ыа + (клетка внутри в этот момент заряжена положительно), а также выход К + из клетки по каналам утечки.

Поскольку К + находится преимущественно внутри клетки, он, согласно концентрационному градиенту, быстро выходит из клетки после открытия ворот К + -каналов, вследствие чего умень-шается число положительно заряженных ионов в клетке. Заряд клетки снова начинает уменьшаться. В фазу инверсии выходу К + из клетки способствует также и электрический градиент. К + вы-талкивается положительным зарядом из клетки и притягивается отрицательным зарядом снаружи клетки.

Так продолжается до пол-ного исчезновения положительного заряда внутри клетки (до кон-ца фазы инверсии - рис. 1.3-2, пунктирная линия), когда начина-ется следующая фаза ПД - фаза реполяризации. Калий выходит из клетки не только по управляемым каналам, ворота которых от-крыты, но и по неуправляемым - каналам утечки, что несколько замедляет ход восходящей части ПД и ускоряет ход нисходящей составляющей ПД.

Таким образом, изменение мембранного потенциала покоя ве-дет к последовательному открытию и закрытию электроуправляе-мых ворот ионных каналов и движению ионов согласно электрохи-мическому градиенту - возникновению ПД. Все фазы являются регенеративными - необходимо только достичь критического уров-ня деполяризации, далее ПД развивается за счет потенциальной энергии клетки в виде электрохимических градиентов, т. е. вторич-но активно.

Амплитуда ПД складывается из величины ПП (мембранно-го потенциала покоящейся клетки) и величины фазы инверсии, составляющей у разных клеток 10-50 мВ. Если мембранный потенциал покоящейся клетки мал, амплитуда ПД этой клетки не-большая.

3. Фаза реполяризации (рис. 1.3-3) связана с тем, что про-ницаемость клеточной мембраны для К + все еще высока (во-рота калиевых каналов открыты), К + продолжает быстро выходить из клетки, согласно концентрационному градиенту. Поскольку клетка теперь уже снова внутри имеет отрицательный заряд, а сна-ружи - положительный (см. рис. 1.3 - 3), электрический гради-ент препятствует выходу К + из клетки, что снижает его проводи-мость, хотя он продолжает выходить.

Это объясняется тем, что действие концентрационного градиента выражено значительно сильнее электрического градиента. Вся нисходящая часть пика ПД обусловлена выходом К + из клетки. Нередко в конце ПД наблюда-ется замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для К + и замедлением выхо-да его из клетки из-за частичного закрытия ворот К-каналов. Вто-рая причина замедления тока К + из клетки связана с возрастани-ем положительного потенциала наружной поверхности клетки и формированием противоположно направленного электрического градиента.

Таким образом, главную роль в возникновении ПД играет Ыа + , входящий в клетку при повышении проницаемости клеточ-ной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене Ма + в среде на другой ион, например холин, ПД в нервной и мышечной клетках скелетной мускулатуры не возника-ет. Однако проницаемость мембраны для К + тоже играет важную роль. Если повышение проницаемости для К + предотвратить тетраэтиламмонием, мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправ-ляемых каналов (каналов утечки ионов), через которые К + будет выходить из клетки.

Роль Са 2+ в возникновении ПД в нервных и мышечных клет-ках скелетной мускулатуры незначительна. Однако Са 2+ играет важную роль в возникновении ПД сердечной и гладкой мышц, в передаче импульсов от одного нейрона к другому, от нервного во-локна к мышечному, в обеспечении мышечного сокращения.

4. Следовая гиперполяризация клеточной мембраны (рис. 1.3 -4) обычно является следствием еще сохраняющейся повышенной проницаемости клеточной мембраны для К + , она характерна для нейронов. Ворота К-каналов еще не полностью закрыты, поэтому К + продолжает выходить из клетки согласно концентрационному градиенту, что и ведет к гиперполяризации клеточной мембраны.

Постепенно проницаемость клеточной мембраны возвращается к исходной (натриевые и калиевые ворота возвращаются в исходное состояние), а мембранный потенциал становится таким же, каким он был до возбуждения клетки. Ыа/К-помпа непосредственно за фазы потенциала действия не отвечает, хотя она и про-должает работать во время развития ПД.

Следовая деполяризация также характерна для нейронов, она может быть зарегистрирована и в клетках скелетной мышцы. Ме-ханизм ее изучен недостаточно. Возможно, это связано с кратко-временным повышением проницаемости клеточной мембраны для Ыа + и входом его в клетку согласно концентрационному и электри-ческому градиентам.

В. Запас ионов в клетке, обеспечивающих возникновение возбуждения (ПД), огромен. Концентрационные градиенты ионов в результате одного цикла возбуждения практически не изменяют-ся. Клетка может возбуждаться до 510 5 раз без подзарядки, то есть без работы Ыа/К-насоса.

