Вконтакте Facebook Twitter Лента RSS

Формула средней используется при известном объеме совокупности. Как вычислить среднее арифметическое

Сейчас поговорим о том, как рассчитывать среднюю величину .
В классическом виде общая теория статистики предлагает нам один вариант правил выбора средней величины.
Сначала необходимо составить правильно логическую формулу для расчета средней величины (ЛФС). Для каждой средней величины всегда есть только одна логическая формула ее расчета, поэтому ошибиться тут трудно. Но всегда надо помнить, что в числителе (это то, что сверху дроби) сумма всех явлений, а в знаменателе (то, что внизу дроби) общее количество элементов.

После того как составлена логическая формула можно пользоваться правилами (для простоты понимания упростим их и сократим):
1. Если в исходных данных (определяем по частоте) представлен знаменатель логической формулы, то расчет проводим по формуле средней арифметической взвешенной.
2. Если в исходных данных представлен числитель логической формулы, то расчет ведем по формуле средней гармонической взвешенной.
3. Если в задаче представлены сразу и числитель и знаменатель логической формулы (такое бывает редко), то расчет проводим по этой формуле или по формуле средней арифметической простой.
Это классическое представление о выборе верной формулы расчета средней величины. Далее представим последовательность действий при решении задач на расчет средней величины.

Алгоритм решения задач на расчет средней величины

А. Определяем способ расчета средней величины – простой или взвешенный . Если данные представлены в таблице то используем взвешенный способ, если данные представлены простым перечислением, то используем простой способ расчета.

Б. Определяем или расставляем условные обозначения – x – варианта, f – частота . Варианта это то, для какого явления требуется найти среднюю величину. Оставшиеся данные в таблице будут частотой.

В. Определяем форму расчета средней величины – арифметическая или гармоническая . Определение проводится по колонке частот. Арифметическая форма используется, если частоты заданы явным количеством (условно к ним можно подставить слово штук, количество элементов «штук»). Гармоническая форма используется, если частоты заданы не явным количеством, а сложным показателем (произведением осредняемой величины и частоты).

Самое сложное, это догадаться, где и какое количество задано, особенно неопытному в таких делах студенту. В такой ситуации можно воспользоваться одним из предлагаемых далее способов. Для некоторых задач (экономических) подходит наработанное годами практики утверждение (пункт В.1). В других же ситуациях придется пользоваться пунктом В.2.

В.1 Если частота задана в денежных единицах (в рублях), то используется для расчета средняя гармоническая, такое утверждение верно всегда, если выявленная частота задана в деньгах, в других ситуациях это правило не действует.

В.2 Воспользоваться правилами выбора средней величины указанными выше в этой статье. Если частота задана знаменателем логической формулы расчета средней величины, то рассчитываем по средней арифметической форме, если частота задана числителем логической формулы расчета средней величины, то рассчитываем по средней гармонической форме.

Рассмотрим на примерах использование данного алгоритма.

А. Так как данные представлены в строчку то используем простой способ расчета.

Б. В. Имеем только данные по величине пенсий, именно они и будут нашей вариантой – х. Данные представлены простым количеством (12 человек), для расчета используем среднюю арифметическую простую.

Средний размер пенсии пенсионера составляет 9208,3 рубля.

Б. Так как требуется найти средний размер выплаты на одного ребенка, то варианты находятся в первой колонке, туда ставим обозначение х , вторая колонка автоматически становится частотой f .

В. Частота (число детей) задана явным количеством (можно подставить слово штук детей, с точки зрения русского языка неверное словосочетание, но, по сути, очень удобно проверять), значит, для расчета используется средняя арифметическая взвешенная.

Эту же задачу модно решить не формульным способом, а табличным, то есть занести все данные промежуточных расчетов в таблицу.

В результате все, что нужно теперь сделать, это разделить два итоговых данных в правильно порядке.

Средний размер выплаты на одного ребенка в месяц составил 1910 рублей.

А. Так как данные представлены в таблице то для расчета используем взвешенную форму.

В. Частота (себестоимость выпуска) задана неявным количеством (частота задана в рублях пункт алгоритма В1 ), значит, для расчета используется средняя гармоническая взвешенная. Вообще же, по сути, себестоимость выпуска это сложный показатель, который получается перемножение себестоимости единицы изделия на количество таких изделий, вот это и есть суть средней гармонической величины.

Чтобы эта задача могла решаться по формуле средней арифметической необходимо, чтобы вместо себестоимости выпуска стояло число изделий с соответствующей себестоимостью.

Обратите внимание, что сумма в знаменателе, получившаяся после расчетов 410 (120+80+210) это и есть общее количество выпущенных изделий.

Средняя себестоимость единицы изделия составила 314,4 рубля.

А. Так как данные представлены в таблице то для расчета используем взвешенную форму.

Б. Так как требуется найти среднюю себестоимость единицы изделия, то варианты находятся в первой колонке, туда ставим обозначение х , вторая колонка автоматически становится частотой f .

В. Частота (общее число пропусков) задана неявным количеством (это произведение двух показателей числа пропусков и числа студентов, имеющих такое количество пропусков), значит, для расчета используется средняя гармоническая взвешенная. Будем использовать пункт алгоритма В2 .

Чтобы эта задача могла решаться по формуле средней арифметической необходимо, чтобы вместо общего числа пропусков стояло число студентов.

Составляем логическую формулу расчета среднего числа пропусков одного студента.

Частота по условию задачи Общее число пропусков. В логической формуле этот показатель находится в числителе, а значит, используем формулу средней гармонической.

Обратите внимание, что сумма в знаменателе, получившаяся после расчетов 31 (18+8+5) это и есть общее количество студентов.

Среднее число пропусков одного студента 13,8 дня.

В процессе изучения математики школьники знакомятся с понятием среднего арифметического. В дальнейшем в статистике и некоторых других науках студенты сталкиваются и с вычислением других Какими они могут быть и чем отличаются друг от друга?

смысл и различия

Не всегда точные показатели дают понимание ситуации. Для того чтобы оценить ту или иную обстановку, нужно подчас анализировать огромное количество цифр. И тогда на помощь приходят средние значения. Именно они позволяют оценить ситуацию в общем и целом.

Со школьных времен многие взрослые помнят о существовании среднего арифметического. Его очень просто вычислить - сумма последовательности из n членов делится на n. То есть если нужно вычислить среднее арифметическое в последовательности значений 27, 22, 34 и 37, то необходимо решить выражение (27+22+34+37)/4, поскольку в расчетах используется 4 значения. В данном случае искомая величина будет равна 30.

Часто в рамках школьного курса изучают и среднее геометрическое. Расчет данного значения базируется на извлечении корня n-ной степени из произведения n-членов. Если брать те же числа: 27, 22, 34 и 37, то результат вычислений будет равен 29,4.

Среднее гармоническое в общеобразовательной школе обычно не является предметом изучения. Тем не менее оно используется довольно часто. Эта величина обратна среднему арифметическому и рассчитывается как частное от n - количества значений и суммы 1/a 1 +1/a 2 +...+1/a n . Если снова брать тот же для расчета, то гармоническое составит 29,6.

Средневзвешенное значение: особенности

Однако все вышеперечисленные величины могут быть использованы не везде. Например, в статистике при расчете некоторых важную роль имеет "вес" каждого числа, используемого в вычислениях. Результаты являются более показательными и корректными, поскольку учитывают больше информации. Эта группа величин носит общее название "средневзвешенное значение". Их в школе не проходят, поэтому на них стоит остановиться поподробнее.

Прежде всего, стоит рассказать, что подразумевается под "весом" того или иного значения. Проще всего объяснить это на конкретном примере. Два раза в день в больнице происходит замер температуры тела у каждого пациента. Из 100 больных в разных отделениях госпиталя у 44 будет нормальная температура - 36,6 градусов. У еще 30 будет повышенное значение - 37,2, у 14 - 38, у 7 - 38,5, у 3 - 39, и у двух оставшихся - 40. И если брать среднее арифметическое, то эта величина в общем по больнице будет составлять больше 38 градусов! А ведь почти у половины пациентов совершенно И здесь корректнее будет использовать средневзвешенное значение, а "весом" каждой величины будет количество людей. В этом случае результатом расчета будет 37,25 градусов. Разница очевидна.

В случае средневзвешенных расчетов за "вес" может быть принято количество отгрузок, число работающих в тот или иной день людей, в общем, все что угодно, что может быть измерено и повлиять на конечный результат.

Разновидности

Средневзвешенное значение соотносится со средним арифметическим, рассмотренным в начале статьи. Однако первая величина, как уже было сказано, учитывает также вес каждого числа, использованного в расчетах. Помимо этого существуют также средневзвешенное геометрическое и гармоническое значения.

Имеется еще одна интересная разновидность, используемая в рядах чисел. Речь идет о взвешенном скользящем среднем значении. Именно на его основе рассчитываются тренды. Помимо самих значений и их веса там также используется периодичность. И при вычислении среднего значения в какой-то момент времени также учитываются величины за предыдущие временные отрезки.

Расчет всех этих значений не так уж и сложен, однако на практике обычно используется только обычное средневзвешенное значение.

Способы расчета

В век повальной компьютеризации нет необходимости вычислять средневзвешенное значение вручную. Однако нелишним будет знать формулу расчета, чтобы можно было проверить и при необходимости откорректировать полученные результаты.

Проще всего будет рассмотреть вычисление на конкретном примере.

Необходимо узнать, какая же средняя оплата труда на этом предприятии с учетом количества рабочих, получающих тот или иной заработок.

Итак, расчет средневзвешенного значения производится с помощью такой формулы:

x = (a 1 *w 1 +a 2 *w 2 +...+a n *w n)/(w 1 +w 2 +...+w n)

Для примера же вычисление будет таким:

x = (32*20+33*35+34*14+40*6)/(20+35+14+6) = (640+1155+476+240)/75 = 33,48

Очевидно, что нет особых сложностей с тем, чтобы вручную рассчитать средневзвешенное значение. Формула же для вычисления этой величины в одном из самых популярных приложений с формулами - Excel - выглядит как функция СУММПРОИЗВ (ряд чисел; ряд весов)/СУММ (ряд весов).

Среднее арифметическое - статистический показатель, который демонстрирует среднее значение заданного массива данных. Такой показатель рассчитывается как дробь, в числителе которой стоит сумма всех значений массива, а в знаменателе - их количество. Среднее арифметическое - важный коэффициент, который находит применение в бытовых расчетах.

Смысл коэффициента

Среднее арифметическое - элементарный показатель для сравнения данных и подсчета приемлемого значения. К примеру, в разных магазинах продается банка пива конкретного производителя. Но в одном магазине она стоит 67 рублей, в другом - 70 рублей, в третьем - 65 рублей, а в последнем - 62 рубля. Довольно большой разбег цен, поэтому покупателю будет интересна средняя стоимость банки, чтобы при покупке товара он мог сравнить свои расходы. В среднем банка пива по городу имеет цену:

Средняя цена = (67 + 70 + 65 + 62) / 4 = 66 рублей.

Зная среднюю цену, легко определить где выгодно покупать товар, а где придется переплатить.

Среднее арифметические постоянно используется в статистических расчетах в случаях, если анализируется однородный набор данных. В примере выше - это цена банки пива одной марки. Однако мы не можем сравнить цену на пиво разных производителей или цены на пиво и лимонад, так как в этом случае разброс значений будет больше, средняя цена будет смазана и недостоверна, а сам смысл расчетов исказится до карикатурного «средняя температура по больнице». Для расчета разнородных массивов данных используется среднее арифметическое взвешенное, когда каждое значение получает свой весовой коэффициент.

Подсчет среднего арифметического

Формула для вычислений предельно проста:

P = (a1 + a2 + … an) / n,

где an – значение величины, n – общее количество значений.

Для чего может использоваться данный показатель? Первое и очевидное его применение - это статистика. Практически в каждом статистическом исследовании используется показатель среднего арифметического. Это может быть средний возраст вступления в брак в России, средняя оценка по предмету у школьника или средние траты на продукты в день. Как уже говорилось выше, без учета весов подсчет средних значений может давать странные или абсурдные значения.

К примеру, президент Российской Федерации сделал заявление, что по статистике, средняя зарплата россиянина составляет 27 000 рублей. Для большинства жителей России такой уровень зарплаты показался абсурдным. Не мудрено, если при расчете учитывать размер доходов олигархов, руководителей промышленных предприятий, крупных банкиров с одной стороны и зарплаты учителей, уборщиков и продавцов с другой. Даже средние зарплаты по одной специальности, например, бухгалтера, будут иметь серьезные отличия в Москве, Костроме и Екатеринбурге.

Как считать средние для разнородных данных

В ситуациях с подсчетом заработной платы важно учитывать вес каждого значения. Это означает, что зарплаты олигархов и банкиров получили бы вес, например, 0,00001, а зарплаты продавцов - 0,12. Это цифры с потолка, но они приблизительно иллюстрируют распространенность олигархов и продавцов в российском обществе.

Таким образом, для подсчета среднего средних или среднего значения в разнородном массиве данных, требуется использовать среднее арифметическое взвешенное. Иначе вы получите среднюю зарплату по России на уровне 27 000 рублей. Если же вы хотите узнать свою среднюю оценку по математике или среднее количество забитых шайб выбранного хоккеиста, то вам подойдет калькулятор среднего арифметического.

Наша программа представляет собой простой и удобный калькулятор для расчета среднего арифметического. Для выполнения расчетов вам понадобится ввести только значения параметров.

Рассмотрим пару примеров

Расчет средней оценки

Многие учителя используют метод среднего арифметического для определения годовой оценки по предмету. Давайте представим, что ребенок получил следующие четвертные отметки по математике: 3, 3, 5, 4. Какую годовую оценку ему поставит учитель? Воспользуемся калькулятором и посчитаем среднее арифметическое. Для начала выберете соответствующее количество полей и введите значения оценок в появившиеся ячейки:

(3 + 3 + 5 + 4) / 4 = 3,75

Учитель округлит значение в пользу ученика, и школьник получит за год твердую четверку.

Расчет съеденных конфет

Давайте проиллюстрируем некоторую абсурдность среднего арифметического. Представим, что у Маши и Вовы было 10 конфет. Маша съела 8 конфет, а Вова - всего 2. Сколько конфет в среднем съел каждый ребенок? При помощи калькулятора легко вычислить, что в среднем дети съели по 5 конфет, что совершенно не соответствует действительности и здравому смыслу. Этот пример показывает, что показатель среднего арифметического важно считать для осмысленных наборов данных.

Заключение

Расчет среднего арифметического широко используется во многих научных сферах. Этот показатель популярен не только в статистических расчетах, но и в физике, механике, экономике, медицине или финансах. Используйте наши калькуляторы в качестве помощника для решения задач на вычисление среднего арифметического.

Признаки единиц статистических совокупностей различны по своему значению, например, заработная плата рабочих одной профессии какого-либо предприятия не одинакова за один и тот же период времени, различны цены на рынке на одинаковую продукцию, урожайность сельскохозяйственных культур в хозяйствах района и т.д. Поэтому, чтобы определить значение признака, характерное для всей изучаемой совокупности единиц, рассчитывают средние величины.
Средняя величина это обобщающая характеристика множества индивидуальных значений некоторого количественного признака.

Совокупность, изучаемая по количественному признаку, состоит из индивидуальных значений; на них оказывают влияние, как общие причины, так и индивидуальные условия. В среднем значении отклонения, характерные для индивидуальных значений, погашаются. Средняя, являясь функцией множества индивидуальных значений, представляет одним значением всю совокупность и отражает то общее, что присуще всем ее единицам.

Средняя, рассчитываемая для совокупностей, состоящих из качественно однородных единиц, называется типической средней . Например, можно рассчитать среднемесячную заработную плату работника той или иной профессиональной группы (шахтера, врача библиотекаря). Разумеется, уровни месячной заработной платы шахтеров в силу различия их квалификации, стажа работы, отработанного за месяц времени и многих других факторов отличаются друг от друга, так и от уровня средней заработной платы. Однако в среднем уровне отражены основные факторы, которые влияют на уровень заработной платы, и взаимно погашаются различия, которые возникают вследствие индивидуальных особенностей работника. Средняя заработная плата отражает типичный уровень оплаты труда для данного вида работников. Получению типической средней должен предшествовать анализ того, насколько данная совокупность качественно однородна. Если совокупность состоит их отдельных частей, следует разбить ее на типические группы (средняя температура по больнице).

Средние величины, используемые в качестве характеристик для неоднородных совокупностей, называются системными средними . Например, средняя величина валового внутреннего продукта (ВВП) на душу населения, средняя величина потребления различных групп товаров на человека и другие подобные величины, представляющие обобщающие характеристики государства как единой экономической системы.

Средняя должна вычисляться для совокупностей, состоящих из достаточно большого числа единиц. Соблюдение этого условия необходимо для того, чтобы вошел в силу закон больших чисел, в результате действия которого случайные отклонения индивидуальных величин от общей тенденции взаимно погашаются.

Виды средних и способы их вычисления

Выбор вида средней определяется экономическим содержанием определенного показателя и исходных данных. Однако любая средняя величина должна вычисляться так, чтобы при замене ею каждой варианты осредняемого признака не изменился итоговый, обобщающий, или, как его принято называть, определяющий показатель , который связан с осредняемым показателем. Например, при замене фактических скоростей на отдельных отрезках пути их средней скоростью не должно измениться общее расстояние, пройденное транспортным средством за одно и тоже время; при замене фактических заработных плат отдельных работников предприятия средней заработной платой не должен измениться фонд заработной платы. Следовательно, в каждом конкретном случае в зависимости от характера имеющихся данных, существует только одно истинное среднее значение показателя, адекватное свойствам и сущности изучаемого социально-экономического явления.
Наиболее часто применяются средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая и средняя кубическая.
Перечисленные средние относятся к классу степенных средних и объединяются общей формулой:
,
где – среднее значение исследуемого признака;
m – показатель степени средней;
– текущее значение (варианта) осредняемого признака;
n – число признаков.
В зависимости от значения показателя степени m различают следующие виды степенных средних:
при m = -1 – средняя гармоническая ;
при m = 0 – средняя геометрическая ;
при m = 1 – средняя арифметическая ;
при m = 2 – средняя квадратическая ;
при m = 3 – средняя кубическая .
При использовании одних и тех же исходных данных, чем больше показатель степени m в вышеприведенной формуле, тем больше значение средней величины:
.
Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется правилом мажорантности средних .
Каждая из отмеченных средних может приобретать две формы: простую и взвешенную .
Простая форма средней применяется, когда средняя вычисляется по первичным (несгруппированными) данным. Взвешенная форма – при расчете средней по вторичным (сгруппированным) данным.

Средняя арифметическая

Средняя арифметическая применяется, когда объем совокупности представляет собой сумму всех индивидуальных значений варьирующего признака. Следует отметить, что если вид средней величины не указывается, подразумевается средняя арифметическая. Ее логическая формула имеет вид:

Средняя арифметическая простая рассчитывается по несгруппированным данным по формуле:
или ,
где – отдельные значения признака;
j – порядковый номер единицы наблюдения, которая характеризуется значением ;
N – число единиц наблюдения (объем совокупности).
Пример. В лекции «Сводка и группировка статистических данных» рассматривались результаты наблюдения стажа работы бригады из 10 человек. Рассчитаем средний стаж работы рабочих бригады. 5, 3, 5, 4, 3, 4, 5, 4, 2, 4.

По формуле средней арифметической простой вычисляются также средние в хронологическом ряду , если интервалы времени, за которое представлены значения признака, равны.
Пример. Объем реализованной продукции за первый квартал составил 47 ден. ед., за второй 54, за третий 65 и за четвертый 58 ден. ед. Среднеквартальный оборот составляет (47+54+65+58)/4 = 56 ден. ед.
Если в хронологическом ряду приведены моментные показатели, то при вычислении средней они заменяются полусуммами значений на начало и конец периода.
Если моментов больше двух и интервалы между ними равны, то средняя вычисляется по формуле средней хронологической

,
где n- число моментов времени
В случае, когда данные сгруппированы по значениям признака (т. е. построен дискретный вариационный ряд распределения) средняя арифметическая взвешенная рассчитывается с использовании либо частот , либо частостей наблюдения конкретных значений признака , число которых (k) значительно меньше числа наблюдений (N) .
,
,
где k – количество групп вариационного ряда,
i – номер группы вариационного ряда.
Поскольку , а , получаем формулы, используемые для практических расчетов:
и
Пример. Рассчитаем средний стаж рабочих бригад по сгруппированному ряду.
а) с использованием частот:

б) с использованием частостей:

В случае, когда данные сгруппированы по интервалам , т.е. представлены в виде интервальных рядов распределения, при расчете средней арифметической в качестве значения признака принимают середину интервала, исходя из предположения о равномерном распределении единиц совокупности на данном интервале. Расчет ведется по формулам:
и
где - середина интервала: ,
где и – нижняя и верхняя границы интервалов (при условии, что верхняя граница данного интервала совпадает с нижней границей следующего интервала).

Пример. Рассчитаем среднюю арифметическую интервального вариационного ряда, построенного по результатам исследования годовой заработной платы 30 рабочих (см. лекцию «Сводка и группировка статистических данных»).
Таблица 1 – Интервальный вариационный ряд распределения.

Интервалы, грн.

Частота, чел.

Частость,

Середина интервала,

600-700
700-800
800-900
900-1000
1000-1100
1100-1200

3
6
8
9
3
1

0,10
0,20
0,267
0,30
0,10
0,033

(600+700):2=650
(700+800):2=750
850
950
1050
1150

1950
4500
6800
8550
3150
1150

65
150
226,95
285
105
37,95

грн. или грн.
Средние арифметические, вычисленные на основе исходных данных и интервальных вариационных рядов, могут не совпадать из-за неравномерности распределения значений признака внутри интервалов. В этом случае для более точного вычисления средней арифметической взвешенной следует использовать не средины интервалов, а средние арифметические простые, рассчитанные для каждой группы (групповые средние ). Средняя, вычисленная по групповым средним с использованием взвешенной формулы расчета, называется общей средней .
Средняя арифметическая обладает рядом свойств.
1. Сумма отклонений вариант от средней равна нулю:
.
2. Если все значения вариант увеличиваются или уменьшаются на величину А, то и средняя величина увеличивается или уменьшается на ту же величину А:

3. Если каждую варианту увеличить или уменьшить в В раз, то средняя величина также увеличится или уменьшатся в то же количество раз:
или
4. Сумма произведений вариант на частоты равна произведению средней величины на сумму частот:

5. Если все частоты разделить или умножить на какое-либо число, то средняя арифметическая не изменится:

6) если во всех интервалах частоты равны друг другу, то средняя арифметическая взвешенная равна простой средней арифметической:
,
где k – количество групп вариационного ряда.

Использование свойств средней позволяет упростить ее вычисление.
Допустим, что все варианты (х) сначала уменьшены на одно и то же число А, а затем уменьшены в В раз. Наибольшее упрощение достигается, когда в качестве А выбирается значение середины интервала, обладающего наибольшей частотой, а в качестве В – величина интервала (для рядов с одинаковыми интервалами). Величина А называется началом отсчета, поэтому этот метод вычисления средней называется спосо бом отсчета от условного нуля или способом моментов .
После такого преобразования получим новый вариационный ряд распределения, варианты которого равны . Их средняя арифметическая, называемая моментом первого порядка, выражаетсяформулой и согласно второго и третьего свойств средней арифметической равна средней из первоначальных вариант, уменьшенной сначала на А, а потом в В раз, т. е. .
Для получения действительной средней (средней первоначального ряда)нужно момент первого порядка умножить на В и прибавить А:

Расчет средней арифметической по способу моментов иллюстрируется данными табл. 2.
Таблица 2 – Распределение работников цеха предприятия по стажу работы


Стаж работников, лет

Количество работников

Середина интервала

0 – 5
5 – 10
10 – 15
15 – 20
20 – 25
25 – 30

12
16
23
28
17
14

2,5
7,5
12,7
17,5
22,5
27,5

15
-10
-5
0
5
10

3
-2
-1
0
1
2

36
-32
-23
0
17
28

Находим момент первого порядка . Затем, зная, что А=17,5, а В=5, вычисляем средний стаж работы работников цеха:
лет

Средняя гармоническая
Как было показано выше, средняя арифметическая применяется для расчета среднего значения признака в тех случаях, когда известны его варианты x и их частоты f.
Если статистическая информация не содержит частот f по отдельным вариантам x совокупности, а представлена как их произведение , применяется формула средней гармонической взвешенной . Чтобы вычислить среднюю, обозначим , откуда . Подставив эти выражения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:
,
где - объем (вес) значений признака показателя в интервале с номером i (i=1,2, …, k).

Таким образом, средняя гармоническая применяется в тех случаях, когда суммированию подлежат не сами варианты, а обратные им величины: .
В тех случаях, когда вес каждой варианты равен единице, т.е. индивидуальные значения обратного признака встречаются по одному разу, применяется средняя гармоническая простая :
,
где – отдельные варианты обратного признака, встречающиеся по одному разу;
N – число вариант.
Если по двум частям совокупности численностью и имеются средние гармонические, то общая средняя по всей совокупности рассчитывается по формуле:

и называется взвешенной гармонической средней из групповых средних .

Пример. В ходе торгов на валютной бирже за первый час работы заключены три сделки. Данные о сумме продажи гривны и курсе гривны по отношению к доллару США приведены в табл. 3 (графы 2 и 3). Определить средний курс гривны по отношению к доллару США за первый час торгов.
Таблица 3 – Данные о ходе торгов на валютной бирже

Средний курс доллара определяется отношением суммы проданных в ходе всех сделок гривен к сумме приобретенных в результате этих же сделок долларов. Итоговая сумма продажи гривны известна из графы 2 таблицы, а количество купленных в каждой сделке долларов определяется делением суммы продажи гривны к ее курсу (графа 4). Всего в ходе трех сделок куплено 22 млн. дол. Значит, средний курс гривны за один доллар составил
.
Полученное значение является реальным, т.к. замена им фактических курсов гривны в сделках не изменит итоговой суммы продаж гривны, выступающей в качестве определяющего показателя : млн. грн.
Если бы для расчета была использована средняя арифметическая, т.е. гривны, то по обменному курсу на покупку 22 млн. дол. нужно было бы затратить 110,66 млн. грн., что не соответствует действительности.

Средняя геометрическая
Средняя геометрическая используется для анализа динамики явлений и позволяет определить средний коэффициент роста. При расчете средней геометрической индивидуальные значения признака представляют собой относительные показатели динамики, построенные в виде цепных величин, как отношения каждого уровня к предыдущему.
Средняя геометрическая простая рассчитывается по формуле:
,
где – знак произведения,
N – число осредняемых величин.
Пример. Количество зарегистрированных преступлений за 4 года возросло в 1,57 раза, в т. ч. за 1-й – в 1,08 раза, за 2-й – в 1,1 раза, за 3-й – в 1,18 и за 4-й – в 1,12 раза. Тогда среднегодовой темп роста количества преступлений составляет: , т.е. число зарегистрированных преступлений ежегодно росло в среднем на 12%.

1,8
-0,8
0,2
1,0
1,4

1
3
4
1
1

3,24
0,64
0,04
1
1,96

3,24
1,92
0,16
1
1,96

Для расчета средней квадратической взвешенной определяем и заносим в таблицу и . Тогда средняя величина отклонений длины изделий от заданной нормы равна:

Средняя арифметическая в данном случае была бы непригодна, т.к. в результате мы получили бы нулевое отклонение.
Применение средней квадратической будет рассмотрено далее в показателях вариации.

5.1. Понятие средней величины

Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

Вычисление среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Остановимся на некоторых общих принципах применения средних величин.
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.
4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

5.2. Виды средних и способы их вычисления

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качестве структурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

где X i – варианта (значение) осредняемого признака;

n – число вариант.

Взвешенная средняя считается по сгруппированным данным и имеет общий вид

,

где X i – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
m – показатель степени средней;
f i – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.

Приведем в качестве примера расчет среднего возраста студентов в группе из 20 человек:


Средний возраст рассчитаем по формуле простой средней:

Сгруппируем исходные данные. Получим следующий ряд распределения:

В результате группировки получаем новый показатель – частоту, указывающую число студентов в возрасте Х лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:

Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:
средняя гармоническая, если m = -1;
средняя геометрическая, если m –> 0;
средняя арифметическая, если m = 1;
средняя квадратическая, если m = 2;
средняя кубическая, если m = 3.

Формулы степенных средних приведены в табл. 4.4.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Таблица 5.1

Виды степенных средних

Вид степенной
средней
Показатель
степени (m)
Формула расчета
Простая Взвешенная
Гармоническая -1
Геометрическая 0
Арифметическая 1
Квадратическая 2
Кубическая 3

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым . Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.

Формула средней геометрической

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i 1 , i 2 , i 3 ,..., i n . Очевидно, что объем производства в последнем году определяется начальным его уровнем (q 0) и последующим наращиванием по годам:

q n =q 0 × i 1 × i 2 ×...×i n .

Приняв q n в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

Отсюда

5.3. Структурные средние

Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой – не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

,

где X Me – нижняя граница медианного интервала;
h Me – его величина;
(Sum m)/2 – половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);
S Me-1 – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;
m Me – число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

В нашем примере могут быть получены даже три медианных значения – исходя из признаков количества предприятий, объема продукции и общей суммы затрат на производство:

Таким образом, у половины предприятий уровень себестоимость единицы продукции превышает 125,19 тыс. руб., половина всего объема продукции производится с уровнем затрат на изделие больше 124,79 тыс. руб. и 50 % общей суммы затрат образуется при уровне себестоимости одного изделия выше 125,07 тыс. руб. Заметим также, что наблюдается некоторая тенденция к росту себестоимости, так как Ме 2 = 124,79 тыс. руб., а средний уровень равен 123,15 тыс. руб.

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

где Х Mo – нижнее значение модального интервала;
m Mo – число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);
m Mo -1 – то же для интервала, предшествующего модальному;
m Mo+1 – то же для интервала, следующего за модальным;
h – величина интервала изменения признака в группах.

Для нашего примера можно рассчитать три модальных значения исходя из признаков числа предприятий, объема продукции и суммы затрат. Во всех трех случаях модальный интервал один и тот же, так как для одного и того же интервала оказываются наибольшими и число предприятий, и объем продукции, и общая сумма затрат на производство:

Таким образом, чаще всего встречаются предприятия с уровнем себестоимости 126,75 тыс. руб., чаще всего выпускается продукция с уровнем затрат 126,69 тыс. руб., и чаще всего затраты на производство объясняются уровнем себестоимости в 123,73 тыс. руб.

5.4. Показатели вариации

Конкретные условия, в которых находится каждый из изучаемых объектов, а также особенности их собственного развития (социальные, экономические и пр.) выражаются соответствующими числовыми уровнями статистических показателей. Таким образом, вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления.

Для измерения вариации в статистике применяют несколько способов.

Наиболее простым является расчет показателя размаха вариации Н как разницы между максимальным (X max) и минимальным (X min) наблюдаемыми значениями признака:

H=X max - X min .

Однако размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается.

Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение Л как среднее арифметическое значение абсолютных отклонений признака от его среднего уровня:

При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной:

(Напомним, что алгебраическая сумма отклонений от среднего уровня равна нулю.)

Показатель среднего линейного отклонения нашел широкое применение на практике. С его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования. Но, к сожалению, этот показатель усложняет расчеты вероятностного типа, затрудняет применение методов математической статистики. Поэтому в статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии.

Дисперсия признака (s 2) определяется на основе квадратической степенной средней:

.

Показатель s, равный , называется средним квадратическим отклонением.

В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов.

Если вариация оценивается по небольшому числу наблюдений, взятых из неограниченной генеральной совокупности, то и среднее значение признака определяется с некоторой погрешностью. Расчетная величина дисперсии оказывается смещенной в сторону уменьшения. Для получения несмещенной оценки выборочную дисперсию, полученную по приведенным ранее формулам, надо умножить на величину n / (n - 1). В итоге при малом числе наблюдений (< 30) дисперсию признака рекомендуется вычислять по формуле

Обычно уже при n > (15÷20) расхождение смещенной и несмещенной оценок становится несущественным. По этой же причине обычно не учитывают смещенность и в формуле сложения дисперсий.

Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсию среднего значения можно и на основе всего одного выборочного наблюдения по формуле

,

где n – объем выборки; s 2 – дисперсия признака, рассчитанная по данным выборки.

Величина носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.

Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней

.

2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины

.

3. Коэффициент вариации:

является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со средним квадратическим отклонением s = 10 лет, «состарилась» еще на 15 лет. Теперь = 30 лет, а среднеквадратическое отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15 × 100 = 66,7%), со временем оказывается, таким образом, вполне однородной (10/30 × 100 = 33,3 %).

Боярский А.Я. Теоретические исследования по статистике: Сб. Науч. Трудов.– М.: Статистика,1974. С. 19–57.

Предыдущая
Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода