Вконтакте Facebook Twitter Лента RSS

Найти расстояние между прямыми заданными каноническими уравнениями. Разработка урока "Расстояние от точки до прямой

Этот видеоурок будет полезен тем, кто хочет самостоятельно изучить тему «Расстояние от точки до прямой. Расстояние между параллельными прямыми». В ходе урока вы сможете узнать о том, как можно рассчитать расстояние от точки до прямой. Затем учитель даст определение расстояния между параллельными прямыми.

В текущем уроке мы познакомимся с понятием «расстояние» в целом. Также мы конкретизируем данное понятие в случае вычисления расстояния между двумя точками, точкой и прямой, параллельными прямыми

Рассмотрим рисунок 1. На нём изображены 2 точки А и В. Расстоянием между двумя точками А и В является отрезок, имеющий концы в заданных точках, то есть отрезок АВ

Рис. 1. АВ - расстояние между точками

Примечательно, что расстоянием нельзя считать кривую или ломаную линии, соединяющих две точки. Расстояние - это кратчайший путь от одной точки к другой. Именно отрезок АВ является наименьшим из всех возможных линий, соединяющие точки А и В

Рассмотрим рисунок 2, на котором изображена прямая а, и точка А, не принадлежащая данной прямой. Расстоянием от точки А до прямой будет длина перпендикуляра АН.

Рис. 2. АН - расстояние между точкой и прямой

Важно заметить, что АН - кратчайшее расстояние, так как в треугольнике АМН данный отрезок является катетом, а произвольный иной отрезок, соединяющий точку А и прямую а (в данном случае - это АМ) будет являться гипотенузой. Как известно, катет всегда меньше гипотенузы

Обозначение расстояния:

Рассмотрим параллельные прямые a и b, изображённые на рисунке 3

Рис. 3. Параллельные прямые a и b

Зафиксируем две точки на прямой a и опустим из них перпендикуляры на параллельную ей прямую b . Докажем, что если ,

Проведём отрезок АМ для удобства доказательства. Рассмотрим полученные треугольники АВМ и АНМ. Поскольку , а , то . Аналогично, . У данных прямоугольных треугольников () сторона АМ - общая. Она является гипотенузой в обоих треугольниках. Углы АМН и АМВ являются внутренними накрестлежащими при параллельных прямых АВ и НМ и секущей АМ. По известному свойству, .

Из всего выше изложенного следует, что . Из равенства треугольников следует, что АН = ВМ

Итак, мы доказали, что на рисунке 3 отрезки АН и ВМ равны. Это значит, что расстоянием между параллельными прямыми является длина их общего перпендикуляра, при чём выбор перпендикуляра может быть произвольным. Таким образом,

Верно и обратное утверждение: множество точек, которые находятся на одном и том же расстоянии от некоторой прямой, образуют прямую, параллельную данной

Закрепим наши знания, решим несколько задач

Пример 1 : Задача 272 из учебника «Геометрия 7-9». Автор - Атанасян Л.С.

В равностороннем треугольнике АВС проведена биссектриса АD. Расстояние от точки D до прямой АС равно 6 см. Найти расстояние от точки А до прямой ВС

Рис. 4. Чертёж к примеру 1

Решение:

Равносторонним треугольником называется треугольник с тремя равными сторонами (а значит, и с тремя равными углами, то есть - по 60 0). Равносторонний треугольник является частным случаем равнобедренного, поэтому все свойства, присущие равнобедренному треугольнику, распространяются и на равносторонний. Поэтому АD - не только биссектриса, но ещё и высота, стало быть AD ⊥BC

Поскольку расстояние от точки D до прямой АС - это длина перпендикуляра, опущенного из точки D на прямую АС, то DH - данное расстояние. Рассмотрим треугольник АНD. В нём угол Н = 90 0 , так как DH - перпендикуляр к АС (по определению расстояния от точки до прямой). Кроме этого, в данном треугольнике катет DH лежит против угла , поэтому AD = (см) (По свойству)

Расстояние от точки А до прямой ВС - это длина опущенного на прямую ВС перпендикуляра. По доказанному AD ⊥BC, значит, .

Ответ: 12 см.

Пример 2 : Задача 277 из учебника «Геометрия 7-9». Автор - Атанасян Л.С.

Расстояние между параллельными прямыми a и b равно 3 см, а расстояние между параллельными прямыми a и c равно 5 см. Найдите расстояние между параллельными прямыми b и c

Решение:

Рис. 5. Чертёж к примеру 2 (первый случай)

Поскольку , то = 5 - 3 = 2 (см).

Однако данный ответ неполный. Существует и другой вариант расположения прямых на плоскости:

Рис. 6. Чертёж к примеру 2 (второй случай)

В данном случае .

  1. Единая коллекция цифровых образовательных ресурсов ().
  2. Репетитор по математике ().
  1. № 280, 283. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. под редакцией Тихонова А. Н. Геометрия 7-9 классы. М.: Просвещение. 2010 г.
  2. Сумма гипотенузы СЕ и катета СК прямоугольного треугольника СКЕ равна 31 см, а их разность равна 3 см. найдите расстояние от вершины С до прямой КЕ
  3. На основании АВ равнобедренного треугольника АВС взята точка М, равноудалённая от боковых сторон. Докажите, что СМ - высота треугольника АВС
  4. Докажите, что все точки плоскости, расположенные по одну сторону от данной прямой и равноудалённые от неё, лежат на прямой, параллельной данной

Доказательство.

Возьмем точку , которая лежит на прямой a , тогда координаты точки М1 удовлетворяют уравнению , то есть, справедливо равенство , откуда имеем .

Если font-size:12.0pt;line-height:115%;font-family:Verdana"> b имеет вид font-size:12.0pt;line-height:115%;font-family:Verdana">, а если , то нормальное уравнение прямой b имеет вид font-size:12.0pt;line-height:115%;font-family:Verdana">.

Тогда при font-size:12.0pt;line-height:115%;font-family:Verdana">расстояние от точки до прямой b вычисляется по формуле , а при - по формуле

То есть, при любом значении С2 расстояние от точки до прямой b можно вычислить по формуле . А если учесть равенство , которое было получено выше, то последняя формула примет вид font-size:12.0pt;line-height:115%;font-family:Verdana">. Теорема доказана.

2. Решение задач на нахождение расстояния между параллельными прямыми

Пример №1.

Найдите расстояние между параллельными прямыми и Решение.

Получим общие уравнения заданных параллельных прямых.

Для прямой font-size:12.0pt; line-height:115%;font-family:Verdana">соответствует общее уравнение прямой . Перейдем от параметрических уравнений прямой вида font-size:12.0pt;line-height:115%;font-family:Verdana">к общему уравнению этой прямой:

font-size:12.0pt; line-height:115%;font-family:Verdana">Коэффициенты при переменных x и y в полученных общих уравнениях параллельных прямых равны, поэтому мы сразу можем применить формулу для вычисления расстояния между параллельными прямыми на плоскости: .

Ответ: font-size:12.0pt; line-height:115%;font-family:Verdana">Пример №2.

На плоскости введена прямоугольная система координат Oxy и даны уравнения двух параллельных прямых и . Найдите расстояние между указанными параллельными прямыми.

Решение:

Первый способ решения.

Канонические уравнения прямой на плоскости вида font-size:12.0pt; line-height:115%;font-family:Verdana">позволяют сразу записать координаты точки М1 , лежащей на этой прямой: font-size:12.0pt; line-height:115%;font-family:Verdana">. Расстояние от этой точки до прямой равно искомому расстоянию между параллельными прямыми. Уравнение является нормальным уравнением прямой, следовательно, мы можем сразу вычислить расстояние от точки до прямой font-size:12.0pt;line-height:115%;font-family:Verdana">: .

Второй способ решения.

Общее уравнение одной из заданных параллельных прямых нам уже дано font-size:12.0pt;line-height:115%;font-family:Verdana">. Приведем каноническое уравнение прямой к общему уравнению прямой: . Коэффициенты при переменной x в общих уравнениях заданных параллельных прямых равны (при переменной y коэффициенты тоже равны - они равны нулю), поэтому можно применять формулу, позволяющую вычислить расстояние между заданными параллельными прямыми: .

Ответ: 8

3. Домашнее задание

Задачи для самопроверки

1. Найти расстояние между двумя параллельными прямыми

4.ЗАКЛЮЧЕНИЕ

Все поставленные цели и задачи выполнены полностью. Разработаны два урока из раздела «Взаимное расположение объектов на плоскости» по теме «Расстояние от точки до прямой. Расстояние между параллельными прямыми» с помощью метода координат. Материал подобран на доступном для учащихся уровне, что позволит решать задачи по геометрии более простыми и красивыми методами.

5.СПИСОК ЛИТЕРАТУРЫ

1) , Юдина. 7 – 9 классы : учебник для общеобразовательных учреждений.

2) , Позняк. Учебник для 10-11 классов средней школы .

3) , Никольский математика. Том первый: элементы линейной алгебры и аналитической геометрии.

4) , Позняк геометрия.

6.ПРИЛОЖЕНИЯ

Справочный материал

Общее уравнение прямой:

Ах + Ву + С = 0 ,

где А и В не равны нулю одновременно.

Коэффициенты А и В являются координатами нормального вектора прямой (т. е. вектора, перпендикулярного прямой). При А = 0 прямая параллельна оси ОХ , при В = 0 прямая параллельна оси О Y .

При В 0 получаем уравнение прямой с угловым коэффициентом :

Уравнение прямой, проходящей через точку (х 0 , у 0) и не параллельной оси OY , имеет вид:

у у 0 = m (x х 0) ,

где m угловой коэффициент , равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ .

При А font-size:12.0pt;font-family:Verdana;color:black">

где a = – C / A , b = – C / B . Эта прямая проходит через точки (a , 0) и (0, b ), т. е. отсекает на осях координат отрезки длиной a и b .

Уравнение прямой, проходящей через две различные точки (х 1, у 1) и (х 2, у 2):

Параметрическое уравнение прямой , проходящей через точку (х 0 , у 0) и параллельной направляющему вектору прямой (a , b ) :

Условие параллельности прямых:

1) для прямых Ах+ Ву+ С = 0 и D х+ E у+ F = 0: AE BD = 0 ,

2) для прямых у = m x + k и у = p x + q : m = p .

В материале этой статьи разберем вопрос нахождения расстояния между двумя параллельными прямыми, в частности, при помощи метода координат. Разбор типовых примеров поможет закрепить полученные теоретические знания.

Yandex.RTB R-A-339285-1 Определение 1

Расстояние между двумя параллельными прямыми – это расстояние от некоторой произвольной точки одной из параллельных прямых до другой прямой.

Приведем иллюстрацию для наглядности:

На чертеже изображены две параллельные прямые a и b . Точка М 1 принадлежит прямой a , из нее опущен перпендикуляр на прямую b . Полученный отрезок М 1 Н 1 и есть расстояние между двумя параллельными прямыми a и b .

Указанное определение расстояния между двумя параллельными прямыми справедливо как на плоскости, так и для прямых в трехмерном пространстве. Кроме того, данное определение взаимосвязано со следующей теоремой.

Теорема

Когда две прямые параллельны, все точки одной из них равноудалены от другой прямой.

Доказательство

Пусть нам заданы две параллельные прямые a и b . Зададим на прямой а точки М 1 и М 2 , опустим из них перпендикуляры на прямую b , обозначив их основания соответственно как Н 1 и Н 2 . М 1 Н 1 – это расстояние между двумя параллельными прямыми по определению, и нам необходимо доказать, что | М 1 Н 1 | = | М 2 Н 2 | .

Пусть будет также существовать некоторая секущая, которая пересекает две заданные параллельные прямые. Условие параллельности прямых, рассмотренное в соответствующей статье, дает нам право утверждать, что в данном случае внутренние накрест лежащие углы, образованные при пересечении секущей заданных прямых, являются равными: ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Прямая М 2 Н 2 перпендикулярна прямой b по построению, и, конечно, перпендикулярна прямой a . Получившиеся треугольники М 1 Н 1 Н 2 и М 2 М 1 Н 2 являются прямоугольными и равными друг другу по гипотенузе и острому углу: М 1 Н 2 – общая гипотенуза, ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Опираясь на равенство треугольников, мы можем говорить о равенстве их сторон, т.е.: | М 1 Н 1 | = | М 2 Н 2 | . Теорема доказана.

Отметим, что расстояние между двумя параллельными прямыми – наименьшее из расстояний от точек одной прямой до точек другой.

Нахождение расстояния между параллельными прямыми

Мы уже выяснили, что, по сути, чтобы найти расстояние между двумя параллельными прямыми, необходимо определить длину перпендикуляра, опущенного из некой точки одной прямой на другую. Способов, как это сделать, несколько. В каких-то задачах удобно воспользоваться теоремой Пифагора; другие предполагают использование признаков равенства или подобия треугольников и т.п. В случаях, когда прямые заданы в прямоугольной системе координат, возможно вычислить расстояние между двумя параллельными прямыми, используя метод координат. Рассмотрим его подробнее.

Зададим условия. Допустим, зафиксирована прямоугольная система координат, в которой заданы две параллельные прямые a и b . Необходимо определить расстояние между заданными прямыми.

Решение задачи построим на определении расстояния между параллельными прямыми: для нахождения расстояния между двумя заданными параллельными прямыми необходимо:

Найти координаты некоторой точки М 1 , принадлежащей одной из заданных прямых;

Произвести вычисление расстояния от точки М 1 до заданной прямой, которой эта точка не принадлежит.

Опираясь на навыки работы с уравнениями прямой на плоскости или в пространстве, определить координаты точки М 1 просто. При нахождении расстояния от точки М 1 до прямой пригодится материал статьи о нахождении расстояния от точки до прямой.

Вернемся к примеру. Пусть прямая a описывается общим уравнением A x + B y + C 1 = 0 , а прямая b – уравнением A x + B y + C 2 = 0 . Тогда расстояние между двумя заданными параллельными прямыми возможно вычислить, используя формулу:

M 1 H 1 = C 2 - C 1 A 2 + B 2

Выведем эту формулу.

Используем некоторую точку М 1 (x 1 , y 1) , принадлежащую прямой a . В таком случае координаты точки М 1 будут удовлетворять уравнению A x 1 + B y 1 + C 1 = 0 . Таким образом, справедливым является равенство: A x 1 + B y 1 + C 1 = 0 ; из него получим: A x 1 + B y 1 = - C 1 .

Когда С 2 < 0 , нормальное уравнение прямой b будет иметь вид:

A A 2 + B 2 x + B A 2 + B 2 y + C 2 A 2 + B 2 = 0

При С 2 ≥ 0 нормальное уравнение прямой b будет выглядеть так:

A A 2 + B 2 x + B A 2 + B 2 y - C 2 A 2 + B 2 = 0

И тогда для случаев, когда С 2 < 0 , применима формула: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2 .

А для С 2 ≥ 0 искомое расстояние определяется по формуле M 1 H 1 = - A A 2 + B 2 x 1 - B A 2 + B 2 y 1 - C 2 A 2 + B 2 = = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2

Таким образом, при любом значении числа С 2 длина отрезка | М 1 Н 1 | (от точки М 1 до прямой b) вычисляется по формуле: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2

Выше мы получили: A x 1 + B y 1 = - C 1 , тогда можем преобразовать формулу: M 1 H 1 = - C 1 A 2 + B 2 + C 2 A 2 + B 2 = C 2 - C 1 A 2 + B 2 . Так мы, собственно, получили формулу, указанную в алгоритме метода координат.

Разберем теорию на примерах.

Пример 1

Заданы две параллельные прямые y = 2 3 x - 1 и x = 4 + 3 · λ y = - 5 + 2 · λ . Необходимо определить расстояние между ними.

Решение

Исходные параметрические уравнения дают возможность задать координаты точки, через которую проходит прямая, описываемая параметрическими уравнениями. Таким образом, получаем точку М 1 (4 , - 5) . Требуемое расстояние – это расстояние между точкой М 1 (4 , - 5) до прямой y = 2 3 x - 1 , произведем его вычисление.

Заданное уравнение прямой с угловым коэффициентом y = 2 3 x - 1 преобразуем в нормальное уравнение прямой. С этой целью сначала осуществим переход к общему уравнению прямой:

y = 2 3 x - 1 ⇔ 2 3 x - y - 1 = 0 ⇔ 2 x - 3 y - 3 = 0

Вычислим нормирующий множитель: 1 2 2 + (- 3) 2 = 1 13 . Умножим на него обе части последнего уравнения и, наконец, получим возможность записать нормальное уравнение прямой: 1 13 · 2 x - 3 y - 3 = 1 13 · 0 ⇔ 2 13 x - 3 13 y - 3 13 = 0 .

При x = 4 , а y = - 5 вычислим искомое расстояние как модуль значения крайнего равенства:

2 13 · 4 - 3 13 · - 5 - 3 13 = 20 13

Ответ: 20 13 .

Пример 2

В фиксированной прямоугольной системе координат O x y заданы две параллельные прямые, определяемые уравнениями x - 3 = 0 и x + 5 0 = y - 1 1 . Необходимо найти расстояние между заданными параллельными прямыми.

Решение

Условиями задачи определено одно общее уравнение, задаваемое одну из исходных прямых: x-3=0. Преобразуем исходное каноническое уравнение в общее: x + 5 0 = y - 1 1 ⇔ x + 5 = 0 . При переменной x коэффициенты в обоих уравнениях равны (также равны и при y – нулю), а потому имеем возможность применить формулу для нахождения расстояния между параллельными прямыми:

M 1 H 1 = C 2 - C 1 A 2 + B 2 = 5 - (- 3) 1 2 + 0 2 = 8

Ответ : 8 .

Напоследок рассмотрим задачу на нахождение расстояния между двумя параллельными прямыми в трехмерном пространстве.

Пример 3

В прямоугольной системе координат O x y z заданы две параллельные прямые, описываемые каноническими уравнениями прямой в пространстве: x - 3 1 = y - 1 = z + 2 4 и x + 5 1 = y - 1 - 1 = z - 2 4 . Необходимо найти расстояние между этими прямыми.

Решение

Из уравнения x - 3 1 = y - 1 = z + 2 4 легко определются координаты точки, через которую проходит прямая, описываемая этим уравнением: М 1 (3 , 0 , - 2) . Произведем вычисление расстояния | М 1 Н 1 | от точки М 1 до прямой x + 5 1 = y - 1 - 1 = z - 2 4 .

Прямая x + 5 1 = y - 1 - 1 = z - 2 4 проходит через точку М 2 (- 5 , 1 , 2) . Запишем направляющий вектор прямой x + 5 1 = y - 1 - 1 = z - 2 4 как b → с координатами (1 , - 1 , 4) . Определим координаты вектора M 2 M → :

M 2 M 1 → = 3 - (- 5 , 0 - 1 , - 2 - 2) ⇔ M 2 M 1 → = 8 , - 1 , - 4

Вычислим векторное произведение векторов:

b → × M 2 M 1 → = i → j → k → 1 - 1 4 8 - 1 - 4 = 8 · i → + 36 · j → + 7 · k → ⇒ b → × M 2 M 1 → = (8 , 36 , 7)

Применим формулу расчета расстояния от точки до прямой в пространстве:

M 1 H 1 = b → × M 2 M 1 → b → = 8 2 + 36 2 + 7 2 1 2 + (- 1) 2 + 4 2 = 1409 3 2

Ответ: 1409 3 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

С помощю этого онлайн калькулятора можно найти расстояние между прямыми в пространстве. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми в пространстве, задайте вид уравнения прямых ("канонический" или "параметрический"), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку "Решить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Расстояние между прямыми в пространстве − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz L 1 и L 2:

. (1)
, (2)

где M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) − точки, лежащие на прямых L 1 и L 2 , а q 1 ={m 1 , p 1 , l 1 } и q 2 ={m 2 , p 2 , l 2 } − направляющие векторы прямых L 1 и L 2 , соответственно.

Прямые (1) и (2) в пространстве могут совпадать, быть паралленьными, пересекаться, или быть скрещивающимся. Если прямые в пространстве пересекаются или совпадают, то расстояние между ними равно нулю. Мы рассмотрим два случая. Первый − прямые параллельны, и второй − прямые скрещиваются. Остальные являются частыми случаями. Если при вычислении расстояния между параллельными прямыми мы получим расстояние равным нулю, то это значит, что эти прямые совпадают. Если же расстояние между скрещивающимися прямыми равно нулю, то эти прямые пересекаются.

1. Расстояние между параллельными прямыми в пространстве

Рассмотрим два метода вычисления расстояния между прямыми.

Метод 1. От точки M 1 прямой L 1 проводим плоскость α , перпендикулярно прямой L 2 . Находим точку M 3 (x 3 , y 3 , y 3) пересечения плоскости α и прямой L 3 . По сути мы находим проекцию точки M 1 на прямую L 2 . Как найти проекцию точки на прямую посмотрите . Далее вычисляем расстояние между точками M 1 (x 1 , y 1 , z 1) и M 3 (x 3 , y 3 , z 3):

Пример 1. Найти расстояние между прямыми L 1 и L 2:

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M

Подставляя значения m 2 , p 2 , l 2 , x 1 , y 1 , z 1 в (5) получим:

Найдем точку пересечения прямой L 2 и плоскости α , для этого построим параметрическое уравнение прямой L 2 .

Чтобы найти точку пересечения прямой L 2 и плоскости α , подставим значения переменных x , y , z из (7) в (6):

Подставляя полученное значение t в (7), получим точку пересеченияпрямой L 2 и плоскости α :

Остается найти расстояние между точками M 1 и M 3:

L 1 и L 2 равно d =7.2506.

Метод 2. Найдем расстояние между прямыми L 1 и L 2 (уравнения (1) и (2)). Во первых, проверяем параллельность прямых L 1 и L 2 . Если направляющие векторы прямых L 1 и L 2 коллинеарны, т.е. если существует такое число λ, что выполнено равенство q 1 =λ q 2 , то прямые L 1 и L 2 параллельны.

Данный метод вычисления расстояния между параллельными векторами основана на понятии векторного произведения векторов. Известно, что норма векторного произведения векторов и q 1 дает площадь параллелограмма, образованного этими векторами (Рис.2). Узнав площадь параллелограмма, можно найти вершину параллелограмма d , разделив площадь на основание q 1 параллелограмма.

q 1:

.

Расстояние между прямыми L 1 и L 2 равно:

,
,

Пример 2. Решим пример 1 методом 2. Найти расстояние между прямыми

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M 2 (8, 4, 1) и имеет направляющий вектор

q 2 ={m 2 , p 2 , l 2 }={2, −4, 8}

Векторы q 1 и q 2 коллинеарны. Следовательно прямые L 1 и L 2 параллельны. Для вычисления расстояния между параллельными прямыми воспользуемся векторным произведением векторов.

Построим вектор ={x 2 −x 1 , y 2 −y 1 , z 2 −z 1 }={7, 2, 0}.

Вычислим векторное произведение векторов и q 1 . Для этого составим 3×3 матрицу, первая строка которой базисные векторы i, j, k , а остальные строки заполнены элементами векторов и q 1:

Таким образом, результатом векторного произведения векторов и q 1 будет вектор:

Ответ: Расстояние между прямыми L 1 и L 2 равно d =7.25061.

2. Расстояние между скрещивающимися прямыми в пространстве

Пусть задана декартова прямоугольная симтема координат Oxyz и пусть в этой системе координат заданы прямые L 1 и L 2 (уравнения (1) и (2)).

Пусть прямые L 1 и L 2 не параллельны (паралельные прямые мы расстотрели в предыдущем параграфе). Чтобы найти расстояние между прямыми L 1 и L 2 нужно построить параллельные плоскости α 1 и α 2 так, чтобы прямая L 1 лежал на плоскости α 1 а прямая L 2 − на плоскости α 2 . Тогда расстояние между прямыми L 1 и L 2 равно расстоянию между плоскостями L 1 и L 2 (Рис. 3).

где n 1 ={A 1 , B 1 , C 1 } − нормальный вектор плоскости α 1 . Для того, чтобы плоскость α 1 проходила через прямую L 1 , нормальный вектор n 1 должен быть ортогональным направляющему вектору q 1 прямой L 1 , т.е. скалярное произведение этих векторов должен быть равным нулю:

Решая систему линейных уравнений (27)−(29), с тремя уравнениями и четыремя неизвестными A 1 , B 1 , C 1 , D 1 , и подставляя в уравнение

Плоскости α 1 и α 2 параллельны, следовательно полученные нормальные векторыn 1 ={A 1 , B 1 , C 1 } и n 2 ={A 2 , B 2 , C 2 } этих плоскостей коллинеарны. Если эти векторы не равны, то можно умножить (31) на некторое число так, чтобы полученный нормальный вектор n 2 совпадал с нормальным вектором уравнения (30).

Тогда расстояние между параллельными плоскостями вычисляется формулой:

(33)

Решение. Прямая L 1 проходит через точку M 1 (x 1 , y 1 , z 1)=M 1 (2, 1, 4) и имеет направляющий вектор q 1 ={m 1 , p 1 , l 1 }={1, 3, −2}.

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M 2 (6, −1, 2) и имеет направляющий вектор q 2 ={m 2 , p 2 , l 2 }={2, −3, 7}.

Построим плоскость α 1 , проходящую через прямую L 1 , параллельно прямой L 2 .

Поскольку плоскость α 1 проходит через прямую L 1 , то она проходит также через точку M 1 (x 1 , y 1 , z 1)=M 1 (2, 1, 4) и нормальный вектор n 1 ={m 1 , p 1 , l 1 } плоскости α 1 перпендикулярна направляющему вектору q 1 прямой L 1 . Тогда уравнение плоскости должна удовлетворять условию:

Так как плоскость α 1 должна быть параллельной прямой L 2 , то должна выполнятся условие:

Представим эти уравнения в матричном виде:

(40)

Решим систему линейных уравнений (40) отностительно A 1 , B 1 , C 1 , D 1.

Этот видеоурок будет полезен тем, кто хочет самостоятельно изучить тему «Расстояние от точки до прямой. Расстояние между параллельными прямыми». В ходе урока вы сможете узнать о том, как можно рассчитать расстояние от точки до прямой. Затем учитель даст определение расстояния между параллельными прямыми.

В текущем уроке мы познакомимся с понятием «расстояние» в целом. Также мы конкретизируем данное понятие в случае вычисления расстояния между двумя точками, точкой и прямой, параллельными прямыми

Рассмотрим рисунок 1. На нём изображены 2 точки А и В. Расстоянием между двумя точками А и В является отрезок, имеющий концы в заданных точках, то есть отрезок АВ

Рис. 1. АВ - расстояние между точками

Примечательно, что расстоянием нельзя считать кривую или ломаную линии, соединяющих две точки. Расстояние - это кратчайший путь от одной точки к другой. Именно отрезок АВ является наименьшим из всех возможных линий, соединяющие точки А и В

Рассмотрим рисунок 2, на котором изображена прямая а, и точка А, не принадлежащая данной прямой. Расстоянием от точки А до прямой будет длина перпендикуляра АН.

Рис. 2. АН - расстояние между точкой и прямой

Важно заметить, что АН - кратчайшее расстояние, так как в треугольнике АМН данный отрезок является катетом, а произвольный иной отрезок, соединяющий точку А и прямую а (в данном случае - это АМ) будет являться гипотенузой. Как известно, катет всегда меньше гипотенузы

Обозначение расстояния:

Рассмотрим параллельные прямые a и b, изображённые на рисунке 3

Рис. 3. Параллельные прямые a и b

Зафиксируем две точки на прямой a и опустим из них перпендикуляры на параллельную ей прямую b . Докажем, что если ,

Проведём отрезок АМ для удобства доказательства. Рассмотрим полученные треугольники АВМ и АНМ. Поскольку , а , то . Аналогично, . У данных прямоугольных треугольников () сторона АМ - общая. Она является гипотенузой в обоих треугольниках. Углы АМН и АМВ являются внутренними накрестлежащими при параллельных прямых АВ и НМ и секущей АМ. По известному свойству, .

Из всего выше изложенного следует, что . Из равенства треугольников следует, что АН = ВМ

Итак, мы доказали, что на рисунке 3 отрезки АН и ВМ равны. Это значит, что расстоянием между параллельными прямыми является длина их общего перпендикуляра, при чём выбор перпендикуляра может быть произвольным. Таким образом,

Верно и обратное утверждение: множество точек, которые находятся на одном и том же расстоянии от некоторой прямой, образуют прямую, параллельную данной

Закрепим наши знания, решим несколько задач

Пример 1 : Задача 272 из учебника «Геометрия 7-9». Автор - Атанасян Л.С.

В равностороннем треугольнике АВС проведена биссектриса АD. Расстояние от точки D до прямой АС равно 6 см. Найти расстояние от точки А до прямой ВС

Рис. 4. Чертёж к примеру 1

Решение:

Равносторонним треугольником называется треугольник с тремя равными сторонами (а значит, и с тремя равными углами, то есть - по 60 0). Равносторонний треугольник является частным случаем равнобедренного, поэтому все свойства, присущие равнобедренному треугольнику, распространяются и на равносторонний. Поэтому АD - не только биссектриса, но ещё и высота, стало быть AD ⊥BC

Поскольку расстояние от точки D до прямой АС - это длина перпендикуляра, опущенного из точки D на прямую АС, то DH - данное расстояние. Рассмотрим треугольник АНD. В нём угол Н = 90 0 , так как DH - перпендикуляр к АС (по определению расстояния от точки до прямой). Кроме этого, в данном треугольнике катет DH лежит против угла , поэтому AD = (см) (По свойству)

Расстояние от точки А до прямой ВС - это длина опущенного на прямую ВС перпендикуляра. По доказанному AD ⊥BC, значит, .

Ответ: 12 см.

Пример 2 : Задача 277 из учебника «Геометрия 7-9». Автор - Атанасян Л.С.

Расстояние между параллельными прямыми a и b равно 3 см, а расстояние между параллельными прямыми a и c равно 5 см. Найдите расстояние между параллельными прямыми b и c

Решение:

Рис. 5. Чертёж к примеру 2 (первый случай)

Поскольку , то = 5 - 3 = 2 (см).

Однако данный ответ неполный. Существует и другой вариант расположения прямых на плоскости:

Рис. 6. Чертёж к примеру 2 (второй случай)

В данном случае .

  1. Единая коллекция цифровых образовательных ресурсов ().
  2. Репетитор по математике ().
  1. № 280, 283. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. под редакцией Тихонова А. Н. Геометрия 7-9 классы. М.: Просвещение. 2010 г.
  2. Сумма гипотенузы СЕ и катета СК прямоугольного треугольника СКЕ равна 31 см, а их разность равна 3 см. найдите расстояние от вершины С до прямой КЕ
  3. На основании АВ равнобедренного треугольника АВС взята точка М, равноудалённая от боковых сторон. Докажите, что СМ - высота треугольника АВС
  4. Докажите, что все точки плоскости, расположенные по одну сторону от данной прямой и равноудалённые от неё, лежат на прямой, параллельной данной
Партнеры
© 2020 Женские секреты. Отношения, красота, дети, мода