Число импульсов, которое гене-рирует и проводит нервное волокно, зависит от его толщины, что определяет запас ионов. Чем толще нервное волокно, тем больше запас ионов и больше импульсов оно может генерировать (от не-скольких сот до нескольких сотен тысяч) без участия №/К-насоса. Однако в тонких С-волокнах на возникновение одного ПД рас-ходуется около 1 % концентрационных градиентов № + и К + .

Таким образом, если заблокировать выработку энергии, то клетка будет еще многократно возбуждаться и в этом случае. В реальной же действительности Ыа/К-насос постоянно переносит Ыа + из клет-ки, а К + возвращает в клетку, в результате постоянно поддержи-вается концентрационный градиент № + и К + , что осуществляет-ся за счет непосредственного расхода энергии, источником которой является АТФ.

Между наружной поверхностью клетки и ее цитоплазмой в состоянии покоя существует разность потенциалов около 0,06-0,09 в, причем поверхность клетки заряжена электроположительно по отношению к цитоплазме. Эту разность потенциалов называют потенциалом покоя или мембранным потенциалом. Точное измерение потенциала покоя возможно только с помощью микроэлектродов, предназначенных для внутриклеточного отведения токов, очень мощных усилителей и чувствительных регистрирующих приборов - осциллографов.

Микроэлектрод (рис. 67, 69) представляет собой тонкий стеклянный капилляр, кончик которого имеет диаметр около 1 мкм. Этот капилляр заполняют солевым раствором, погружают в него металлический электрод и соединяют с усилителем и осциллографом (рис. 68). Как только микроэлектрод прокалывает покрывающую клетку мембрану, луч осциллографа отклоняется вниз из своего исходного положения и устанавливается на новом уровне. Это свидетельствует о наличии разности потенциалов между наружной и внутренней поверхностью клеточной мембраны.

Наиболее полно происхождение потенциала покоя объясняет так называемая мембранно-ионная теория. Согласно этой теории все клетки покрыты мембраной, имеющей неодинаковую проницаемость для различных ионов. В связи с этим внутри клетки в цитоплазме в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем на поверхности. В состоянии покоя клеточная мембрана более проницаема для ионов калия, чем для ионов натрия. Диффузия положительно заряженных ионов калия из цитоплазмы на поверхность клетки придает наружной поверхности мембраны положительный заряд.

Таким образом, поверхность клетки в покое несет на себе положительный заряд, тогда как внутренняя сторона мембраны оказывается заряженной отрицательно за счет ионов хлора, аминокислот и других крупных органических анионов, которые через мембрану практически не проникают (рис. 70).

Потенциал действия

Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя, то в этом участке возникает возбуждение, проявляющееся в быстром колебании мембранного потенциала и называемое потенциалом действия .

Потенциал действия можно зарегистрировать либо с помощью электродов, приложенных к внешней поверхности волокна (внеклеточное отведение), либо микроэлектрода, введенного в цитоплазму (внутриклеточное отведение).

При внеклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий период, измеряемый тысячными долями секунды, становится заряженной электроотрицательно по отношению к покоящемуся участку.

Причина возникновения потенциала действия - изменение ионной проницаемости мембраны. При раздражении проницаемость клеточной мембраны для ионов натрия повышается. Ионы натрия стремятся внутрь клетки, так как, во-первых, они заряжены положительно и их влекут внутрь электростатические силы, во-вторых, концентрация их внутри клетки невелика. В покое клеточная мембрана была малопроницаемой для ионов натрия. Раздражение изменило проницаемость мембраны, и поток положительно заряженных ионов натрия из внешней среды клетки в цитоплазму значительно превышает поток ионов калия из клетки наружу. В результате внутренняя поверхность мембраны становится заряженной положительно, а наружная вследствие потери положительно заряженных ионов натрия отрицательно. В этот момент и регистрируется пик потенциала действия.

Повышение проницаемости мембраны для ионов натрия продолжается очень короткое время. Вслед за этим в клетке возникают восстановительные процессы, приводящие к тому, что проницаемость мембраны для ионов натрия вновь понижается, а для ионов калия возрастает. Поскольку ионы калия также заряжены положительно, то, выходя из клетки, они восстанавливают исходные отношения снаружи и внутри клетки.

Накопления ионов натрия внутри клетки при многократном возбуждении ее не происходит потому, что ионы натрия эвакуируются из нее постоянно за счет действия специального биохимического механизма, называемого "натриевым насосом". Есть данные и об активном транспорте ионов калия с помощью "натрий-калиевого насоса".

Таким образом, согласно мембранно-ионной теории в происхождении биоэлектрических явлений решающее значение имеет избирательная проницаемость клеточной мембраны, обусловливающая разный ионный состав на поверхности и внутри клетки, а следовательно, и разный заряд этих поверхностей. Следует заметить, что многие положения мембранно-ионной теории все еще дискуссионны и нуждаются в дальнейшей разработке.

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода