Вконтакте Facebook Twitter Лента RSS

Для чего нужны радиотелескопы? Радиотелескопы и их характеристики, принцип действия интерферометров, космический "радиоастрон".

Телескоп - это уникальный оптический прибор, предназначенный для наблюдения за небесными телами. Использование приборов позволяет рассмотреть самые разные объекты, не только те, которые располагаются недалеко от нас, но и те, которые находятся за тысячи световых лет от нашей планеты. Так что такое телескоп и кто его придумал?

Первый изобретатель

Телескопические устройства появились в семнадцатом веке. Однако по сей день ведутся дебаты, кто изобрел телескоп первым - Галилей или Липперсхей. Эти споры связаны с тем, что оба ученых примерно в одно время вели разработки оптических устройств.

В 1608 году Липперсхей разработал очки для знати, позволяющие видеть удаленные объекты вблизи. В это время велись военные переговоры. Армия быстро оценила пользу разработки и предложила Липперсхею не закреплять авторские права за устройством, а доработать его так, чтобы в него можно было бы смотреть двумя глазами. Ученый согласился.

Новую разработку ученого не удалось удержать втайне: сведения о ней были опубликованы в местных печатных изданиях. Журналисты того времени назвали прибор зрительной трубой. В ней использовалось две линзы, которые позволяли увеличить предметы и объекты. С 1609 года в Париже вовсю продавали трубы с трехкратным увеличением. С этого года какая-либо информация о Липперсхее исчезает из истории, а появляются сведения о другом ученом и его новых открытиях.

Примерно в те же годы итальянец Галилео занимался шлифовкой линз. В 1609 году он представил обществу новую разработку - телескоп с трехкратным увеличением. Телескоп Галилея имел более высокое качество изображения, чем трубы Липперсхея. Именно детище итальянского ученого получило название «телескоп».

В семнадцатом веке телескопы изготавливались голландскими учеными, но они имели низкое качество изображения. И только Галилею удалось разработать такую методику шлифовки линз, которая позволила увеличить четко объекты. Он смог получить двадцатикратное увеличение, что было в те времена настоящим прорывом в науке. Исходя из этого невозможно сказать, кто изобрел телескоп: если по официальной версии, то именно Галилео представил миру устройство, которое он назвал телескопом, а если смотреть по версии разработки оптического прибора для увеличения объектов, то первым был Липперсхей.

Первые наблюдения за небом

После появления первого телескопа были сделаны уникальные открытия. Галилео применил свою разработку для отслеживания небесных тел. Он первым увидел и зарисовал лунные кратеры, пятна на Солнце, а также рассмотрел звезды Млечного Пути, спутники Юпитера. Телескоп Галилея дал возможность увидеть кольца у Сатурна. К сведению, в мире до сих пор есть телескоп, работающий по тому же принципу, что и устройство Галилея. Он находится в Йоркской обсерватории. Аппарат имеет диаметр 102 сантиметра и исправно служит ученым для отслеживания небесных тел.

Современные телескопы

На протяжении столетий ученые постоянно изменяли устройства телескопов, разрабатывали новые модели, улучшали кратность увеличения. В результате удалось создать малые и большие телескопы, имеющие разное назначение.

Малые обычно применяют для домашних наблюдений за космическими объектами, а также для наблюдения за близкими космическими телами. Большие аппараты позволяют рассмотреть и сделать снимки небесных тел, расположенных в тысячах световых лет от Земли.

Виды телескопов

Существует несколько разновидностей телескопов:

  1. Зеркальные.
  2. Линзовые.
  3. Катадиоптрические.

К линзовым относят рефракторы Галилея. К зеркальным относят устройства рефлекторного типа. А что такое телескоп катадиоптрический? Это уникальная современная разработка, в которой сочетается линзовый и зеркальный прибор.

Линзовые телескопы

Телескопы в астрономии играют важную роль: они позволяют видеть кометы, планеты, звезды и другие космические объекты. Одними из первых разработок были линзовые аппараты.

В каждом телескопе есть линза. Это главная деталь любого устройства. Она преломляет лучи света и собирает их в точке, под названием фокус. Именно в ней строится изображение объекта. Чтобы рассмотреть картинку, используют окуляр.

Линза размещается таким образом, чтобы окуляр и фокус совпадали. В современных моделях для удобного наблюдения в телескоп применяют подвижные окуляры. Они помогают настроить резкость изображения.

Все телескопы обладают аберрацией - искажением рассматриваемого объекта. Линзовые телескопы имеют несколько искажений: хроматическую (искажаются красные и синие лучи) и сферическую аберрацию.

Зеркальные модели

Зеркальные телескопы называют рефлекторами. На них устанавливается сферическое зеркало, которое собирает световой пучок и отражает его с помощью зеркала на окуляр. Для зеркальных моделей не характерна хроматическая аберрация, так как свет не преломляется. Однако у зеркальных приборов выражена сферическая аберрация, которая ограничивает поле зрения телескопа.

В графических телескопах используются сложные конструкции, зеркала со сложными поверхностями, отличающиеся от сферических.

Несмотря на сложность конструкции, зеркальные модели легче разрабатывать, чем линзовые аналоги. Поэтому данный вид более распространен. Самый большой диаметр телескопа зеркального типа составляет более семнадцати метров. На территории России самый большой аппарат имеет диаметр шесть метров. На протяжении многих лет он считался самым большим в мире.

Характеристики телескопов

Многие покупают оптические аппараты для наблюдений за космическими телами. При выборе устройства важно знать не только то, что такое телескоп, но и то, какими характеристиками он обладает.

  1. Увеличение. Фокусное расстояние окуляра и объекта - это кратность увеличения телескопа. Если фокусное расстояние объектива два метра, а у окуляра - пять сантиметров, то такое устройство будет обладать сорокакратным увеличением. Если окуляр заменить, то увеличение будет другим.
  2. Разрешение. Как известно, свету свойственны преломление и дифракция. В идеале любое изображение звезды выглядит как диск с несколькими концентрическими кольцами, называемыми дифракционными. Размеры дисков ограничены только возможностями телескопа.

Телескопы без глаз

А что такое телескоп без глаза, для чего его используют? Как известно, у каждого человека глаза воспринимают изображение по-разному. Один глаз может видеть больше, а другой - меньше. Чтобы ученые смогли рассмотреть все, что им необходимо увидеть, применяют телескопы без глаз. Эти аппараты передают картинку на экраны мониторов, через которые каждый видит изображение именно таким, какое оно есть, без искажений. Для малых телескопов с этой целью разработаны камеры, подключаемые к аппаратам и снимающие небо.

Самыми современными методами видения космоса стало использование ПЗС камер. Это особые светочувствительные микросхемы, которые собирают информацию с телескопа и передают ее на ЭВМ. Получаемые с них данные настолько четкие, что невозможно представить, какими еще устройствами можно было бы получить такие сведения. Ведь глаз людей не может различать все оттенки с такой высокой четкостью, как это делают современные камеры.

Для измерения расстояний между звездами и другими объектами пользуются специальными приборами - спектрографами. Их подключают к телескопам.

Современный астрономический телескоп - это не одно устройство, а сразу несколько. Получаемые данные с нескольких аппаратов обрабатываются и выводятся на мониторы в виде изображений. Причем после обработки ученые получают изображения очень высокой четкости. Увидеть глазами в телескоп такие же четкие изображения космоса невозможно.

Радиотелескопы

Астрономы для своих научных разработок используют огромные радиотелескопы. Чаще всего они выглядят как огромные металлические чаши с параболической формой. Антенны собирают получаемый сигнал и обрабатывают получаемую информацию в изображения. Радиотелескопы могут принимать только одну волну сигналов.

Инфракрасные модели

Ярким примером инфракрасного телескопа является аппарат имени Хаббла, хотя он может быть одновременно и оптическим. Во многом конструкция инфракрасных телескопов схожа с конструкцией оптических зеркальных моделей. Тепловые лучи отражаются обычным телескопическим объективом и фокусируются в одной точке, где находится прибор, измеряющий тепло. Полученные тепловые лучи пропускаются через тепловые фильтры. Только после этого происходит фотографирование.

Ультрафиолетовые телескопы

При фотографировании фотопленка может засвечиваться ультрафиолетовыми лучами. В некоторой части ультрафиолетового диапазона возможно принимать изображения без обработки и засвечивания. А в некоторых случаях необходимо, чтобы лучи света прошли через специальную конструкцию - фильтр. Их использование помогает выделить излучение определенных участков.

Существуют и другие виды телескопов, каждый из которых имеет свое назначение и особые характеристики. Это такие модели, как рентгеновские, гамма-телескопы. По своему назначению все существующие модели можно разделить на любительские и профессиональные. И это далеко не вся классификация аппаратов для отслеживания небесных тел.

Принцип действия радиотелескопа

2.1.1 Радиотелескоп состоит из двух основных элементов: антенного устройства и очень чувствительного приёмного устройства - радиометра. Радиометр усиливает принятое антенной радиоизлучение и преобразует его в форму, удобную для регистрации и обработки.

Конструкции антенн радиотелескопов отличаются большим разнообразием, что обусловлено очень широким диапазоном длин волн, используемых в радиоастрономии (от 0,1 мм до 1000 м). Антенны радиотелескопов, принимающих мм, см, дм и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. В фокусе параболоида устанавливается облучатель - устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передаёт принятую энергию на вход радиометра, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора. На современных радиотелескопах аналоговый сигнал с выхода радиометра преобразуется в цифровой и записывается на жёсткий диск в виде одного или нескольких файлов.

Для направления антенн в исследуемую область неба их устанавливают обычно на Азимутальных монтировках, обеспечивающих повороты по азимуту и высоте (полноповоротные антенны). Существуют также антенны, допускающие лишь ограниченные повороты, и даже полностью неподвижные. Направление приёма в антеннах последнего типа (обычно очень большого размера) достигается путём перемещения облучателей, которые воспринимают отражённое от антенны радиоизлучение.

2.1.2 Принцип работы радиотелескопа больше схож принципом работы фотометра, нежели оптического телескопа. Радиотелескоп не может строить изображение непосредственно, он лишь измеряет энергию излучения, приходящего с направления, в котором «смотрит» телескоп. Таким образом, чтобы получить изображение протяженного источника, радиотелескоп должен промерить его яркость в каждой точке.

Ввиду дифракции радиоволн на апертуре телескопа, измерение направления на точечный источник происходит с некоторой ошибкой, которая определяется диаграммой направленности антенны и накладывает фундаментальное ограничение на разрешающую способность инструмента:

где - длина волны, - диаметр апертуры. Высокая разрешающая способностью позволяет наблюдать более мелкие пространственные детали исследуемых объектов. Чтобы улучшить разрешающую способность, нужно либо уменьшить длину волны, либо увеличить апертуру. Однако использование малых длин волн повышает требования к качеству поверхности зеркала. Поэтому обычно идут по пути увеличения апертуры. Увеличение апертуры также позволяет улучшить ещё одну важную характеристику - чувствительность. Радиотелескоп должен обладать высокой чувствительностью, чтобы обеспечить надёжную регистрацию как можно более слабых источников. Чувствительность определяется уровнем флюктуаций плотности потока :

,

где - мощность собственных шумов радиотелескопа, - эффективная площадь (собирающая поверхность) антенны, - полоса частот и - время накопления сигнала. Для повышения чувствительности радиотелескопов увеличивают их собирающую поверхность и применяют малошумящие приёмники и усилители на основе мазеров, параметрических усилителей и т. д.


01.09.2017 13:40 1097

Радиотелескопом называется устройство, с помощью которого астрономы изучают космические объекты, находящиеся далеко от Земли. В отличие от обычного оптического телескопа , исследуемый объект нельзя увидеть сразу. Радиотелескоп улавливает излучение небесных тел и полученный сигнал передаёт на специальный монитор.

Идея создать такой аппарат принадлежит американскому физику Карлу Янскому. Исследуя атмосферные радиопомехи, учёный обнаружил радиоволны неизвестного происхождения. Впоследствии выяснилось, что источником радиоизлучения является центр нашей галактики Млечный Путь. Это открытие образовало новую науку – радиоастрономию, изучающую небесные объекты с помощью электромагнитного излучения.

Внешне радиотелескоп напоминает простую спутниковую антенну, способную принимать радиоизлучения из космоса. Источниками радиоизлучения во вселенной являются планеты, астероиды и кометы . С помощью радиотелескопа астрономам удалось вести наблюдения за солнцем и разными процессами, которые на нём происходят. Также данные измерений помогли определить размеры и массы планет нашей солнечной системы.

Радиоастрономические обсерватории расположены в разных уголках нашей планеты. Самый крупный радиотелескоп в мире находится на юге России, в Карачаево-Черкессии. Он входит в комплекс Зеленчукской радиоастрономической обсерватории.

Современный радиотелескоп является весьма сложным устройством, состоящим в основном из следующих глав­ных элементов: антенны, системы перемещения антенны в вертикальной и горизонтальной плоскостях, приемно­го устройства, устройства предварительной обработки принятого сигнала, устройства управления антенной. Планетный радиолокатор в дополнение к вышеупомя­нутым элементам имеет еще передающее и модуляци­онное устройства, а также систему синхронизации.

Планетные радиолокаторы с отключенными передат­чиками обычно используются в качестве радиотелеско­пов для наблюдения радиоизлучения планет и других небесных тел. При этом приемное устройство радиоло­катора либо переключается из режима узкополосного приема в режим широкополосного приема, либо на те­лескопе устанавливается специальный радиоастрономи­ческий приемник - радиометр.

Рассмотрим основные устройства радиотелескопов и планетных радиолокаторов (рис. 5).

Антенны. Одним из наиболее сложных устройств со­временного радиотелескопа и планетного радиолокато­ра является антенная система. Антенна собирает анер­гию радиоизлучения от небесного источника и передает ее приемному устройству. Чем больше линейные раз­меры антенны, тем большая величина энергии радио­излучения собирается антенной. С ростом линейных размеров антенны сужается ее диаграмма направлен­ности, т. е. уменьшается угол, в пределах которого ан­тенна эффективно принимает радиоизлучение. А тем самым увеличивается разрешающая способность антен­ны по углу и возрастает ее коэффициент усиления. Поэтому радиоастрономы стремятся создавать для ис­следования источников радиоизлучения, имеющих ма­лые угловые размеры, антенны возможно больших раз­меров.

Радиоастрономические антенны можно разделить по аналогии с оптическими телескопами на две группы - радиорефлекторы (одиночные антенны) и радиорефрак­торы (многоэлементные антенны). В радиорефлекторах поток радиоизлучения собирается и фокусируется «зер­кальной» системой. Сфокусированный сигнал поступа­ет на облучатель и через фидерный тракт, соединяю­щий антенну с приемным устройством, передается в приемное устройство. В радиорефракторах поток радио­излучения принимается отдельными антеннами и скла­дывается затем в фидерном тракте.

В радиоастрономии применяются следующие типы рефлекторных антенн: параболические, сферические, рупорные, перископические, переменного профиля. К рефракторным антеннам относятся различные типы интерферометрических систем, синфазные антенны, фа­зируемые решетки и крестообразные антенны. Основ­ные характеристики антенн некоторых советских и за­рубежных телескопов приведены в табл. 2.

Параболические антенны. Наиболее широкое приме­нение среди рефлекторных антенн нашли параболиче­ские. Эти антенны имеют свой аналог в оптике - про­жектор с параболическим отражателем, в котором свет от «точечного» источника превращается в параллель­ный пучок. В параболической антенне процесс идет в обратном направлении - параллельный поток радиоизлучения фокусируется зеркалом в фокусе параболоида, где он принимается облучателем.

Параболические антенны, используемые в радиоаст­рономии, имеют внушительные размеры (рис. 6 и 7). Самый большой на Земле полноповоротный пара­болический радиотелескоп имеет зеркало диаметром 100 м. Его антенна поворачивается на 360° по азимуту и 90° по углу места. Вес антенного сооружения состав­ляет 3200 т.

Параболические антенны могут работать только в ограниченном диапазоне длин волн: выполнить парабо­лическую поверхность абсолютно точно невозможно, вследствие чего неровности поверхности параболоида при работе на очень коротких длинах волн начинают ухудшать фокусирующие свойства антенны. Это приво­дит, в свою очередь, к ухудшению эффективности ан­тенны, т. е. как бы уменьшению площади раскрыва ан­тенны, собирающей поток радиоизлучения. А так как с ростом длины волны расширяется диаграмма направ­ленности антенны и на некоторой длине волны данную антенну становится уже нецелесообразно использовать для наблюдений (так как при этом уменьшается ее ко­эффициент усиления), то радиоастрономы для более длинноволновых измерений используют другие типы антенн.

Однако даже в одинаковых конструкциях параболи­ческих антенн минимальная длина волны, на которой еще эффективно работает антенна, может быть разной. Это зависит от тщательности изготовления поверхности зеркала и от деформаций зеркала при изменении его ориентации в пространстве, а также от действия теп­ловых и ветровых нагрузок. Так, например, зеркало диаметром 22 м антенны РТ-22 Крымской астрофи­зической обсерватории по своему исполнению более точное, чем зеркало антенны аналогичных размеров в Пущино (Физический институт АН СССР).

Параболические антенны, работающие в миллимет­ровом диапазоне длин волн, имеют диаметр, не пре­вышающий 25 м. Антенны больших размеров эффектив­но работают в сантиметровом диапазоне. Антенна РТ-22 Крымской астрофизической обсерватории может эффек­тивно работать на длинах волн не короче 4 мм. Антен­на Национальной радиоастрономической обсерватории США с диаметром 11 м, установленная на горе Китт-Пик, работает с предельной длиной волны 1,2 мм. Для уменьшения температурных деформаций зеркала антен­на этого радиотелескопа в нерабочем состоянии нахо­дится под куполом диаметром 30 м (во время измере­ний купол частично раскрывается).

Сферические антенны. На земном шаре существует всего несколько (радиоастрономических антенн, имею­щих сферическое зеркало. Эти антенны получили также название «земляные чаши», так как сферический отра­жатель в них находится на поверхности Земли, а сме­щение диаграммы направленности антенны производит­ся за счет перемещения облучателя. Самая большая антенна такого типа (с диаметром раскрыва 305 м) находится на о. Пуэрто-Рико в Южной Америке (об­серватория Аресибо).

Антенны со сферическими зеркалами менее эффек­тивно фокусируют электромагнитное излучение, чем па­раболические антенны, но обладают тем преимуществом, что могут осуществлять обзор (сканирование) не­ба в пределах большего телесного угла (без поворота самого зеркала, а только за счет смещения отражателя из фокуса зеркала). Так антенна в Аресибо позволяет смещать диаграмму направленности в пределах 20° от­носительно зенита в любом направлении. Ее зеркало состоит из металлических щитов, которыми выстлано дно потухшего вулкана. На трех гигантских опорах на­тянуты тросы, по которым движется специальная ка­ретка с установленными на ней облучателями и другой радиотехнической аппаратурой (см. первую страницу обложки). Антенна может эффективно работать до длины волны не короче 10 см (на этой волне ее диаграмма направленности имеет ширину 1,5′). Ан­тенна в Аресибо до реконструкции имела сферическую поверхность из металлической сетки и могла эффектив­но работать только в длинноволновом участке децимет­рового диапазона (лямбда>50 см). Аресибская антенна так­же используется в качестве антенны планетного радио­локатора, работающего на длине волны 12,5 см и име­ющего среднюю мощность 450 кВт.

В Бюраканской астрофизической обсерватории ра­ботает самая коротковолновая сферическая антенна с неподвижным зеркалом, диаметр которого равен 5 м. Антенна является прообразом будущей, проектируемой для Бюраканской обсерватории 200-метровой чаши, ко­торая по расчетам будет иметь предельную длину вол­ны 3 см.

Рупорные антенны. В отличие от зеркальных (сфе­рических и параболических) рупорные антенны состоят из одного облучателя. Радиоастрономических антенн такого типа «а Земле немного. Благодаря тому что их характеристики можно точно рассчитать, эти антенны используются для прецизионных измерений потоков радиоизлучения некоторых источников, которые радио­астрономами принимаются за эталонные. С помощью рупорной антенны был точно измерен поток радиоизлу­чения источника Кассиопея А и открыто реликтовое ра­диоизлучение. Туманность Кассиопея А является одним из самых мощных источников радиоизлучения и широко используется радиоастрономами для калибровок антенн в качестве эталонного источника.

Перископические антенны. В радиоастрономии на­шли широкое применение и перископические антенны, преимуществом которых является то, что при относи­тельно больших размерах они обладают довольно хо­рошей эффективностью. Антенны подобного типа состо­ят из трех элементов: плоского зеркала, которое пово­рачивается по углу места; фокусирующего главного зер­кала (в виде сферического или параболического ци­линдра) и облучателя.

Сферическое или ‘параболическое зеркало фокуси­рует поток радиоизлучения в горизонтальной и верти­кальной плоскостях. Так как линейные размеры таких антенн в горизонтальном направлении существенно больше, чем в вертикальном, то и ширина диаграммы направленности антенн в горизонтальной плоскости су­щественно меньше ширины диаграммы, чем в верти­кальной плоскости. Самая коротковолновая перископи­ческая антенна сооружена в обсерватории Горьковского радиофизического института. Она эффективно работает до длин волн 1 мм. На длине волны 4 мм ширина диаграммы направленности этой антенны составляет 45″ в горизонтальной плоскости и 8’ в вертикальной плоскости.

Антенны переменного профиля. Вблизи станицы Зе­ленчукской Ставропольского края начал работать ра­диотелескоп РАТАН-600 (рис. 8). Схема его антенной системы напоминает схему перископической антенны. Однако в отличие от последней главное зеркало этой антенны в вертикальной плоскости плоское. Несмотря на гигантские размеры (диаметр главного зеркала 588 м), эта антенна может эффективно работать до длины волны 8 мм.

Рассмотрим теперь различные типы рефракторных антенн, которые эффективно используются «а метро­вых волнах.

Синфазные антенны. Эти антенны состоят из отдель­ных полуволновых облучателей (диполей), которые со­ставляют полотно, имеющее п облучателей в одном на­правлении и m облучателей в ортогональном направле­нии. Расстояние между облучателем в обоих ортого­нальных направлениях равно половине длины волны. С помощью антенны подобного типа, состоящей из 64 диполей, была проведена первая радиолокация Лу­ны на длине волны 2,5 м.

В синфазных антеннах суммирование сигналов от отдельных облучателей производится в фидерном трак­те. Причем вначале суммируются сигналы от облуча­телей, расположенных в одном ряду, а затем уже про­изводится суммирование по этажам (или наоборот). Чем больше число облучателей в ряду, тем уже диаг­рамма направленности антенны в плоскости, проходя­щей вдоль ряда этих диполей. Синфазные антенны узкополосны, т. е. практически они могут работать только на одной длине волны.

Антенна Центра дальней космической связи СССР, состоящая из 8 параболических антенн, расположенных по 4 в ряд (рис. 9), имеет почти в 8 раз больший ко­эффициент усиления, чем коэффициент усиления от­дельной параболической антенны. Эта сложная антен­на построена по принципу синфазной антенной ре­шетки.

Крестообразные антенны. Дальнейшим развитием антенн подобного типа явились крестообразные антен­ны. В них используется не пХт облучателей, как в синфазных антеннах, а п + т облучателей. В этих ан­теннах п облучателей располагается в одном направле­нии, а т облучателей в направлении, перпендикуляр­ном к нему. Путем соответствующего фазирования по высокой частоте такая антенна имеет диаграмму на­правленности (в вышеуказанных плоскостях), подоб­ную диаграмме антенны, состоящей из пХт облучате­лей. Однако коэффициент усиления такой крестообраз­ной антенны меньше, чем у соответствующих синфаз­ных антенн (состоящих из пХт облучателей). Часто такие антенны называют антеннами с незаполненной апертурой (раскрывом). (В синфазных антеннах, или антеннах с заполненной апертурой (пХт облучателей), для изменения направления диаграммы направленно­сти в пространстве необходимо поворачивать плоскость расположения облучателей путем поворота подвижно­го основания.)

В фазируемых решетках и антеннах с незаполнен­ной апертурой обычно изменение направления диаграм­мы направленности в одной из плоскостей осуществ­ляется за счет изменения фазовых соотношений в фи­дерном тракте, а в другой плоскости - за счет меха­нического поворота антенной системы.

Крупнейшей антенной крестообразного типа в де­каметровом диапазоне является антенна радиотелеско­па УТР-2 Харьковского института радиотехники и элек­троники (рис. 10). Эта антенная система состоит из 2040 широкополосных неподвижных облучателей, рас­положенных параллельно земной поверхности и обра­зующих два плеча - «север-юг» и «запад-восток».

Интерферометры. Особое место среди антенных си­стем занимают антенные интерферометры. Простейший радиоинтерферометр состоит из двух антенн, соединен­ных высокочастотным кабелем; сигналы от них сумми­руются и поступают на приемное устройство. Как и в оптическом интерферометре, разность фаз принятых сигналов определяется разностью хода лучей, которая зависит от расстояния между антеннами и направления прихода радиосигналов (рис. 11).

Из-за движения источника радиоизлучения по не­бесной сфере как раз и происходит изменение разности фаз сигналов, принятых антеннами радиоинтерферомет­ра. Это приводит к появлению максимумов и миниму­мов интерференционных сигналов. Перемещение источ­ника радиоизлучения на некоторый угол, при котором максимум интерференционного сигнала в радиоинтер­ферометре сменит минимум, эквивалентен ширине его диаграммы направленности. Однако в отличие от оди­ночных антенн радиоинтерферометр имеет многолепест­ковую диаграмму направленности в плоскости, прохо­дящей вдоль базы интерферометра. Ширина интерфе­ренционного лепестка тем уже, чем больше расстояние (база) между антеннами. (В плоскости, ортогональной базе интерферометра, диаграмма направленности опре­деляется размерами одиночной антенны этого интерфе­рометра.)

В настоящее время создание высокостабильных ге­нераторов частоты позволило реализовать радиоинтер­ферометрию с независимым приемом. В этой системе высокочастотные сигналы принимаются каждой из двух антенн и независимо друг от друга преобразуются в более низкие частоты с помощью сигналов от высоко­стабильных атомных стандартов частоты.

Интерферометры с независимым приемом в настоя­щее время работают с базами, превышающими размер континента и достигающими 10 000 км. Угловое раз­решение таких интерферометров достигло нескольких десятитысячных долей секунды дуги.

Приемники. Одной из основных характеристик ра­диотелескопа и планетного радиолокатора является чувствительность - минимальная мощность принятого сигнала, которую может зарегистрировать радиотеле­скоп или радиолокатор. Чувствительность зависит от параметров приемного устройства, параметров антенн и характеристик окружающего антенну пространства. В радиоастрономии принимаются настолько слабые сигналы радиоизлучения, что для того чтобы зарегистрировать эти сигналы, их приходится усиливать во много раз; при этом и полезные сигналы и помехи име­ют шумовой характер. Это осложняет их разделение в приемном устройстве.

Приемные устройства радиотелескопов - радиомет­ры, имея высокую чувствительность, также обладают высокой стабильностью своих характеристик. Так как чувствительность приемника главным образом опреде­ляется характеристика-ми его высокочастотной части, то поэтому входным узлам радиометра уделяют повышен­ное внимание. Для снижения уровня шумов приемника в его входных устройствах используются «малошумя-щие» высокочастотные усилители на лампах бегущей волны или туннельных диодах, а также применяются параметрические или квантовые парамагнитные усили­тели. Для получения еще более высокой чувствительно­сти приемника его высокочастотные узлы охлаждают до сверхнизких температур (в качестве хладоагентов используют жидкий азот или жидкий гелий). Система охлаждения, использующая жидкий гелий, позволяет получить температуру высокочастотных узлов прием­ника 5-10° К..

Радиоастрономические приемники для обеспечения высокой чувствительности должны иметь полосы про­пускания в сотни мегагерц или даже несколько тысяч мегагерц. Однако приемники со столь широкими поло­сами пригодны не для всех исследований. Так, измере­ние в радиодиапазоне спектров поглощения некоторых газов, находящихся в атмосферах Земли и планет (во­дяного пара, кислорода, озона и т. д.), требует мак­симальных полос пропускания порядка 50 МГц. Чувст­вительность такого приемника будет относительно не­высокой. Поэтому в таких измерениях необходимую чувствительность получают за счет увеличения времени накопления сигнала на выходе радиометра.

Допустимое время накопления сигнала определяет­ся схемой измерения и временем наличия сигналов ра­диоизлучения исследуемого небесного тела в поле зре­ния антенны радиотелескопа. При малых временах на­копления (интегрирования), исчисляемых секундами или десятками секунд, оно обычно осуществляется на элементах выходных фильтров радиометра. При боль­ших временах накопления функции интегратора выпол­няет ЭВМ.

Все вышеописанные методы позволяют понизить уровень собственных шумов в сотни и тысячи раз. При этом радиометр может измерять интенсивность радио­излучения, соответствующую шумовой температуре 0,003-0,01°К (при времени накопления 1 с). Однако собственными шумами обладает не только приемное устройство, но и антенно-фидерная система, шумы ко­торой зависят от многих параметров: температуры, ко­эффициента полезного действия антенны, потерь элек­тромагнитной энергии в фидерном тракте и т. д.

В радиоастрономии интенсивность шумовых сигна­лов принято характеризовать шумовой температурой. Этот параметр определяется мощностью шумов в поло­се пропускания, равной 1 Гц. Чем выше к. п. д. антенны, тем ниже ее шумовая температура, а следовательно, тем выше может быть получена чувствительность ра­диотелескопа.

Помехи радиоприему. Повышение чувствительности радиотелескопов ограничивается внешними помехами естественного происхождения. Искусственные помехи в значительной степени уменьшены за счет выбора спе­циально для радиоастрономических исследований ча­стотных диапазонов, в которых запрещена работа на­земных и космических радиостанций и радиосистем лю­бого назначения. Для уменьшения влияния индустри­альных помех радиотелескопы располагают вдали от промышленных центров, преимущественно в котлова­нах гор, так как последние хорошо экранируют радио­телескопы от наземных индустриальных помех.

Естественными помехами являются радиоизлучения земной поверхности и атмосферы, а также самого кос­мического пространства. Для снижения влияния фоно­вого радиоизлучения Земли на показания радиометра антенну радиотелескопа конструируют таким образом, чтобы ее диаграмма направленности в направлении к поверхности Земли имела значительное ослабление по сравнению с направлением на исследуемое небесное тело.

Благодаря наличию в земной атмосфере газов, име­ющих линии молекулярного поглощения в радиодиапа­зоне (кислород, водяной пар, озон, угарный газ и т. д.), атмосфера излучает шумовые сигналы в миллиметро­вом и сантиметровом диапазонах и также ослабляет в этих диапазонах принимаемое радиоизлучение небесных тел. Интенсивность радиоизлучения атмосферы су­щественно зависит от длины волны - сильно возраста­ет с уменьшением длины волны. Радиоизлучение атмос­феры особенно сильно вблизи резонансных линий упо­мянутых газов (наиболее интенсивными линиями яв­ляются линии кислорода и водяного пара вблизи длин волн 1,63; 2,5; 5 и 13,5 мм).

Для уменьшения влияния атмосферы радиоастроно­мы выбирают для наблюдений небесных тел участки радиодиапазона вдали от резонансных линий. Эти уча­стки, в которых атмосферные шумы минимальны, по­лучили название «окон прозрачности» атмосферы. В миллиметровом диапазоне такими «окнами» являют­ся участки вблизи длин волн 1,2; 2,1; 3,2 и 8,6 мм. Чем в более коротковолновом диапазоне находится «окно прозрачности», тем большее в нем ослабление радио­сигнала от исследуемого источника и выше уровень шумов атмосферы. (Радиоизлучение атмосферы сильно возрастает с ростом влажности. Основная масса водя­ного пара находится в приземном слое атмосферы на высотах до 2-3 км.)

Для уменьшения влияния атмосферы на радиоаст­рономические измерения радиотелескопы стараются размещать в районах с очень сухим климатом и на больших высотах над уровнем моря. Таким образом, требования к размещению радиотелескопов во многом оказываются схожими с требованиями размещения оп­тических телескопов. Поэтому часто в высокогорных обсерваториях вместе с радиотелескопами размещают­ся и оптические телескопы.

На результаты наблюдения космического радиоиз­лучения оказывает также влияние влага, сконцентри­рованная в облаках и выпадающая в виде осадков. Шумы атмосферы за счет этих компонент существенно возрастают с уменьшением длины волны (на волнах короче 3-5 см). Поэтому радиоастрономы стараются провести измерения в безоблачную погоду.

Кроме радиоизлучения атмосферы и поверхности Земли, фактором, ограничивающим чувствительность радиотелескопа, является космическое излучение Га­лактики и Метагалактики. В дециметровом, сантимет­ровом и миллиметровом диапазонах длин волн Мета­галактика излучает подобно абсолютно черному телу, нагретому до температуры 2,7° К. Это излучение распределено в пространстве изотропно. Интенсивность же из­лучения межзвездной среды в Галактике зависит от на­правления наблюдения (особенно велика интенсивность излучения в направлении Млечного Пути). Излучение галактического происхождения возрастает также с уве­личением длины волны на волнах более 30 см. Поэто­му наблюдение радиоизлучения небесных тел на вол­нах длиннее 50 см является весьма сложной задачей, которая усугубляется также возрастающим влиянием земной ионосферы на волнах метрового диапазона.

Передатчики. Для измерений характеристик отра­жения планет средняя мощность передатчиков планет­ных радиолокаторов должна составлять сотни киловатт. В настоящее время создано всего несколько таких ра­диолокаторов.

Передатчики планетных радиолокаторов работают либо без модуляции, либо попользуют какой-либо вид модуляции. Выбор режима излучения передатчика за­висит от задач исследований. Так, измерение эффектив­ной площади рассеяния и «доплеровокого» спектра сиг­нала, отраженного от планеты, не требует модуляции и обычно проводится при монохроматическом излучае­мом сигнале. В то же время измерение дальности до планеты и радиолокационное картографирование тре­буют модулированного сигнала.

Импульсная модуляция передатчика (применяемая при исследовании Луны) не может обеспечить большую среднюю мощность излучения, и поэтому она практи­чески не используется при планетных исследованиях. Методы частотной и фазовой модуляции применяются почти во всех передатчиках крупнейших планетных радиолокаторов. Так, планетный радиолокатор центра дальней космической связи СССР для измерения даль­ности использует метод линейной частотной модуляции, а планетный радиолокатор Массачусетского технологи­ческого института - метод «псевдошумовой фазовой ма­нипуляции».

Передатчики планетных радиолокаторов должны иметь весьма высокую стабильность частоты излучения (относительная нестабильность передатчика должна быть порядка 10 -9). Поэтому они строятся по схеме: стабилизированный маломощный генератор + усилитель мощности.

Основные характеристики передатчиков, используе­мых в зарубежных планетных радиолокаторах, а также отдельные характеристики этих радиолокаторов приве­дены в табл. 3 (см. с. 38).

Устройства наведения антенн и обработки принятых сигналов. Современный радиотелескоп немыслим без ЭВМ. Обычно в нем применяются даже две ЭВМ. Од­на из них работает в контуре наведения и сопровожде­ния исследуемого источника излучения. Она выраба­тывает сигналы, пропорциональные текущему азимуту и углу места источника, которые затем поступают в блоки управления приводами антенны. Эта же ЭВМ также контролирует правильность исполнения привода­ми антенн управляющих команд., анализируя сигналы с датчиков углов поворота этих приводов.

Антенные системы радиотелескопов могут изменять положение диаграммы направленности как в одной, так и в двух плоскостях. Обычно изменение положения диаграммы направленности антенн производится пу­тем механического перемещения антенны или облуча­теля в соответствующей плоскости. (Исключение со­ставляют антенны типа фазируемых решеток, в кото­рых изменение направления приема радиоизлучения осуществляется путем изменения фазовых соотношений в фидерном тракте.)

Антенны с одной степенью свободы обычно устанав­ливаются вдоль меридиана и изменяют свое положение по углу места, а измерение радиоизлучения источника производится во время прохождения его через геогра­фический меридиан, на котором расположен радиотеле­скоп. По такому принципу работает большое количест­во радиотелескопов. Полноповоротными антеннами обычно являются антенны зеркального типа.

Кроме обычно принятой азимуто-угломестной систе­мы наведения, в некоторых радиотелескопах использует­ся экваториальная система, в которой антенна радио­телескопа может поворачиваться относительно оси, па­раллельной оси вращения Земли (вдоль параллели), а также и в ортогональной плоскости. Такая система наведения антенны требует более простых алгоритмор для управления положением диаграммы направленно­сти в пространстве.

Системы управления антенной, кроме наведения и сопровождения выбранного источника, позволяют про­водить обзор (сканирование) неба в некоторой окрест­ности вокруг источника. Такой режим используется при измерении распределения интенсивности радиоизлуче­ния по диску планеты.

Вторая ЭВМ на современных радиотелескопах ис­пользуется для первичной обработки результатов изме­рений. Входным сигналом для этой ЭВМ являются те­кущие координаты и значения напряжений на выходе радиометра, пропорциональные интенсивности радиоиз­лучения исследуемого и калибровочных источников. По этим данным ЭВМ рассчитывает распределение ин­тенсивности радиоизлучения в зависимости от коорди­нат, т. е. строит карту радиояркостных температур ис­следуемого источника.

Для калибровки интенсивности принятых сигналов используется сопоставление радиоизлучения от иссле­дуемого источника с некоторыми эталонами, которые могут быть как первичными, так и вторичными. Метод первичного эталонирования, так называемый метод «искусственной луны», был разработан советским уче­ным В. С. Троицким. В данном методе измерения пер­вичным эталоном является радиоизлучение поглощаю­щего диска, установленного перед антенной радиотеле­скопа. С помощью метода «искусственной луны» в Горь­ковском радиофизическом институте был проведен большой цикл прецизионных измерений радиоизлуче­ния Луны и других источников.

В качестве вторичных эталонов обычно используют­ся сигналы радиоизлучения некоторых дискретных источников (например, радиоисточников в созвездиях Кассиопея, Лебедь, Дева, Телец, а также некоторых квазаров). Иногда в качестве вторичного эталона ис­пользуется радиоизлучение Юпитера.

Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода