Вконтакте Facebook Twitter Лента RSS

Каракатица как передвигается. Передвигаются каракатицы не так быстро, как их родственники кальмары

Передвигаются каракатицы не так быстро, как их родственники кальмары, хотя и имеют на вооружении реактивную воронку. Обычно они плавают при помощи плавников, но могут использовать и реактивный способ передвижения. Плавники могут действовать раздельно, что дает каракатице удивительную маневренность при движении - она может двигаться даже боком. Если же каракатица передвигается только реактивным способом, то плавники она прижимает к брюху. Часто каракатицы собираются в небольшие стайки, двигаясь ритмично и согласованно, при этом одновременно меняя окраску тела. Зрелище очень завораживающее.

Слайд 15 из презентации «Головоногие моллюски» . Размер архива с презентацией 719 КБ.

Биология 7 класс

краткое содержание других презентаций

«Факты о птицах» - Нервная система. Пищеварительная система. Яйца птиц. Класс Птицы. Внешнее строение. Интересные факты. Немного о птицах. Эволюция птиц. Разнообразие птиц. Половая система. Значение птиц в природе. Птицы в жизни человека. Кровеносная система. Выделительная система.

«Особенности размножения покрытосеменных растений» - Способ бесполого размножения. Способы опыления. Камбий в стебле древесного растения. Двойное оплодотворение у покрытосеменных растений. Семя. Тест. Строение цветка. Два спермия. Оплодотворение. Какой способ бесполого размножения изображен на рисунке. Признак покрытосеменных растений. Семя пшеницы. Особенности полового и бесполого размножения. Вставьте пропущенные слова. Размножение покрытосеменных.

«Описание моллюсков» - Фронтальный мини-тест по теме «Черви». Ископаемые остатки моллюсков. Лужанка. Типы животных. Органы выделения. Разнообразие моллюсков. У некоторых видов раковины нет. Спрут. Кальмар. Объясните ошибки из высказывания. Моллюски села Шуйское. Характерные признаки моллюсков. Классификация моллюсков. Движение головоногих. Внешнее строение моллюсков. Брюхоногие. Разнообразие раковин. Внутреннее строение моллюсков.

«Пчёлы» - Ячейки разделяются по строению. Роль пчелы. Гнездо пчелиной семьи. Цветочная пыльца. Лечение пчелиным ядом. Грудь. Мед. Тело взрослой пчелы. Роение. Пара больших боковых сложных глаз. Пчелиная матка. Ротовой аппарат. Пчелиный яд. Пчела - символ трудолюбия. Органы дыхания. Мед есть сок с росы небесной. Пчёлы.

«Пищевые трофические связи» - Трофические отношения в природе. Выберите консументов. Типы биотических отношений. Типы взаимотношений. Тип биотических отношений. Консументы. Бурая водоросль. Нектар цветов. Значение. Урок экологии. Продуценты. Трофические цепи. Давайте жить дружно. Компоненты экосистемы. Клевер. Пищевая цепь. Веселый тест. Редуценты. Таблица. Правило. Необходимые компоненты экосистемы. Детритные пищевые цепи. Пары организмов.

«Органы дыхания» - Основной орган дыхания в водной среде. Паукообразные. Жабры. Пресмыкающиеся. Дыхательная система земноводных. Трахеи. Дыхательная система млекопитающих. Жаберные щели. Найдите ошибки в тексте. Птицы. Органы дыхания и газообмен. Пластинчатые перистые жабры. По дыханию все живое делится на две группы. Эволюция дыхательной системы. Ракообразные. Растения, грибы и примитивные животные. Функции дыхательной системы.

Вам странно будет услышать, что есть не мало живых существ, для которых мнимое «поднятие самого себя за волосы» является обычным способом их перемещения в воде.

Рисунок 10. Плавательное движение каракатицы.

Каракатица и вообще большинство головоногих моллюсков движутся в воде таким образом: забирают воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывают струю воды через упомянутую воронку; при этом они – по закону противодействия – получают обратный толчок, достаточный для того, чтобы довольно быстро плавать задней стороной тела вперед. Каракатица может, впрочем, направить трубку воронки вбок или назад и, стремительно выдавливая из нее воду, двигаться в любом направлении.

На том же основано и движение медузы: сокращением мускулов она выталкивает из‑под своего колоколообразного тела воду, получая толчок в обратном направлении. Сходным приемом пользуются при движении сальпы, личинки стрекоз и другие водные животные. А мы еще сомневались, можно ли так двигаться!

К звездам на ракете

Что может быть заманчивее, чем покинуть земной шар и путешествовать по необъятной вселенной, перелетать с Земли на Луну, с планеты на планету? Сколько фантастических романов написано на эту тему! Кто только не увлекал нас в воображаемое путешествие по небесным светилам! Вольтер в «Микромегасе», Жюль Верн в «Путешествии на Луну» и «Гекторе Сервадаке», Уэллс в «Первых людях на Луне» и множество их подражателей совершали интереснейшие путешествия на небесные светила, – конечно, в мечтах.

Неужели же нет возможности осуществить эту давнишнюю мечту? Неужели все остроумные проекты, с таким заманчивым правдоподобием изображенные в романах, на самом деле неисполнимы? В дальнейшем мы будем еще беседовать о фантастических проектах межпланетных путешествий; теперь же познакомимся с реальным проектом подобных перелетов, впервые предложенным нашим соотечественником К. Э. Циолковским.

Можно ли долететь до Луны на самолете? Конечно, нет: самолеты и дирижабли движутся только потому, что опираются о воздух, отталкиваются от него, а между Землей и Луной воздуха нет. В мировом пространстве вообще нет достаточно плотной среды, на которую мог бы опереться «межпланетный дирижабль». Значит, надо придумать такой аппарат, который способен был бы двигаться и управляться, ни на что не опираясь.

Мы знакомы уже с подобным снарядом в виде игрушки – с ракетой. Отчего бы не устроить огромную ракету, с особым помещением для людей, съестных припасов, баллонов с воздухом и всем прочим? Вообразите, что люди в ракете везут с собой большой запас горючих веществ я могут направлять истечение взрывных газов в любую сторону. Вы получите настоящий управляемый небесный корабль, на котором можно плыть в океане мирового пространства, полететь на Луну, на планеты… Пассажиры смогут, управляя взрывами, увеличивать скорость этого межпланетного дирижабля с необходимой постепенностью, чтобы возрастание скорости было для них безвредно. При желании спуститься на какую‑нибудь планету они смогут, повернув свой корабль, постепенно уменьшить скорость снаряда и тем ослабить падение. Наконец, пассажиры смогут таким же способом возвратиться и на Землю.

Рисунок 11. Проект межпланетного дирижабля, устроенного наподобие ракеты.

Вспомним, как недавно еще делала свои первые робкие завоевания авиация. А сейчас – самолеты уже высоко реют в воздухе, перелетают горы, пустыни, материки, океаны. Может быть, и «звездоплаванию» предстоит такой же пышный расцвет через два‑три десятка лет? Тогда человек разорвет невидимые цепи, так долго приковывавшие его к родной планете, и ринется в безграничный простор вселенной.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

От редакции
Предлагаемое издание «Занимательной физики» в основном повторяет предыдущие. Я. И. Перельман в течение многих лет работал над книгой, совершенствуя текст и дополняя его, и в последн

Самый дешевый способ путешествовать
Остроумный французский писатель XVII века Сирано де Бержерак в своей сатирической «Истории государств на Луне» (1652 г.) рассказывает, между прочим, о таком будто бы происшедшем с н

Письмо с самолета
Вообразите, что вы находитесь в самолете, который быстро летит над землей. Внизу – знакомые места. Сейчас вы пролетите над домом, где живет ваш приятель. «Хорошо бы послать ему прив

Бомбометание
После сказанного становится ясным, как трудна задача военного летчика, которому поручено сбросить бомбу на определенное место: ему приходится принимать в расчет и скорость самолета,

Безостановочная железная дорога
Когда вы стоите на неподвижной платформе вокзала и мимо нее проносится курьерский поезд, то вскочить в вагон на ходу, конечно, мудрено. Но представьте себе, что и платформа под вами

Движущиеся тротуары
На принципе относительности движения основано и другое приспособление, применявшееся до сих пор только на выставках: так называемые «движущиеся тротуары». Впервые они были осуществл

Трудный закон
Ни один из трех основных законов механики не вызывает, вероятно, столько недоумений, как знаменитый «третий закон Ньютона» – закон действия и противодействия. Все его знают, умеют д

Отчего погиб Святогор-богатырь?
Помните народную былину о Святогоре‑богатыре, который вздумал поднять Землю? Архимед, если верить преданию, тоже готов был совершить такой же подвиг и требовал точки опоры для

Можно ли двигаться без опоры?
При ходьбе мы отталкиваемся ногами от земли или от пола; по очень гладкому полу или по льду, от которого нога не может оттолкнуться, ходить нельзя. Паровоз при движении отталкиваетс

Почему взлетает ракета?
Даже среди людей, изучавших физику, случается нередко слышать совершенно превратное объяснение полета ракеты: она летит потому будто бы, что своими газами, образующимися при горении

Задача о лебеде, раке и щуке
История о том, как «лебедь, рак да щука везти с поклажей воз взялись», известна всем. Но едва ли кто пробовал рассматривать эту басню с точки зрения механики. Результат получается в

Вопреки Крылову
Мы только что видели, что житейское правило Крылова: «когда в товарищах согласья нет, на лад их дело не пойдет» – не всегда применимо в механике. Силы могут быть направлены не в одн

Легко ли сломать яичную скорлупу?
В числе философских вопросов, над которыми ломал свою мудрую голову глубокомысленный Кифа Мокиевич из «Мертвых душ», была такая проблема: «Ну, а если бы слон родился в яйце, ведь ск

Под парусами против ветра
Трудно представить себе, как могут парусные суда идти «против ветра» – или, по выражению моряков, идти «в бейдевинд». Правда, моряк скажет вам, что прямо против ветра идти под парус

Мог ли Архимед поднять Землю?
«Дайте мне точку опоры, и я подниму Землю!» – такое восклицание легенда приписывает Архимеду, гениальному механику древности, открывшему законы рычага.

Жюль-верновский силач и формула Эйлера
Вы помните у Жюля Верна силача‑атлета Матифу? «Великолепная голова, пропорциональная исполинскому росту; грудь, похожая на кузнечный мех; ноги – как хорошие бревна, руки – нас

От чего зависит крепость узлов?
В обыденной жизни мы, сами не подозревая, часто пользуемся выгодой, на которую указывает нам формула Эйлера. Что такое узел, как не бечевка, навитая на валик, роль которого в данном

Если бы не было трения
Вы видите, как разнообразно и порой неожиданно проявляется трение в окружающей нас обстановке. Трение принимает участие, и притом весьма существенное, там, где мы о нем даже и не по

Самоуравновешивающаяся палка
На указательные пальцы расставленных рук положите гладкую палку, как показано на рис. 24. Теперь двигайте пальцы навстречу друг другу, пока они сойдутся вплотную. Странная вещь! Ока

Почему не падает вращающийся волчок?
Из тысяч людей, забавлявшихся в детстве с волчком, не многие смогут правильно ответить на этот вопрос. Как, в самом деле, объяснить то, что вращающийся волчок, поставленный отвесно

Искусство жонглеров
Многие удивительные фокусы разнообразной программы жонглеров основаны тоже на свойстве вращающихся тел сохранять направление оси вращения. Позволю себе привести выдержку из увлекате

Новое решение колумбовой задачи
Свою знаменитую задачу о том, как поставить яйцо, Колумб решил чересчур просто: надломил его скорлупу. Такое решение, в сущности, неверно: надломив скорлупу яйца, Колумб изменил

Уничтоженная» тяжесть
«Вода не выливается из сосуда, который вращается, – не выливается даже тогда, когда сосуд перевернут дном вверх, ибо этому мешает вращение», – писал две тысячи лет назад Аристотель.

Вы в роли Галилея
Для любителей сильных ощущений иногда устраивается весьма своеобразное развлечение – так называемая «чертова качель». Имелась такая качель и в Ленинграде. Мне не пришлось самому на

Мой спор с вами
Доказать свою правоту вам будет не так легко, как вы, может быть, полагаете. Вообразите, что вы в самом деле очутились на «чертовой качели» и хотите убедить ваших соседей, что они з

Финал нашего спора
Теперь позвольте вам посоветовать, как одержать победу в этом споре. Надо взять с собою на «чертову качель» пружинные весы, положить на их чашку гирю, например в 1 кг, и следить за

В «заколдованном» шаре
Один предприниматель в Америке устроил для развлечения публики очень забавную и поучительную карусель в форме шарообразной вращающейся комнаты. Люди внутри нее испытывают такие необ

Жидкий телескоп
Наилучшая форма для зеркала отражательного телескопа – параболическая, т. е. именно та форма, какую сама собою принимает поверхность жидкости во вращающемся сосуде. Конструкторы тел

Математика в цирке
Я знаю, что ряды «бездушных» формул отпугивают иных любителей физики. Но, отказываясь от знакомства с математической стороной явлений, такие недруги математики лишают себя удовольст

Нехватка в весе
Какой‑то шутник объявил однажды, что знает способ без обмана обвешивать покупателей. Секрет состоит в том, чтобы покупать товары в странах экваториальных, а продавать – поближ

Велика ли сила притяжения?
«Если бы мы не наблюдали ежеминутно падения тел, оно было бы для нас самым удивительным явлением», – писал знаменитый французский астроном Араго. Привычка делает то, что притяжение

Стальной канат от Земли до Солнца
Вообразите, что могущественное притяжение Солнца почему‑либо в самом деле исчезло и Земле предстоит печальная участь навсегда удалиться в холодные и мрачные пустыни вселенной.

Можно ли укрыться от силы тяготения?
Сейчас мы фантазировали о том, что было бы, если бы взаимное притяжение между Солнцем и Землей исчезло: освободившись от невидимых цепей притяжения, Земля умчалась бы в бесконечный

Как полетели на Луну герои Уэллса
Интересно описан у романиста самый момент отправления межпланетного вагона в путь. Тонкий слой «кеворита», покрывающий наружную поверхность снаряда, делает его как бы совершенно нев

Полчаса на Луне
Посмотрим, как чувствовали себя герои повести Уэллса, очутившись в мире, где сила тяжести слабее, меньше, чем на Земле. Вот эти любопытные страницыромана «Первые люди н

Стрельба на Луне
Следующий зпизод, взятый из повести выдающегося советского изобретателя К. Э. Циолковского «На Луне», поможет нам уяснить условия движения под действием силы тяжести. На Земле атмос

В бездонном колодце
О том, что делается в глубоких недрах нашей планеты, известно пока очень мало. Одни полагают, что под твердой корой в сотню километров толщины начинается огненно‑жидкая масса;

Сказочная дорога
В свое время в С.‑Петербурге появилась брошюра со странным заглавием: «Самокатная подземная железная дорога между С.‑Петербургом и Москвой. Фантастический роман пока в т

Как роют туннели?
Взгляните на рис. 47, изображающий три способа проведения туннелей, и скажите, какой из них прорыт горизонтально?

Путешествие в пушечном снаряде
В заключение наших бесед о законах движения и силе притяжения разберем

Ньютонова гора
Предоставим слово гениальному Ньютону, открывшему закон всемирного тяготения. В своих «Математических началах физики» он пишет (приводим это место ради облегчения понимания в вольно

Фантастическая пушка
И вот члены Пушечного клуба отливают гигантскую пушку, длиной в четверть километра, отвесно врытую в землю. Изготовляется соответственно огромный снаряд, который внутри представляет

Тяжелая шляпа
Самый опасный момент для наших путешественников представили бы те несколько сотых долей секунды, в течение которых каюта‑снаряд движется в канале пушки. Ведь в течение этого н

Как ослабить сотрясение?
Механика дает указание на то, как можно было бы ослабить роковую быстроту нарастания скорости. Этого можно достигнуть, если во много раз удлинить ствол пушки. Удли

Для друзей математики
Среди читателей этой книги, без сомнения, найдутся и такие, которые пожелают сами проверить расчеты, упомянутые выше. Приводим здесь эти вычисления. Они верны лишь приблизительно, т

Море, в котором нельзя утонуть
Такое море существует в стране, известной человечеству с древнейших времен. Это знаменитое Мертвое море Палестины. Воды его необыкновенно солены, настолько, что в них не может жить

Как работает ледокол?
Принимая ванну, не упустите случая проделать следующий опыт. Прежде чем покинуть ванну, откройте ее выпускное отверстие, продолжая лежать на ее дне. По мере того как станет выступат

Где находятся затонувшие суда?
Распространено мнение, – даже среди моряков, – будто суда, затонувшие в океане, не достигают морского дна, а висят недвижно на некоторой глубине, где вода «соответственно уплотнена

Как осуществились мечты Жюля Верна и Уэллса
Реальные подводные лодки нашего времени в некоторых отношениях не только догнали фантастический «Наутилус» Жюля Верпа, но даже превзошли его. Правда, скорость хода нынешних подводны

Как был поднят «Садко»?
В широком просторе океана гибнут ежегодно тысячи крупных и мелких судов, особенно в военное время. Наиболее ценные и доступные из затонувших кораблей стали извлекать со дна моря. Со

Вечный» водяной двигатель
Среди множества проектов «вечного двигателя» было немало и таких, которые основаны на всплывании тел в воде. Высокая башня в 20 м высоты наполнена водой. Наверху и внизу башни устан

Кто придумал слова «газ» и «атмосфера»?
Слово «газ» принадлежит к числу слов, придуманных учеными наряду с такими словами, как «термометр», «электричество», «гальванометр», «телефон» и прежде всего «атмосфера». Из всех пр

Как будто простая задача
Самовар, вмещающий 30 стаканов, полон воды. Вы подставляете стакан под его кран и с часами в руках следите по секундной стрелке, во сколько времени стакан наполняется до краев. Допу

Задача о бассейне
От сказанного один шаг к пресловутым задачам о бассейне, без которых не обходится ни один арифметический и алгебраический задачник. Всем памятны классически‑скучные, схоластич

Удивительный сосуд
Возможно ли устроить такой сосуд, из которого вода вытекала бы все время равномерной струёй, не замедляя своего течения, несмотря на то, что уровень жидкости понижается? После того,

Поклажа из воздуха
В середине XVII столетия жители города Рогенсбурга и съехавшиеся туда владетельные князья Германии во главе с императором были свидетелями поразительного зрелища: 16 лошадей изо все

Новыми опытами
Интересующему нас опыту посвящена глава XXIII этой книги. Приводим дословный ее перевод. «Опыт, доказывающий, что давление воздуха соединяет два полушария так прочно, что их нельзя разнять

Новые героновы фонтаны
Обычная форма фонтана, приписываемого древнему механику Герону, вероятно, известна моим читателям, Напомню здесь его устройство, прежде чем перейти к описанию новейших видоизменений

Обманчивые сосуды
В старину – в XVII и XVIII веках – вельможи забавлялись следующей поучительной игрушкой: изготовляли кружку (или кувшин), в верхней части которой имелись крупные узорчатые вырезы (р

Сколько весит вода в опрокинутом стакане?
– Ничего, конечно, не весит: в таком стакане вода не держится, выливается, – скажете вы. – А если не выливается? – спрошу я. – Что тогда? В самом деле, возможно ве

Отчего притягиваются корабли?
Осенью 1912 г. с океанским пароходом «Олимпик» – тогда одним из величайших в мире судов – произошел следующий случай. «Олимпик» плыл в открытом море, а почти параллельно ему, на рас

Принцип Бернулли и его следствия
Принцип, впервые высказанный Даниилом Бернулли в 1726 г., гласит: в струе воды или воздуха давление велико, если скорость мала, и давление мало, если скорость велика. Существуют изв

Назначение рыбьего пузыря
О том, какую роль выполняет плавательный пузырь рыб, обыкновенно говорят и пишут – казалось бы, вполне правдоподобно – следующее. Для того чтобы всплыть из глубины в поверхностные с

Волны и вихри
Многие из повседневных физических явлений не могут быть объяснены на основе элементарных законов физики. Даже такое часто наблюдаемое явление, как волнение моря в ветреный день, не

Путешествие в недра Земли
Ни один человек не опускался еще в Землю глубже 3, 3 км, – а между тем радиус земного шара равен 6400 км. До центра Земли остается еще очень длинный путь. Тем не менее изобретательн

Фантазия и математика
Так повествует романист; но но то окажется, если мы проверим факты, о которых говорится в этом отрывке. Нам не придется спускаться для этого в недра Земли; для маленькой экскурсии в

В глубокой шахте
Кто ближе всего продвинулся к центру Земли – не в фантазии романиста, а в реальной действительности? Конечно, горнорабочие. Мы уже знаем (см. гл. IV), что глубочайшая шахта мира про

Ввысь со стратостатами
В предыдущих статьях мы мысленно путешествовали в земные недра, причем нам помогла формула зависимости давления воздуха от глубины. Отважимся теперь подняться вверх и, пользуясь той

Отчего при ветре холоднее?
Все знают, конечно, что в тихую погоду мороз переносится гораздо легче, чем при ветре. Но не все представляют себе отчетливо причину этого явления. Больший холод при ветре ощущается

Горячее дыхание пустыни
«Значит, ветер и в знойный день должен приносить прохладу, – скажет, быть может, читатель, прочтя предыдущую статью. – Почему же в таком случае путешественники говорят о горячем дых

Греет ли вуаль?
Вот еще задача из физики обыденной жизни. Женщины утверждают, что вуаль греет, что без нее лицо зябнет. При взгляде на легкую ткань вуали, нередко с довольно крупными ячейками, мужч

Охлаждающие кувшины
Если вам не случалось видеть таких кувшинов, то, вероятно, вы слыхали или читали о них. Эти сосуды из необожженной глины обладают той любопытной особенностью, что налитая в них вода

Ледник» без льда
На охлаждении от испарения основано устройство охлаждающего шкафа для хранения продуктов, своего рода «ледника» без льда. Устройство такого охладителя весьма несложно: это ящик из д

Какую жару способны мы переносить?
Человек гораздо выносливее по отношению к жаре, чем обыкновенно думают: он способен переносить в южных странах температуру заметно выше той, какую мы в умеренном поясе считаем едва

Термометр или барометр?
Известен анекдот о наивном человеке, который не решался принять ванну по следующей необыкновенной причине:

Для чего служит ламповое стекло?
Мало кто знает о том, какой долгий путь прошло ламповое стекло, прежде чем достигло своего современного вида. Длинный ряд тысячелетий люди пользовались для освещения пламенем, не пр

Почему пламя не гаснет само собой?
Если вдуматься хорошенько в процесс горения, то невольно возникает вопрос: отчего пламя не гаснет само собой? Ведь продуктами горения являются углекислый газ и водяной пар – веществ

Завтрак в невесомой кухне
– Друзья мои, ведь мы еще но завтракали, – объявил Мишель Ардан своим спутникам по межпланетному путешествию. – Из того, что мы потеряли свой вес в пушечном снаряде, не следует вовс

Почему вода гасит огонь?
На столь простой вопрос не всегда умеют правильно ответить, и читатель, надеемся, не посетует на нас, если мы объясним вкратце, в чем собственно заключается это действие воды на ого

Как тушат огонь с помощью огня?
Вы слыхали, вероятно, что лучшее, а иной раз и единственное средство борьбы с лесным или степным пожаром – ото поджигание леса или степи с противоположной стороны. Новое пламя идет

Можно ли воду вскипятить кипятком?
Возьмите небольшую бутылку (баночку или пузырек), налейте в нее воды и поместите в стоящую на огне кастрюлю с чистой водой так, чтобы склянка не касалась дна вашей кастрюли; вам при

Можно ли вскипятить воду снегом?
«Если уж кипяток для этой цели непригоден, то что говорить о снеге!» – ответит иной читатель. Не торопитесь с ответом, а лучше проделайте опыт хотя бы с тем же стеклянным флаконом,

Всегда ли кипяток горяч?
Бравый ординарец Бен‑Зуф, с которым читатель, без сомнения, познакомился по роману Жюля Верна «Гектор Сервадак», был твердо убежден, что кипяток всегда и всюду одинаково горяч

Горячий лед
Сейчас шла речь о прохладном кипятке. Есть и еще более удивительная вещь: горячий лед. Мы привыкли думать, что вода в твердом состоянии не может существовать при температуре выше 0°

Холод из угля
Получение из угля не жара, а, напротив, холода не является чем‑то несбыточным: оно каждодневно осуществляется на заводах так называемого «сухого льда». Уголь сжигается здесь в

Магнетизм. Электричество
«Любящий камень»

Задача о компасе
Мы привыкли думать, что стрелка компаса всегда обращена одним концом на север, другим – на юг. Нам покажется поэтому совершенно несуразным следующий вопрос: где на земном шаре магни

Линии магнитных сил
Любопытную картину изображает рис. 91, воспроизведенный с фотографии: от руки, положенной на полюсы электромагнита, торчат вверх пучки «крупных гвоздей, словно жесткие волосы. Сама

Как намагничивается сталь?
Чтобы ответить на этот вопрос, который часто задают читатели, надо разъяснить прежде всего, чем отличается магнит от немагнитного бруска стали. Каждый атом железа, входящего в соста

Исполинские электромагниты
На металлургических заводах можно видеть электромагнитные подъемные крапы, переносящие огромные грузы. Такие краны оказывают при подъеме и перемещении железных масс неоценимые услуг

Магнитные фокусы
Силой электромагнитов пользуются иногда и фокусники; легко представить, какие эффектные трюки проделывают они с помощью этой невидимой силы. Дари, автор известной книги «Электричест

Магнит в земледелии
Еще любопытнее та полезная служба, которую несет магнит в сельском хозяйстве, помогая земледельцу очищать семена культурных растений от семян сорняков. Сорняки обладают ворсистыми с

Магнитная летательная машина
В начале этой книги я ссылался на занимательное сочинение французского писателя Сирано де Бержерака «История государств на Луне и Солнце». В ней, между прочим, описана любопытная ле

Электромагнитный транспорт
В железной дороге, которую предлагал устроить проф. Б. П. Вейнберг, вагоны будут совершенно невесомы; их вес уничтожается электромагнитным притяжением. Вы не удивитесь поэтому, если

Сражение марсиан с земножителями
Естествоиспытатель древнего Рима Плиний передает распространенный к его время рассказ о магнитной скале где‑то в Индии, у берега моря, которая с необычайной силой притягивала

Часы и магнетизм
При чтении предыдущего отрывка естественно возникает вопрос: нельзя ли защититься от действия магнитных сил, укрыться от них за какой‑нибудь непроницаемой для них преградой?

Магнитный «вечный» двигатель
В истории попыток изобрести «вечный» двигатель магнит сыграл не последнюю роль. Неудачники‑изобретатели на разные лады старались использовать магнит, чтобы устроить механизм,

Музейная задача
В практике музейного дела нередко возникает надобность читать древние свитки, настолько ветхие, что они ломаются и рвутся при самой осторожной попытке отделить один слой рукописи от

Еще воображаемый вечный двигатель
Большую популярность среди искателей вечного двигателя получила в последнее время идея соединения динамомашины с электромотором. Ежегодно ко мне поступает чуть не полдюжины подобных

Почти вечный двигатель
Для математика выражение «почти вечный» не представляет ничего заманчивого. Движение может быть либо вечным, либо невечным; «почти вечное» значит, в сущности, невечное. Но

Птицы на проводах
Все знают, как опасно для человека прикосновение к электрическим проводам трамвая или высоковольтной сети, когда они под напряжением. Такое прикосновение смертельно для человека и д

При свете молнии
Случалось ли вам во время грозы наблюдать картину оживленной городской улицы при кратких вспышках молнии? Вы, конечно, заметили при этом одну странную особенность: улица, только что

Сколько стоит молния?
В ту отдаленную эпоху, когда молнии приписывали «богам», подобный вопрос звучал бы кощунственно. Но в наши дни, когда электрическая энергия превратилась в товар, который измеряют и

Грозовой ливень в комнате
Очень легко устроить дома небольшой фонтан из каучуковой трубки, один конец которой погружают в ведро, поставленное на возвышении, или надевают на водопроводный кран. Выходное отвер

Пятикратный снимок
Одним из курьезов фотографического искусства являются снимки, на которых фотографируемый изображен в пяти различных поворотах. На рис. 105, сделанном по подобной фотографии, можно в

Солнечные двигатели и нагреватели
Очень заманчива мысль использовать энергию солнечных лучей для нагревания котла двигателя. Произведем несложный расчет. Энергия, ежеминутно получаемая от Солнца каждым квадратным са

Мечта о шапке-невидимке
Седою древностью оставлена нам легенда о чудесной шапке, которая делает невидимым каждого, кто ее наденет. Пушкин, ожививший в «Руслане и Людмиле» преданья старины глубокой, дал кла

Невидимый человек
В романе «Человек‑невидимка» английский писатель Уэллс стремится убедить своих читателей, что возможность стать невидимым вполне осуществима. Его герой (автор романа представл

Могущество невидимого
Автор романа «Человек‑невидимка» с необыкновенным остроумием и последовательностью доказывает, что человек, сделавшись прозрачным и невидимым, приобретает благодаря этому почт

Прозрачные препараты
Верны ли физические рассуждения, которые положены в основу этого фантастического романа? Безусловно. Всякий прозрачный предмет в прозрачной среде становится невидимым уже тогда, ког

Может ли невидимый видеть?
Если бы Уэллс задал себе этот вопрос прежде, чем написать роман, изумительная история «Невидимки» никогда не была бы написана… В самом деле, в этом пункте разрушается вся и

Охранительная окраска
Но есть и другой путь к разрешению задачи «шапки‑невидимки». Он состоит в окраске предметов соответствующим цветом, делающим их незаметными для глаза. К нему постоянно прибега

Защитный цвет
Люди переняли у изобретательной природы это полезное искусство делать свое тело незаметным, сливаться с окружающим фоном. Пестрые краски блестящего обмундирования прежних времен, пр

Человеческий глаз под водой
Вообразите, что вам дана возможность оставаться под водой сколь угодно долго и что вы при этом держите глаза открытыми. Могли бы вы там видеть? Казалось бы, раз вода прозра

Как видят водолазы?
Многие, вероятно, спросят: как же могут водолазы, работающие в своих скафандрах, видеть что‑либо под водой, если глаза наши в воде почти не преломляют лучей света? Ведь водола

Стеклянные чечевицы под водой
Пробовали ли вы делать такой простой опыт: погрузить двояковыпуклое («увеличительное») стекло в воду и рассматривать через него погруженные предметы? Попробуйте, – вас поразит неожи

Неопытные купальщики
Неопытные купальщики нередко подвергаются большой опасности только потому, что забывают об одном любопытном следствии закона преломления света: они не знают, что преломление словно

Невидимая булавка
Воткните булавку в плоский пробковый кружок и положите его булавкой вниз на поверхность воды в миске. Если пробка не чересчур широка, то, как бы ни наклоняли вы голову, вам не удаст

Мир из-под воды
Многие и не подозревают, каким необычайным казался бы мир, если бы мы стали рассматривать его из‑под воды: он должен представляться наблюдателю измененным и искаженным почти д

Цвета в глубине вод
Картинно описывает смену световых оттенков под водой американский биолог Бийб. «Мы погрузились в батисфере в воду, и внезапный переход от золотисто‑желтого мира в зел

Слепое пятно нашего глаза
Если вам скажут, что в поле вашего зрения есть участок, которого вы совершенно не видите, хотя он находится прямо перед вами, вы этому, конечно, не поверите. Возможно ли, чтобы мы в

Какой величины нам кажется Луна?
Кстати – о видимых размерах Луны. Если вы станете расспрашивать знакомых, какой величины представляется им Луна, то получите самые разнообразные ответы. Большинство скажет, что Луна

Видимые размеры светил
Если бы, сохраняя угловые размеры, мы пожелали изобразить на бумаге созвездие Большой Медведицы, то получили бы фигуру, представленную на рис. 126. Глядя на нее с расстояния лучшего

Почему микроскоп увеличивает?
«Потому что он изменяет ход лучей определенным образом, описанным в учебниках физики», – вот что чаще всего приходится слышать в ответ на этот вопрос. Но в таком ответе указывается

Зрительные самообманы
Мы часто говорим об «обмане зрения», «обмане слуха», но выражения эти неправильны. Обманов чувств нет. Философ Кант метко сказал по этому поводу: «Чувства не обманывают нас, – не по

Иллюзия, полезная для портных
Если только что описанную иллюзию зрения вы пожелаете применить к более крупным фигурам, которые не могут быть охвачены сразу глазом, то ожидания ваши не оправдаются. Всем известно,

Что больше?
Какой эллипс на рис.131 больше: нижний или внутренний верхний? Трудно отделаться от мысли, что нижний больше верхнего. Между тем оба равны, и только присутствие наружного, окаймляющ

Сила воображения
Большинство обманов зрения, как уже указывалось, зависит от того, что мы не только смотрим, но и бессознательно при этом рассуждаем. «Мы смотрим не глазами, а мозгом», – говорят физ

Еще иллюзия зрения
Не все иллюзии зрения мы в состоянии объяснить. Часто и догадаться нельзя, какого рода умозаключения совершаются бессознательно в нашем мозгу и обусловливают тот или иной обман зрен

Что это?
При взгляде на рис. 142 вы едва ли сразу догадаетесь, что он изображает, «Просто черная сетка, ничего больше», – скажете вы. Но поставьте книгу отвесно на стол, отойдите шага на 3 –

Необыкновенные колеса
Случалось ли вам через щели забора или, еще лучше, на экране кино следить за спицами колес быстро движущейся повозки или автомобиля? Вероятно, вы замечали при этом странное явление;

Микроскоп времени» в технике
В первой книге «Занимательной физики» описана «лупа времени», основанная на использовании киноаппарата. Здесь расскажем о другом способе достижения подобного же эффекта, опирающемся

Диск Нипкова
Замечательное техническое применение обмана зрения представлял так называемый «диск Нипкова», употреблявшийся в первых телевизионных установках. На рис. 146 вы видите сплошной круг,

Почему заяц косой?
Человек – одно из немногих существ, глаза которых приспособлены к одновременному рассматриванию какого‑нибудь предмета: поле зрения правого глаза лишь немного не совпадает с п

Почему в темноте все кошки серы?
Физик сказал бы: «в темноте все кошки черны», потому что при отсутствии освещения никакие предметы не видны вовсе. Но поговорка имеет в виду не полный мрак, а темноту в обиходном см

Звук и радиоволны
Звук распространяется примерно в миллион раз медленнее света; а так как скорость радиоволн совпадает со скоростью распространения световых колебаний, то звук в миллион раз медленнее

Звук и пуля
Когда пассажиры жюль‑вернова снаряда полетели на Луну, они были озадачены тем, что не слышали звука выстрела колоссальной пушки, извергнувшей их из своего жерла. Иначе и быть

Мнимый взрыв
Состязание в скорости между летящим телом и производимым им звуком заставляет нас иногда невольно делать ошибочные заключения, подчас совершенно не отвечающие истинной картине явлен

Самый медленный разговор
Если вы думаете, однако, что истинная скорость звука в воздухе – треть километра в секунду – всегда достаточная быстрота, то сейчас измените свое мнение. Вообразите, что ме

Скорейшим путем
Было, впрочем, время, когда даже и такой способ передачи известий считался бы очень быстрым. Сто лет назад никто не мечтал об электрическом телеграфе и телефоне, и передача новости

Барабанный телеграф
Передача известий посредством звуковых сигналов и теперь еще распространена у первобытных обитателей Африки, Центральной Америки и Полинезии. Первобытные племена употребляют для это

Звуковые облака и воздушное эхо
Звук может отражаться не только от твердых преград, но и от таких нежных образований, как облака. Более того, даже совершенно прозрачный воздух может при некоторых условиях отражать

Беззвучные звуки
Есть люди, которые не слышат таких резких звуков, как пение сверчка или писк летучей мыши. Люди эти не глухи; – их органы слуха в исправности, и все же они не слышат очень высоких т

Ультразвуки на службе техники
Физика и техника наших дней обладают средством создавать «беззвучные звуки» гораздо большей частоты, чем те, о которых мы сейчас говорили: число колебаний может достигать в этих «св

Голоса лилипутов и Гулливера
В советском фильме «Новый Гулливер» лилипуты говорят высокими голосами, соответствующими маленьким размерам их гортани, а великан – Петя – низким голосом. При съемке говорили за лил

Для кого ежедневная газета выходит дважды в день?
Сейчас мы займемся задачей, которая на первый взгляд никакого отношения ни к звуку, ни к физике не имеет. Тем не менее я попрошу вас уделить ей внимание: она поможет вам легче уясни

Задача о паровозных свистках
Если вы обладаете развитым музыкальным слухом, то заметили, вероятно, как изменяется топ (не громкость, а именно тон, высота) паровозного свистка, когда встречный поезд проносится м

Явление Доплера
Явление, которое мы только что описали, открыто было физиком Доплером и навсегда осталось связанным с именем этого ученого. Оно наблюдается не только для звука, но и для световых яв

История одного штрафа
Когда Доплер впервые (в 1842 г.) пришел к мысли, что взаимное сближение или удаление наблюдателя и источника звука или света должно сопровождаться изменением длины воспринимаемых зв

Со скоростью звука
Что услышали бы вы, если бы удалялись от играющего оркестра со скоростью звука? Человек, едущий из Ленинграда на почтовом поезде, видит на всех станциях у газетчиков одни и

Вам странно будет услышать, что есть не мало живых существ, для которых мнимое «поднятие самого себя за волосы» является обычным способом их перемещения в воде.

Рисунок 10. Плавательное движение каракатицы.

Каракатица и вообще большинство головоногих моллюсков движутся в воде таким образом: забирают воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывают струю воды через упомянутую воронку; при этом они – по закону противодействия – получают обратный толчок, достаточный для того, чтобы довольно быстро плавать задней стороной тела вперед. Каракатица может, впрочем, направить трубку воронки вбок или назад и, стремительно выдавливая из нее воду, двигаться в любом направлении.

На том же основано и движение медузы: сокращением мускулов она выталкивает из‑под своего колоколообразного тела воду, получая толчок в обратном направлении. Сходным приемом пользуются при движении сальпы, личинки стрекоз и другие водные животные. А мы еще сомневались, можно ли так двигаться!

К звездам на ракете

Что может быть заманчивее, чем покинуть земной шар и путешествовать по необъятной вселенной, перелетать с Земли на Луну, с планеты на планету? Сколько фантастических романов написано на эту тему! Кто только не увлекал нас в воображаемое путешествие по небесным светилам! Вольтер в «Микромегасе», Жюль Верн в «Путешествии на Луну» и «Гекторе Сервадаке», Уэллс в «Первых людях на Луне» и множество их подражателей совершали интереснейшие путешествия на небесные светила, – конечно, в мечтах.

Неужели же нет возможности осуществить эту давнишнюю мечту? Неужели все остроумные проекты, с таким заманчивым правдоподобием изображенные в романах, на самом деле неисполнимы? В дальнейшем мы будем еще беседовать о фантастических проектах межпланетных путешествий; теперь же познакомимся с реальным проектом подобных перелетов, впервые предложенным нашим соотечественником К. Э. Циолковским.

Можно ли долететь до Луны на самолете? Конечно, нет: самолеты и дирижабли движутся только потому, что опираются о воздух, отталкиваются от него, а между Землей и Луной воздуха нет. В мировом пространстве вообще нет достаточно плотной среды, на которую мог бы опереться «межпланетный дирижабль». Значит, надо придумать такой аппарат, который способен был бы двигаться и управляться, ни на что не опираясь.



Мы знакомы уже с подобным снарядом в виде игрушки – с ракетой. Отчего бы не устроить огромную ракету, с особым помещением для людей, съестных припасов, баллонов с воздухом и всем прочим? Вообразите, что люди в ракете везут с собой большой запас горючих веществ и могут направлять истечение взрывных газов в любую сторону. Вы получите настоящий управляемый небесный корабль, на котором можно плыть в океане мирового пространства, полететь на Луну, на планеты… Пассажиры смогут, управляя взрывами, увеличивать скорость этого межпланетного дирижабля с необходимой постепенностью, чтобы возрастание скорости было для них безвредно. При желании спуститься на какую‑нибудь планету они смогут, повернув свой корабль, постепенно уменьшить скорость снаряда и тем ослабить падение. Наконец, пассажиры смогут таким же способом возвратиться и на Землю.

Рисунок 11. Проект межпланетного дирижабля, устроенного наподобие ракеты.

Вспомним, как недавно еще делала свои первые робкие завоевания авиация. А сейчас – самолеты уже высоко реют в воздухе, перелетают горы, пустыни, материки, океаны. Может быть, и «звездоплаванию» предстоит такой же пышный расцвет через два‑три десятка лет? Тогда человек разорвет невидимые цепи, так долго приковывавшие его к родной планете, и ринется в безграничный простор вселенной.

Глава вторая

Сила. Работа. Трение.


Логика природы есть самая доступная и самая полезная логика для детей.

Константин Дмитриевич Ушинский (03.03.1823–03.01.1871) – русский педагог, основоположник научной педагогики в России.

БИОФИЗИКА: РЕАКТИВНОЕ ДВИЖЕНИЕ В ЖИВОЙ ПРИРОДЕ

Предлагаю читателям зелёных страничек заглянуть в увлекательный мир биофизики и познакомиться с основными принципами реактивного движения в живой природе . Сегодня в программе: медуза корнерот – самая крупная медуза Чёрного моря, морские гребешки , предприимчивая личинка стрекозы-коромысла , восхитительный кальмар с его непревзойдённым реактивным двигателем и замечательные иллюстрации в исполнении советского биолога и художника-анималиста Кондакова Николая Николаевича.

По принципу реактивного движения в живой природе передвигается целый ряд животных, например медузы, морские моллюски гребешки, личинки стрекозы-коромысла, кальмары, осьминоги, каракатицы… Познакомимся с некоторыми из них поближе;-)

Реактивный способ движения медуз

Медузы – одни из самых древних и многочисленных хищников на нашей планете! Тело медузы на 98% состоит из воды и в значительной части составлено из обводнённой соединительной ткани – мезоглеи , функционирующей как скелет. Основу мезоглеи составляет белок коллаген. Студенистое и прозрачное тело медузы по форме напоминает колокол или зонтик (в диаметре от нескольких миллиметров до 2,5 м ). Большинство медуз двигаются реактивным способом , выталкивая воду из полости зонтика.


Медузы Корнероты (Rhizostomae), отряд кишечнополостных животных класса сцифоидных. Медузы (до 65 см в диаметре) лишены краевых щупалец. Края рта вытянуты в ротовые лопасти с многочисленными складками, срастающимися между собой с образованием множества вторичных ротовых отверстий. Прикосновение к ротовым лопастям может вызвать болезненные ожоги , обусловленные действием стрекательных клеток. Около 80 видов; обитают преимущественно в тропических, реже в умеренных морях. В России – 2 вида : Rhizostoma pulmo обычен в Чёрном и Азовском морях, Rhopilema asamushi встречается в Японском море.

Реактивное бегство морских моллюсков гребешков

Морские моллюски гребешки , обычно спокойно лежащие на дне, при приближении к ним их главного врага – восхитительно медлительной, но чрезвычайно коварной хищницы – морской звезды – резко сжимают створки своей раковины, с силой выталкивая из неё воду. Используя, таким образом, принцип реактивного движения , они всплывают и, продолжая открывать и захлопывать раковину, могут отплывать на значительное расстояние. Если же гребешок по какой-то причине не успевает спастись своим реактивным бегством , морская звезда обхватывает его своими руками, вскрывает раковину и поедает…


Морской Гребешок (Pecten), род морских беспозвоночных животных класса двустворчатых моллюсков (Bivalvia). Раковина гребешка округлая с прямым замочным краем. Поверхность её покрыта расходящимися от вершины радиальными ребрами. Створки раковины смыкаются одним сильным мускулом. В Чёрном море обитают Pecten maximus, Flexopecten glaber; в Японском и Охотском морях – Mizuhopecten yessoensis (до 17 см в диаметре).

Реактивный насос личинки стрекозы-коромысла

Нрав у личинки стрекозы-коромысла , или эшны (Aeshna sp.) не менее хищный, чем у её крылатых сородичей. Два, а иногда и четыре года живёт она в подводном царстве, ползает по каменистому дну, выслеживая мелких водных обитателей, с удовольствием включая в свой рацион довольно-таки крупнокалиберных головастиков и мальков. В минуты опасности личинка стрекозы-коромысла срывается с места и рывками плывёт вперёд, движимая работой замечательного реактивного насоса . Набирая воду в заднюю кишку, а затем резко выбрасывая её, личинка прыгает вперёд, подгоняемая силой отдачи. Используя, таким образом, принцип реактивного движения , личинка стрекозы-коромысла уверенными толчками-рывками скрывается от преследующей её угрозы.

Реактивные импульсы нервной «автострады» кальмаров

Во всех, приведённых выше случаях (принципах реактивного движения медуз, гребешков, личинок стрекозы-коромысла), толчки и рывки отделены друг от друга значительными промежутками времени, следовательно большая скорость движения не достигается. Чтобы увеличилась скорость движения, иначе говоря, число реактивных импульсов в единицу времени , необходима повышенная проводимость нервов , которые возбуждают сокращение мышц, обслуживающих живой реактивный двигатель . Такая большая проводимость возможна при большом диаметре нерва.

Известно, что у кальмаров самые крупные в животном мире нервные волокна . В среднем они достигают в диаметре 1 мм – в 50 раз больше, чем у большинства млекопитающих – и проводят возбуждение они со скоростью 25 м/с . А у трёхметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика – 18 мм . Нервы толстые, как верёвки! Сигналы мозга – возбудители сокращений – мчатся по нервной «автостраде» кальмара со скоростью легкового автомобиля – 90 км/ч .

Благодаря кальмарам, исследования жизнедеятельности нервов ещё в начале 20 века стремительно продвинулись вперёд. «И кто знает , – пишет британский натуралист Фрэнк Лейн, – может быть, есть сейчас люди, обязанные кальмару тем, что их нервная система находится в нормальном состоянии…»

Быстроходность и манёвренность кальмара объясняется также прекрасными гидродинамическими формами тела животного, за что кальмара и прозвали «живой торпедой» .

Кальмары (Teuthoidea), подотряд головоногих моллюсков отряда десятиногих. Размером обычно 0,25-0,5 м, но некоторые виды являются самыми крупными беспозвоночными животными (кальмары рода Architeuthis достигают 18 м , включая длину щупалец).
Тело у кальмаров удлинённое, заострённое сзади, торпедообразное, что определяет большую скорость их движения как в воде (до 70 км/ч ), так и в воздухе (кальмары могут выскакивать из воды на высоту до 7 м ).

Реактивный двигатель кальмара

Реактивное движение , используемое ныне в торпедах, самолётах, ракетах и космических снарядах, свойственно также головоногим моллюскам – осьминогам, каракатицам, кальмарам . Наибольший интерес для техников и биофизиков представляет реактивный двигатель кальмаров . Обратите внимание, как просто, с какой минимальной затратой материала решила природа эту сложную и до сих пор непревзойдённую задачу;-)


В сущности, кальмар располагает двумя принципиально различными двигателями (рис. 1а ). При медленном перемещении он пользуется большим ромбовидным плавником, периодически изгибающимся в виде бегущей волны вдоль корпуса тела. Для быстрого броска кальмар использует реактивный двигатель . Основой этого двигателя является мантия – мышечная ткань. Она окружает тело моллюска со всех сторон, составляя почти половину объёма его тела, и образует своеобразный резервуар – мантийную полость – «камеру сгорания» живой ракеты , в которую периодически засасывается вода. В мантийной полости находятся жабры и внутренние органы кальмара (рис. 1б ).

При реактивном способе плавания животное производит засасывание воды через широко открытую мантийную щель внутрь мантийной полости из пограничного слоя. Мантийная щель плотно «застёгивается» на специальные «запонки-кнопки» после того как «камера сгорания» живого двигателя наполнится забортной водой. Расположена мантийная щель вблизи середины тела кальмара, где оно имеет наибольшую толщину. Сила, вызывающая движение животного, создаётся за счёт выбрасывания струи воды через узкую воронку, которая расположена на брюшной поверхности кальмара. Эта воронка, или сифон, – «сопло» живого реактивного двигателя .

«Сопло» двигателя снабжено специальным клапаном и мышцы могут его поворачивать. Изменяя угол установки воронки-сопла (рис. 1в ), кальмар плывёт одинаково хорошо, как вперёд, так и назад (если он плывет назад, – воронка вытягивается вдоль тела, а клапан прижат к её стенке и не мешает вытекающей из мантийной полости водяной струе; когда кальмару нужно двигаться вперёд, свободный конец воронки несколько удлиняется и изгибается в вертикальной плоскости, её выходное отверстие сворачивается и клапан принимает изогнутое положение). Реактивные толчки и всасывание воды в мантийную полость с неуловимой быстротой следуют одно за другим, и кальмар ракетой проносится в синеве океана.

Кальмар и его реактивный двигатель – рисунок 1


1а) кальмар – живая торпеда; 1б) реактивный двигатель кальмара; 1в) положение сопла и его клапана при движении кальмара назад и вперёд.

На забор воды и её выталкивание животное затрачивает доли секунды. Засасывая воду в мантийную полость в кормовой части тела в периоды замедленных движений по инерции, кальмар тем самым осуществляет отсос пограничного слоя, предотвращая таким образом срыв потока при нестационарном режиме обтекания. Увеличивая порции выбрасываемой воды и учащая сокращения мантии, кальмар легко увеличивает скорость движения.

Реактивный двигатель кальмара очень экономичен , благодаря чему он может достигать скорости 70 км/ч ; некоторые исследователи считают, что даже 150 км/ч !

Инженеры уже создали двигатель, подобный реактивному двигателю кальмара : это водомёт , действующий при помощи обычного бензинового или дизельного двигателя. Почему же реактивный двигатель кальмара по-прежнему привлекает внимание инженеров и является объектом тщательных исследований биофизиков? Для работы под водой удобно иметь устройство, работающее без доступа атмосферного воздуха. Творческие поиски инженеров направлены на создание конструкции гидрореактивного двигателя , подобного воздушно-реактивному

По материалам замечательных книг:
«Биофизика на уроках физики» Цецилии Бунимовны Кац ,
и «Приматы моря» Игоря Ивановича Акимушкина


Кондаков Николай Николаевич (1908–1999) – советский биолог, художник-анималист , кандидат биологических наук. Основным вкладом в биологическую науку стали выполненные им рисунки различных представителей фауны. Эти иллюстрации вошли во многие издания, такие как Большая Советская Энциклопедия, Красная книга СССР , в атласы животных и в учебные пособия.

Акимушкин Игорь Иванович (01.05.1929–01.01.1993) – советский биолог, писатель – популяризатор биологии , автор научно-популярных книг о жизни животных. Лауреат премии Всесоюзного общества «Знание». Член Союза писателей СССР. Наиболее известной публикацией Игоря Акимушкина является шеститомная книга «Мир Животных» .

Материалы этой статьи полезно будет применить не только на уроках физики и биологии , но и во внеклассной работе.
Биофизический материал является чрезвычайно благодатным для мобилизации внимания учащихся, для превращения абстрактных формулировок в нечто конкретное и близкое, затрагивающее не только интеллектуальную, но и эмоциональную сферу.

Литература:
§ Кац Ц.Б. Биофизика на уроках физики

§ § Акимушкин И.И. Приматы моря
Москва: издательство «Мысль», 1974
§ Тарасов Л.В. Физика в природе
Москва: издательство «Просвещение», 1988

Реактивное движение в природе и в технике - весьма распространенное явление. В природе оно возникает, когда одна часть тела отделяется с определенной скоростью от некоторой другой части. При этом реактивная сила появляется без взаимодействия данного организма с внешними телами.

Для того чтобы понять, о чем идет речь, лучше всего обратиться к примерам. в природе и технике многочисленны. Сначала мы поговорим о том, как его используют животные, а затем о том, как оно применяется в технике.

Медузы, личинки стрекоз, планктон и моллюски

Многие, купаясь в море, встречали медуз. В Черном море их, во всяком случае, хватает. Однако не все задумывались, что передвигаются медузы как раз с помощью реактивного движения. К этому же способу прибегают и личинки стрекоз, а также некоторые представители морского планктона. КПД беспозвоночных морских животных, которые используют его, зачастую намного выше, чем у технических изобретений.

Многие моллюски передвигаются интересующим нас способом. В качестве примера можно привести каракатиц, кальмаров, осьминогов. В частности, морской моллюск-гребешок способен двигаться вперед, используя реактивную струю воды, которая выбрасывается из раковины, когда ее створки резко сжимаются.

И это лишь несколько примеров из жизни животного мира, которые можно привести, раскрывая тему: "Реактивное движение в быту, природе и технике".

Как передвигается каракатица

Весьма интересна в этом отношении и каракатица. Подобно множеству головоногих моллюсков, она передвигается в воде, используя следующий механизм. Через особую воронку, находящуюся впереди тела, а также через боковую щель каракатица забирает воду в свою жаберную полость. Затем она ее энергично выбрасывает через воронку. Трубку воронки каракатица направляет назад или вбок. Движение при этом может осуществляться в разные стороны.

Способ, который использует сальпа

Любопытен и способ, который использует сальпа. Так называется морское животное, имеющее прозрачное тело. Сальпа при движении втягивает воду, используя для этого переднее отверстие. Вода оказывается в широкой полости, а внутри нее по диагонали расположены жабры. Отверстие закрывается тогда, когда сальпа делает большой глоток воды. Ее поперечные и продольные мускулы сокращаются, сжимается все тело животного. Сквозь заднее отверстие вода выталкивается наружу. Животное двигается вперед благодаря реакции вытекающей струи.

Кальмары - "живые торпеды"

Самый большой интерес представляет, пожалуй, реактивный двигатель, который есть у кальмара. Это животное считается наиболее крупным представителем беспозвоночных, обитающим на больших океанских глубинах. В реактивной навигации кальмары достигли настоящего совершенства. Даже тело этих животных напоминает ракету своими внешними формами. Вернее сказать, это ракета копирует кальмара, так как именно ему принадлежит бесспорное первенство в этом деле. Если нужно передвигаться медленно, животное использует для этого большой ромбовидный плавник, который время от времени изгибается. Если же необходим быстрый бросок, на помощь приходит реактивный двигатель.

Со всех сторон тело моллюска окружает мантия - мышечная ткань. Практически половина всего объема тела животного приходится на объем ее полости. Кальмар использует мантийную полость для движения, засасывая воду внутрь нее. Затем он резко выбрасывает набранную струю воды сквозь узкое сопло. В результате этого он двигается толчками назад с большой скоростью. При этом кальмар складывает все свои 10 щупалец в узел над головой для того, чтобы приобрести обтекаемую форму. В составе сопла есть особый клапан, и мышцы животного могут поворачивать его. Тем самым направление движения меняется.

Впечатляющая скорость движения кальмара

Нужно сказать, что двигатель кальмара весьма экономичен. Скорость, которую он способен развивать, может достигать 60-70 км/ч. Некоторые исследователи даже полагают, что она может доходить до 150 км/ч. Как вы видите, кальмар не зря зовется "живой торпедой". Он может поворачивать в нужную сторону, изгибая вниз, вверх, влево или вправо щупальца, сложенные пучком.

Как кальмар управляет движением

Так как по сравнению с размерами самого животного руль очень велик, для того чтобы кальмар мог легко избежать столкновения с препятствием, даже двигаясь с максимальной скоростью, достаточно лишь незначительного движения руля. Если его резко повернуть, животное тут же помчится в обратную сторону. Кальмар изгибает назад конец воронки и в результате этого может скользить уже головой вперед. Если он выгнет ее вправо, он будет отброшен влево реактивным толчком. Однако когда плыть необходимо быстро, воронка всегда находится прямо между щупальцами. Животное в этом случае мчится хвостом вперед, подобно бегу рака-скорохода, если бы он обладал резвостью скакуна.

В случае когда спешить не требуется, каракатицы и кальмары плавают, ундулируя при этом плавниками. Спереди назад пробегают по ним миниатюрные волны. Кальмары и каракатицы грациозно скользят. Они лишь время от времени подталкивают себя струей воды, которая выбрасывается из-под их мантии. Отдельные толчки, которые моллюск получает при извержении струй воды, в такие моменты хорошо заметны.

Летающий кальмар

Некоторые головоногие способны ускоряться до 55 км/ч. Кажется, никто не осуществлял прямых измерений, однако такую цифру мы можем назвать, основываясь на дальности и скорости полета летающих кальмаров. Оказывается, существуют и такие. Кальмар стенотевтис является лучшим пилотом из всех моллюсков. Английские моряки именуют его летающим кальмаром (флайинг-сквид). Это животное, фото которого представлено выше, имеет небольшие размеры, примерно с селедку. Он так стремительно преследует рыб, что часто выскакивает из воды, проносясь стрелой над ее поверхностью. Такую уловку он использует и в случае, когда ему угрожает опасность от хищников - макрелей и тунцов. Развив максимальную реактивную тягу в воде, кальмар стартует в воздух, а затем пролетает более 50 метров над волнами. При его полета находится так высоко, что часто летающие кальмары попадают на палубы судов. Высота 4-5 метров для них - отнюдь не рекорд. Иногда летающие кальмары взлетают даже выше.

Доктор Рис, исследователь моллюсков из Великобритании, в своей научной статье описал представителя этих животных, длина тела которого составляла всего 16 см. Однако при этом он смог пролететь изрядное расстояние по воздуху, после чего приземлился на мостик яхты. А высота этого мостика составляла практически 7 метров!

Бывают случаи, когда на корабль обрушивается сразу множество летающих кальмаров. Требиус Нигер, античный писатель, однажды рассказал печальную историю о судне, которое как будто бы не смогло выдержать тяжесть этих морских животных и затонуло. Интересно, что кальмары способны взлетать даже без разгона.

Летающие осьминоги

Способностью летать обладают также осьминоги. Жан Верани, французский натуралист, наблюдал, как один из них разогнался в своем аквариуме, а затем внезапно выскочил из воды. Животное описало в воздухе дугу примерно в 5 метров, а затем плюхнулось в аквариум. Осьминог, набирая необходимую для прыжка скорость, двигался не только благодаря реактивной тяге. Он также греб своими щупальцами. Осьминоги мешковаты, поэтому они плавают хуже кальмаров, однако в критические минуты и эти животные способны дать фору лучшим спринтерам. Работники Калифорнийского аквариума хотели сделать фото осьминога, который атакует краба. Однако спрут, бросаясь на свою добычу, развивал такую скорость, что фотографии даже при использовании специального режима оказывались смазанными. Это означает, что бросок длился считанные доли секунды!

Однако осьминоги обычно плавают довольно медленно. Ученый Джозеф Сайнл, который исследовал миграции спрутов, выяснил, что осьминог, размер которого составляет 0,5 м, плывет со средней скоростью примерно 15 км/ч. Каждая струя воды, которую он выбрасывает из воронки, продвигает его вперед (точнее сказать, назад, поскольку он плывет задом наперед) где-то на 2-2,5 м.

"Бешеный огурец"

Реактивное движение в природе и в технике можно рассматривать и используя для его иллюстрации примеры из мира растений. Один из самых известных - созревшие плоды так называемого Они отскакивают от плодоножки при малейшем прикосновении. Затем из образовавшегося в результате этого отверстия с большой силой выбрасывается специальная клейкая жидкость, в которой находятся семена. Сам огурец отлетает в противоположную сторону на расстояние до 12 м.

Закон сохранения импульса

Обязательно следует рассказать и о нем, рассматривая реактивное движение в природе и в технике. Знание позволяет нам изменять, в частности, нашу собственную скорость перемещения, если мы находимся в открытом пространстве. К примеру, вы сидите в лодке и у вас с собой есть несколько камней. Если вы будете бросать их в определенную сторону, движение лодки будет осуществляться в противоположном направлении. В космическом пространстве также действует этот закон. Однако там с этой целью применяют

Какие еще можно отметить примеры реактивного движения в природе и технике? Очень хорошо закон сохранения импульса иллюстрируется на примере ружья.

Как известно, выстрел из него всегда сопровождается отдачей. Допустим, вес пули был бы равен весу ружья. В этом случае они бы разлетелись в стороны с одной и той же скоростью. Отдача бывает потому, что создается реактивная сила, так как имеется отбрасываемая масса. Благодаря этой силе обеспечивается движение как в безвоздушном пространстве, так и в воздухе. Чем больше скорость и масса истекающих газов, тем сила отдачи, которую ощущает наше плечо, больше. Соответственно, реактивная сила тем выше, чем сильнее реакция ружья.

Мечты о полетах в космос

Реактивное движение в природе и в технике вот уже долгие годы является источником новых идей для ученых. Много столетий человечество грезило о полетах в космос. Применение реактивного движения в природе и технике, нужно полагать, отнюдь не исчерпало себя.

А началось все с мечты. Писатели-фантасты несколько веков назад предлагали нам различные средства, как достигнуть этой желанной цели. В 17 веке Сирано де Бержерак, французский писатель, создал рассказ о полете на Луну. Его герой добрался до спутника Земли, используя железную повозку. Над этой конструкцией он постоянно подбрасывал сильный магнит. Повозка, притягиваясь к нему, поднималась над Землей все выше и выше. В конце концов, она достигла Луны. Другой известный персонаж, барон Мюнхгаузен, залез на Луну по стеблю боба.

Конечно, в это время еще было мало известно о том, как применение реактивного движения в природе и технике способно облегчить жизнь. Но полет фантазии, безусловно, открывал новые горизонты.

На пути к выдающемуся открытию

В Китае в конце 1 тысячелетия н. э. изобрели реактивное движение, приводящее в действие ракеты. Последние были просто бамбуковыми трубками, которые были начинены порохом. Эти ракеты запускались ради забавы. Реактивный двигатель использовался в одном из первых проектов автомобилей. Эта идея принадлежала Ньютону.

О том, как реактивное движение в природе и в технике возникает, задумывался и Н.И. Кибальчич. Это русский революционер, автор первого проекта реактивного летательного аппарата, который предназначен для полета на нем человека. Революционер, к сожалению, был казнен 3 апреля 1881 года. Кибальчича обвинили в том, что он участвовал в покушении на Александра II. Уже в тюрьме, в ожидании исполнения смертного приговора, он продолжал изучать такое интересное явление, как реактивное движение в природе и в технике, возникающее при отделении части объекта. В результате этих изысканий он разработал свой проект. Кибальчич писал, что эта идея поддерживает его в его положении. Он готов спокойно встретить свою смерть, зная, что столь важное открытие не погибнет вместе с ним.

Реализация идеи полета в космос

Проявление реактивного движения в природе и технике продолжил изучать К. Э. Циолковский (фото его представлено выше). Еще в начале 20 века этот великий русский ученый предложил идею использования ракет в целях космических полетов. Его статья, посвященная этому вопросу, появилась в 1903 году. В ней было представлено математическое уравнение, ставшее важнейшим для космонавтики. Оно известно в наше время как "формула Циолковского". Это уравнение описывало движение тела, имеющего переменную массу. В своих дальнейших трудах он представил схему ракетного двигателя, работающего на жидком топливе. Циолковский, изучая использование реактивного движения в природе и технике, разработал многоступенчатую конструкцию ракеты. Ему также принадлежит идея о возможности создания на околоземной орбите целых космических городов. Вот к каким открытиям пришел ученый, изучая реактивное движение в природе и технике. Ракеты, как показал Циолковский, - это единственные аппараты, которые могут преодолеть Ракету он определил как механизм, имеющий реактивный двигатель, который использует находящееся на нем горючее и окислитель. Этот аппарат трансформирует химическую энергию топлива, которая становится кинетической энергией газовой струи. Сама ракета при этом начинает двигаться в обратном направлении.

Наконец, ученые, изучив реактивное движение тел в природе и технике, перешли к практике. Предстояла масштабная задача реализации давней мечты человечества. И группа советских ученых, возглавляемая академиком С. П. Королевым, справилась с ней. Она осуществила идею Циолковского. Первый искусственный спутник нашей планеты был запущен в СССР 4 октября 1957 г. Естественно, при этом использовалась ракета.

Ю. А. Гагарин (на фото выше) был человеком, которому выпала честь первым осуществить полет в космическом пространстве. Это важное для мира событие произошло 12 апреля 1961 года. Гагарин на корабле-спутнике "Восток" облетел весь земной шар. СССР был первым государством, ракеты которого достигли Луны, облетели вокруг нее и сфотографировали сторону, невидимую с Земли. Кроме того, и на Венере впервые побывали именно русские. Они доставили на поверхность этой планеты научные приборы. Американский астронавт Нил Армстронг - первый человек, побывавший на поверхности Луны. Он высадился на нее 20 июля 1969 года. В 1986 году "Вега-1" и "Вега-2" (корабли, принадлежащие СССР) исследовали с близкого расстояния комету Галлея, которая приближается к Солнцу всего лишь раз в 76 лет. Изучение космоса продолжается…

Как вы видите, очень важной и полезной наукой является физика. Реактивное движение в природе и технике - это лишь один из интересных вопросов, которые рассматриваются в ней. А достижения этой науки весьма и весьма значительны.

Как в наши дни используется реактивное движение в природе и в технике

В физике в последние несколько столетий были сделаны особенно важные открытия. В то время как природа остается практически неизменной, техника развивается стремительными темпами. В наше время принцип реактивного движения широко применяется не только различными животными и растениями, но также в космонавтике и в авиации. В космическом пространстве отсутствует среда, которую тело могло бы использовать для взаимодействия, чтобы изменить модуль и направление своей скорости. Именно поэтому для полетов в безвоздушном пространстве можно использовать лишь ракеты.

Сегодня активно используется реактивное движение в быту, природе и технике. Оно уже не является загадкой, как раньше. Однако человечество не должно останавливаться на достигнутом. Впереди новые горизонты. Хочется верить, что реактивное движение в природе и технике, кратко охарактеризованное в статье, вдохновит кого-то на новые открытия.

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода